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https://www.ljll.math.upmc.fr/ bardos
In collaboration with Nicolas Besse.

Claude Bardos (Uni. Denis-Diderot) 1 / 29



Vlasov equation and the Quasilinear Approximation

The Vlasov equation

∂tF + v ⋅ ∇xF + E ⋅ ∇vF = 0, (t, x , v) ∈ R+
t ×Td

x ×Rd
v .

E = ∇Φ ,−∆Φ(t, x) = ρ − 1,⨏ Fε(x , v , t)dxdv = 1

⨏ .dx =
1

(2π)d ∫Td
.dx

The quasilinear approximation

∂tF (t, v) − ∂v(D(t, v)∂vF (t, v)) = 0 .

With D(t, v) being a symmetric nonnegative matrix.
This has been a very classical subject in Plasma Physic, cf. Krall and
Trivelpiece 1973 and Plasma Physic in the 20th century as told by players
EPJ vol 43 2018. Now related to very moderns ideas.
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Remarks

Td Because it is a bounded domain where the advection flow is
ergodic. Explicit computations can be made. Extension to other
domains would be useful.

It is a natural approximation to grasp the averaged profile of velocity.

It involves a natural Fick law.

∂tF (t, v) + ∇v⨏ E(t, x)F (t, x , v)dv = 0 ,

J = E(t, x)⨏ F (t, x , v)dv .
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Remarks

Comparison of the conservations law: D(t, v) > 0 is a subtle issue. No
strong convergence.

1

2

d

dt ∫Rd
v

dv ⨏ dx ∣f ε∣2 = 0

Versus

1

2

d

dt ∫Rd
v

dv ⨏ dx ∣f ε∣2 + ∫
Rd
v

dv ⨏ dx (D(t, v)∇v f ε , ∇v f ε) = 0 .

Weak convergence on the solution itself often by Duhamel formula (or
iterated Duhamel formula)

S(t)f = f (t, x − vt, v) ,

f (t, x , v) = St f (0) − ∫
t

0
dσ1 St−σ1E(σ1) ⋅ ∇v f (σ1)... ,

and almost compulsory introduction of some type of average.
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Content

1 The rescaled Vlasov and Liouville equations. Pathologies in
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5 Remarks, conclusion and open problems.
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Rescaled on (0,T] finite time interval

f ε(0, x , v) ∈ S(Td
×Rd

v ) ∂t f
ε
+

v

ε2
⋅ ∇x f

ε
+
E ε

ε
⋅ ∇v f

ε
= 0 , (1a)

v ⋅ ∇x f
ε
= −ε2∂t f

ε
− εE ε ⋅ ∇v f

ε , (1b)

∂τF
ε
+ v ⋅ ∇xF

ε
+ εE ε(τ) ⋅ ∇vF

ε
= 0

τ =
t

ε2
, f ε(t, x , v) = F ε(

t

ε2
, x , v) .

(1c)

Equation (1a) ⇒ convergence in L∞(R+
t ×Td ×Rd

v )weak− ⋆ .
Equation (1b) and ergodicity of S(t) in Td ⇒ f ε(t, x , v) ⇀ f ε(t, v).
With Poisson relation E ε(x , t) ⇀ 0 inL2((0,T ) ×Td) weak.
A “baby” version of the Landau damping.
From (1c) with initial data F ε(0, x , v) = G(v) + h(x , v) satisfying the
standard Landau-damping hypothesis one would have ∥E ε(τ)∥L2(Td) → 0
exponentially fast that would imply exponential convergence to 0 in
L2(δ,T ;L2(Td)) of E ε(t, x) .
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About the rescaled stress tensor

Start from:

∂t ⨏ f ε(t, x , v)dx +∇v ⨏
E ε(t, x)f ε(t, x , v)

ε
dx = 0

∂t f ε(t, v)dx +∇v⨏
E ε(t, x)f ε(t, x , v)

ε
dx = 0

f ε(t) = Sεt f
ε

0 −
1

ε
∫

t

0
Sεt−σE

ε
(σ) ⋅ ∇v f

ε
(σ)dσ .

(2)

After introduction of test function, integration by part and change of
variables:

∫
Rd
v

dvφ(v)∇v ⨏
E ε(t, x)f ε(t, x , v)

ε
dx =

− ∫
Rd
v

dv ⨏ dx ∫

t
ε2

0
dσf ε(t − σε2, x , v)

∇v ⋅ (E
ε
(t − ε2σ, x) ⊗ E ε(t, x + σv))∇vφ(v))

(3)
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Stress tensor

Dε(t, v) = ⨏ dx ∫

t
ε2

0
dσ(E ε(t − ε2σ, x) ⊗ E ε(t, x + σv)

a tensor which in the present field (”plasma turbulence”) plays a role very
similar to the Reynolds stress tensor

u(t, x) ⊗ u(s, y)

in fluid turbulence. Hence 2 natural issues
1 Does

∫
Rd
v

∇φ(v)Dε(t, v)∇ψ(v)dv → ∫
Rd
v

∇φ(v)Dε(t, v)∇ψ(v)dv

with Dε(t, v) being a non degenerate, non singular, diffusion ??
2 What about decorelation between two ”weakly converging terms”

∫
Rd
v

dv ⨏ dx ∫

t
ε2

0
dσf ε(t − σε2, x , v)∇vDε(t, v))∇vφ(v))

=???∫
Rd
v

dv ⨏ dx ∫

t
ε2

0
dσf ε(t − σε2, x , v)∇vDε(t, v))∇vφ(v)) .
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A deterministic example

Assuming that E(t, v) = ∇xΦ(t, x) is given , smooth with respect to the x
variable but oscillating with respect to the time.

Proposition

Assume Φε
(t, k) = Φε

(t, k)e−i
ω(k)

ε2 tand ∑
k∈Zd

∣k ∣4∣Φε
(t, k)∣2 ≤ C

ThenDε(t, v) = ⨏ dx ∫

t
ε2

0
dσ E ε(t, x + σv) ⊗ E ε(t − ε2σ, x) =

∑
k∈Zd

k ⊗ k ∣Φε
(t, k)∣2

sin ((ω(k) − k ⋅ v) t
ε2 )

ω(k) − k ⋅ v
. And:

∫
Rd
v

(∇vφ(v))
T Dε(t, v)∇vψ(v)dv =

π ∑
k∈Zd

∣Φε
k ∣

2
∫
k ⋅v=ω(k)

k ⋅ ∇vφ(v) k ⋅ ∇vψ(v)dv .

Singular and/ or degenerate.
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The stochastic electric field

E[f ] = ∫
Ω
f (ω)dP(ω) . (4)

H1. Stochastic average of E ε set equal to 0, i.e.

∀(t, x), E[E ε(t, x)] = 0 . (5)

H2. Finite time decorelation:
τ such that

∀(t, s) ∣t−s ∣ ≥ τε2
Ô⇒ E[E ε(t, x)⊗E ε(s, y)] = 0, ∀(x , y) . (6)

H3. Time and space homogeneity.

E ε(t, k) = ⨏ E ε(t, x)e−ik ⋅xdx = E ε(t, k)e−i
ωk t

ε2 = ikΦε
(t, k)e−i

ωk t

ε2 .

(7)
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Φε(t, k) are complex random variables, while frequencies ωk are real and
(t, ε)-independent. We have also the following parity properties,

∀k ∈ Zd , Φε
(t,−k) = (Φε

(t, k))⋆ and ω−k = −ωk .

∀k ∈ Zd/{0}, σ ↦ Ak(σ) with:

E[Φε
(t, k)Φε

(s, k ′)] = Ak(
∣t − s ∣

ε2
)δ(k + k ′) , ∑

k∈Zd
∫
R
∣k ∣3∣Ak(σ)∣dσ < C ,

Âk(s) = ∫
R
Ak(σ)e

−isσdσ .

(8)
Âk(s) is analytic (Paley-Wiener and non negative Bochner, Theorems)
diffusion matrix which symmetric, non singular and non degenerate.
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The stochastic Diffusion Matrix

Proposition

The stochastic diffusion matrix is given by the formula:

D(v) = E[Dε(t, v)] =
1

2
∑

k∈Zd /{0}
k ⊗ k Âk(ωk − k ⋅ v)

Proof.

With H2. Finite time decorelation:

E[Dε(t, v)] = ⨏ dx ∫

t
ε2

0
dσE[E ε(t − ε2σ, x) ⊗ E ε(t, x + σv)] =

∑
k∈Zd

k ⊗ k ∫
∞

0
E[Φε

(t − ε2σ, k)(Φε
(t, k))⋆]e i(ωk−k ⋅v)σdσ

With H3 Space time homogeneity.

= ∑
k∈Zd

k ⊗ k ∫
∞

0
Ak(σ)e

i(ωk−k ⋅v)σdσ =
1

2
∑
k∈Zd

k ⊗ k ∫
∞

−∞
Ak(σ)e

i(ωk−k ⋅v)σdσ
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The stochastic Diffusion Matrix

Proposition

Decorelation

−∇v ⋅E [⨏ dx
E ε(t)f ε(t)

ε
] =

∫

τ

0
dσ⨏ dx E [E ε(t)∇v(S

ε
ε2σ(E

ε
(t − ε2σ)∇v(S

ε
−ε2σ)))]E [f ε(t − 2ε2τ)]

+ µεt .
(9)

µεt = ε∫
τ

0
∫

2τ−σ

0
dsdσ⨏ dx E[E ε(t)∇v(E

ε
(t − ε2σ)⋅

∇v(S
ε
ε2(s+σ)(E

ε
(t − ε2

(σ + s))∇v(f
ε
(t − ε2

(σ + s))))))].
(10)

Follows after a second order Duhamel formula from the hypothesis

∣t − s ∣ ≥ τε2
Ô⇒ E[E ε(t, x) ⊗ E ε(s, y)] = 0,
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The stochastic decorellation

After multiplication by φ(t, v) observe, using space regularity, that with

∣⟨φ(t, v) , µεt ⟩∣ ≤ εC(φ)(1 + τ3
)∥E∥L3(0,τ ;W 2,∞(Td)) (11)

the reminder can be ignored. Then [f ε(t − 2ε2τ)] converges in L∞

weak-⋆. ∀ ψ(t, v) integration by part in (x , v) and use of the space time
homogeneity hypothesis shows strong L1

loc convergence for

E [E ε(t)∇v(S
ε
ε2σ(E

ε
(t − ε2σ)∇v(S

ε
−ε2σ)))]

t
ψ(v , t)

leading to

Proposition

For any φ(t, v) ∈ D(R+
t ×Rd

v ) one has:

∫
R+t ×Rd

v

φ(t, v)∇v ⋅E [⨏ dx
E ε(t)f ε(t)

ε
]

= −∫
R+t ×Rd

v

f ε(t, v)∇vD(t, v)∇φ(t, v)dtdv

(12)

and to the :
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The stochastic decorellation

Theorem

A family of x regular stochastic, ε, t dependent vector fields,
The inverse Fourier transform of the function Ãk(∣σ∣) is non negative. The
diffusion matrix

D(v) = ∑
k∈Zd /0

(k ⊗ k)Ãk((k ⋅ v + ωk)) (13)

is symmetric and non negative. The family of E[f ε] of expectation of f ε

solution of the stochastic Liouville equation

ε2∂t f
ε
+ v ⋅ ∇x f

ε
+ E ε∇x f

ε
= 0 , f ε(0, x , v) = f0(x , v) . (14)

converges in the weakstar L∞loc(R
+
t ;L∞(Rd

v )) ∩ C 1R+
t ;H−1(Rd

v )) topology
to a function f ε(t, v) independent of x and solution of the diffusion
equation:

∂t f ε −∇v(D(v)(∇v f ε) = 0 f ε(0, v) = ⨏ f0(x , v)dx (15)
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The stochastic decorellation

Deriving a diffusion equation from an Hamiltonian dynamic is the
most classical problem to statistical goes back to Einstein and to the
brownian motion.

Only weak convergence and introduction of randomness does work.

Analysis should be made on the solution rather than on the equation.

As such the reiteration of the Duhamel formula leading to the
Duhamel series is an essential tool, used by for instance by Lanford
for Boltzmann in O. Lanford in 1975, L. Erdos− Yau in (2000) and
many others.

However a breakthrough was made in the contributions of
Poupaud−Vasseur and Loeper−Vasseur in 2004 where it was shown
that using the second term of the Duhamel formula is enough to
obtain the fondamental decorelation property .

And finally in some sense the introduction of the second order
Duhamel to obtain a closure can be viewed is in many case equivalent
to the notion of propagation of chaos.
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Returning to the Vlasov equation

Vlasov equations before any rescaling

∂t f + v ⋅ ∇x f + E∇v f = 0 ,

−∆Φ = ∫
Rd
v

f (x , v , t)dv − 1 ,E(x , t) = −∇xΦ

, . ∀t ∈ R+
t f (x , v , t) ≥ 0 ∀1 ≤ p ≤ ∞

d

dt ∫Rd
v×Td

f (x , v , t)pdxdv = 0 ,

∀t ∈ R+
t
d

dt
(∫

Rd
v
⨏

∣v ∣2

2
f (x , v , t)dxdv +

1

2 ⨏
∣E(x , t)∣2dx = 0 ,

⇒ for any d ∥E(x , t)∥L∞(R+;W 1,1+2/d(Td)) ≤ c0 < ∞ .

(16)
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Returning to the Vlasov equation

Prove the validity of a short time approximation in connection with the
local in time dynamic, ie in the presence of unstable (in the Penrose sense)
eigenvalues for the linearized problem. Hence for a special class of
solutions in particular with analytic initial data.

f ε(t, x , v) = G(t, v) + εh(t, x , v) ,

G(t, v) ≥ 0 ∫
Rd
v

G(t, v)dv = 1 ⨏ h(t, x , v)dx = 0 ,
(17)

Then the Vlasov equation is equivalent to the system:

∂tG(t, v) + ε2
∇v ⋅ (⨏ E [h]hdx) = 0 , E [h] = ∇∆−1

∫
Rd
v

h(t, x , v)dv ,

∂th + v ⋅ ∇xh + E [h] ⋅ ∇vG = −ε∇v ⋅ (E [h]h − ⨏ E [h]hdx) .

(18)
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Returning to the Vlasov equation

With (18):

∂tG(t, v) = O(ε2
) and G(t, v) = G(0, v) + tO(ε2

) (19)

The goal is the construction of an approximation that will improve the
order of accuracy from tO(ε2) to tO(ε3) . Compare two objects.
1. The solution f ε(t, x , v) of the Vlasov equation with initial data:

f ε(0, x , v) = G(0, v) + εh(0, x , v) = G0(v) + ε
E(0, k) ⋅ ∇vG(0, v)

λ(0) + ik ⋅ v
e ik ⋅x .

(20)
2. The ansatz f̃ ε(t, x , v)

f̃ ε(t, x , v) = G(t, v)+εh̃(t, x , v) =

G(t, v) + ε
E(0, k)e∫

t
0 dsλ(s) ⋅ ∇vG(t, v)

λ(t) + ik ⋅ v
e ik ⋅x .

(21)
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Returning to the Vlasov equation

(λ(0), k) is a simple root of the dispersion equation

1 −
1

∣k ∣2 ∫Rd
v

ik ⋅ ∇vG(0, v)

λ(0) + ik ⋅ v
dv = 0 , (22)

while λ(t) is the analytic continuation on a finite time interval as solutions
of

1 −
1

∣k ∣2 ∫Rd
v

ik ⋅ ∇vG(t, v)

λ(t) + ik ⋅ v
dv = 0 , (23)

Then ∂tG(t) = O(ε2
) ⇒ ∂tλ(t) = O(ε2

)

∂t h̃ + v ⋅ ∇x h̃ + E [h̃] ⋅ ∇vG(t) = O(ε2
) .

∂t(h − h̃)+v ⋅ ∇x(h − h̃)+E [h − h̃]⋅∇vG =−ε∇v ⋅ (E [h]h−⨏ E [h]hdx)+O(ε2
) .

(h − h̃)(0, x , v) = 0⇒ h(t) − h̃(t) = O(ε)

∂tG + ε2
∇v ⋅ (⨏ E [h̃]h̃dx)=ε2

∇v ⋅⨏ (E [h̃]−E [h]h)dx = O(ε3
) .
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Returning to the Vlasov equation

(λ, k) solutions of (22) implies that the same is true for (λ∗,−k) and one
can extend comparison between genuine solutions with initial data

f ε(0, x , v) = G(v) + εR(h(0, x , v)) , (24)

and the approximate solutions given by

f̃ ε(t, x , v) = G(t, v) + εRh̃(t, x , v) .

Since the functions h̃ satisfy the relation

(λ + ik ⋅ v)h̃(t, k , v) + E [h̃(t, k , v)] ⋅ ∇vG(t, v) = 0 , (25)

one compute for such solutions explicitly ⨏ E [h̃]h̃dx and obtain:

∂tG(t, v) − ε2
∇v ⋅

⎛

⎝

E(0, k) ⊗ (E(0, k))⋆e2R∫ t
0 dsλ(s)

(k ⋅ v − Iλ)2 + (Rλ)2
∇vG(t, v)

⎞

⎠
= O(ε3

) .
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Returning to the Vlasov equation

Remark

First observe that the starting point of the above construction is the
consideration of the unstable modes (eigenvalues) of the operator

T = −v ⋅ ∇x + E(h)∇vG(0, v)

In particular the formula (21) can be extended to all the (λk , kλ) solutions
of the dispersion equation

1 −
1

∣km∣2
∫
Rd
v

ikm ⋅ ∇vG(0, v)

λm + ikm ⋅ v
dv = 0 ,

leading to the formula:

∂tG(t, v)−ε2
∇v ⋅∑

m

⎛

⎝

E(0, km) ⊗ (E(0, km))⋆e2R∫ t
0 dsλ(s)

(km ⋅ v − Iλm)2 + (Rλm)2
∇vG(t, v)

⎞

⎠
= O(ε3

)
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Returning to the Vlasov equation

Remark

Then the introduction of the h̃(t, x , v) can be obtained by considering the
linearized operator with s ↦ G(s, v) being frozen near t = 0. In term of
spectral analysis the λm correspond to pure point spectra. Then for the
resolvent obtained after meromorphic extension in the half plane Rλ < 0
the pole would be resonancies . With the physic interpretation the point
spectra are called particles and the resonancies waves. The Villani Mouhot
and others proofs of the Landau damping correspond to the case where
there is no point spectrum!
More refined analysis would consider the interaction between resonnacies
(waves ) and particles point spectrum.
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Returning to the Vlasov equation

Remark

For short time in the quasi linear approximation the term e2R ∫ t
0 dsλ(s)

enhances the dissipation and as long as it is active forces the profile
G(t, v) to become smooth.

∂tG(t, v) − ε2
∇v ⋅

⎛

⎝

E(0, k) ⊗ (E(0, k))⋆e2R∫ t
0 dsλ(s)

(k ⋅ v − Iλ)2 + (Rλ)2
∇vG(t, v)

⎞

⎠
= O(ε3

) .

When the profile is too smooth the effects of the point spectrum becomes
less dominant with respect to the effect of the interaction wave particles.
In such region of time the interaction this wave particles interaction makes
the system stochastic and then the description given by the stochastic
approach becomes valid.
Details can be found for instance in the paper : Validity of quasilinear
theory: refutations and new numerical confirmation Nicolas Besse , Yves
Elskens , D F Escande and Pierre Bertrand1 Plasma Phys. Control. Fusion
53 (2011)
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Returning to the Vlasov equation
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Returning to the Vlasov equation

Bump of the “bump in tail profile” : Top Single realizations. Bottom
ensemble averaged over 210 simulations.
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Returning to the Vlasov equation

FINAL REMARKS

1 The goal of the QL linear approximation is to produce a global in x
v dependent equation for purpose of the the solution.

2 This has to be compared with the introduction of x independent
equations for instance homogenous Boltzmann or Fokker Planck
equation which may be view as an intermediate step in a numerical
simulation.

3 But they can also fulfill the first purpose for instance with also with
Fokker Planck. and a good exemple is the linearized Balescu-Lenhard
for fluctuations near and absolute Maxwellian:

∂t f = ∇v(D(v)(∇v f + vf )) (26)

derived directly from classical N tagged particles dynamic cf.
Duerinckx-Saint Raymond .
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Returning to the Vlasov equation

FINAL REMAKS-Continuing

What about weak turbulence:
Should appear for larger time than the short time approximation and
before the Landau Damping regime.. with many real eigenvalues
converging to the imaginary axis.
In Duerinck-Saint Raymond, the introduction of a god given probability as
Vasseur ... is replaced by a detailed analysis of cumulants in the Duhamel
serie and quoting: The following main result provides a fully rigorous
derivation of (26) starting from particle dynamics, although only on an
intermediate timescale t ≃ N r with r < 1 small enough. The reason for this
limitation is that we do not manage to rule out possible resonant effects .

Claude Bardos (Uni. Denis-Diderot) 28 / 29



Returning to the Vlasov equation

THANK YOU FOR YOUR ATTENTION!
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