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| will now describing the context of this topic



there are various ways to model phenomena in nature

time
scale t

] sec +

1070 sec +

10719 sect

" TIRE 3 R
k g Bl doe F’
K, ) 4.{.

interacting molecules
microscopic description

107~ m

10_I6 m

10-2 m

length
scale



time
scale t

] sec +

1070 sec +

10719 sect

A 1A
R g R
e .
DL %, HA o
so..' . .\.c-‘ A
s < ok
M’J_—. ‘,', 3 A."
I
& B a

interacting molecules
microscopic description

g Cowvngy

» - '—
. 1 B
» g -
PSR S :
. - . - » |
S ) T A
.‘..-' .".-.v',,_'
T Al e A S alia s e e .
A N PPN e e
- o Yol .'l.b. > .
. [P o ARV IO, 2 . > !
Lo I e T <% .
Tt NSNS )
o v iy U S »
i SRR A 2 S D e y .l
“ REL SR DG v TN |
. - L3P PR - I
. .
' PR LA N T e
v "B el 7 ot |
QAT e T haE L TS v
. -

Kinetic equations
Boltzmann-type equations
AR mesoscopic description

h

107~ m

10_I6 m

10-2 m

length
scale



time
scale t

] sec +

1070 sec +

10719 sect

Flow ut Reynolds number 10()

: R R e w1
'\ A% % : -.,\ = - _— - ,’_J - y. //, ,/{v. N
| | \ ",;“'-_ ‘\:‘.‘V.V_"\ —— // 7 /{/ ’
A . - \>\ — /I > |
f ‘ d n 7 o /
q O PR | a1
o0 18 10

e.qg. Euler equations, Nawer—Stokes
macroscopic description

- . L

25 ,AlnlL,‘ |

Kinetic equations
Boltzmann-type equations

A . o ' . .
o & T a® 2y
o wlb(;\»\'f"ﬂ;l«"’q-. ‘m ’ ’ ’es< ’SCO IC descr/ l‘lO
o t;" "";:gf"c.}" 'b*__&‘.'?;‘*i % ~;
¥ 4 ;22 WA T L AN B8 l ]
N RS NERITYRE A
Mo s 8 A
pURC S, e i
AT TN ;gqi‘v«‘, CA
& o ot v O e v
L. P e
L Py, ‘,{‘\ . 5 .:1"( ,»—én"!"
= b P g(vf ol
TR e a” SRR
0= ',6‘" "‘s"i:“ w3

mteracﬂng mo\ecu\es
microscopic description

10~ m 107° m 1072 m ength
scale



today’s lecture will focus kinetic equations
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today’s lecture will focus kinetic equations and its fluid limits

Flow ut Reynolds number 10()
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one needs to rescale time and space to go from one description
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example
Kinetic neutron transport equation:
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macroscopic diffusion equation:
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example
Kinetic neutron transport equation:

: P
8tf—|—g?}'vmf_ o2 (2/_1de _f)

macroscopic diffusion equation: ¥

Pr = ax(
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one would like to prove well-posedness of this solution p
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given the corresponding PDE model at the macroscopic level with
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one would like to prove well-posedness of this solution p
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Fi =0 (BUTap)



given a PDE model at the mesoscopic level with given initial ano
boundary data

one would like to prove well-posedness of this solution f,

given the corresponding PDE model at the macroscopic level with
given initial and boundary data

one would like to prove well-posedness of this solution p

finally one would like to prove convergence under the appropriate

scaling (| f.dv = p)
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there are huge difficulties in showing well-posedness of the
2-d compressible tuler equations

Oro + divy(ov) =0
Ot(ov) +dive(ov @ v) + Vi [p(e)] =0




consider this Initial value problem In 2 space dimensions

t

A

d

PM, UM

»Qj‘z

Two shocks



for example:

Standard solution consists of just one shock




In addition to the standard solution there are many “wild solutions”
t

OoNSt.

Riemann data X

Klingenberg, Stmon Markfelder: “The Riemann problem for the multidimensional isentropic

system of gas dynamics is ill-posed if it contains a shock”
Archive for Rational Mechanics and Analysis (2018)



this I1s the standard solution
[
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this is one of many “wild solutions”
t

OoNSt.

Riemann data X

all of these many solutions are entropy solutions

E. Feireisl; C. Klingenberg; S. Markfelder, “On the density of ‘wild’ initial data for the compressible
Euler system”, Calculus of Variations (2020)



as long as we don't know well-posedness of the [imit of
Boltzmann for € — 0 in the hyperbolic scaling (namely the

Euler equations) it is difficult to prove this limit



example of a well-posedness proof for a kinetic equation



a multi-species kinetic model

O f1 +v-Vofi1+ -V f1 =

Oy fo+ 0 -Vyfot —  Vyfo=

Q11(f1, f1) + Q12(f1, [2)
R22(f2, f2) + Q21(f2, f1)

~_

modeled by tWoO interaction terms



we use the BGK approximation
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we use the BGK approximation
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we use the BGK approximation

F
Orf1 + V- (vfi) A ml Vofi =viini (Mg — f1) + viena(Mi2 — f1)
1
F:
Otfo+ Vi (vfa) A m2 Vo fo = vaong (Mo — f2) + vor1ng (Mo — f2)
2
L 2
Mi(x,v,t) = = exp( v _‘2) Mio(x,v,t) = 5 exp( v 2)
\/2 2% \/2 mi
2
My(z,v,1) = s exp(— " ‘ ) Mps (2,0, ) = s exp(- Ll
/2 2 /2 23

can determine these coefficients such that conservation
oroperties, H-theorem holds

- Klingenberg, C., Pirner, M., Puppo, G.: “A consistent kinetic model for a two component mixture with
an application to plasma”, Kinetic and Related Models Vol. 10, No. 2, pp. 445-465 (2017)



we can show well-posedness of this model

- Klingenberg, C. & Pirner, M.: “Existence, Uniqueness and Positivity of solutions for BGK
models for mixtures”, Journal of Differential Equations, 264, pp. 207-227 (2019)

0y + Vo (0fi) + LV, fy = varm (My = fi) + viona(Miz — i)
O fo+ Vo (0fs) + 2250 fo = vagna(My — fo) + varny (Mag — fo)

%



next we consider uncertainties in the kinetic context

examples:

when deriving the collision kernel from measurements

there might be uncertainties (vvi|teh variable z):
. Vaﬂab
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next we consider uncertainties in the kinetic context

examples:

when deriving the collision kernel from measurements
there might be uncertainties (with variable z):

o(xz, 2)

€0 f(v)+vd, f(v) = -

e b
> [ @)y -
| <~ J—1 3

€

the measurements of the Iinitial and boundary data might
be uncertain



there could also be uncertainties in the fluid context

examples:

- the diffusivity coefficient my be known only with uncertainty

1
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there could also be uncertainties in the fluid context

examples:

- the diffusivity coefficient my be known only with uncertainty

1

30 (, 2) “’]

/)t p— ()l [

the measurements of the initial and boundary data might
pDe uncertain



numerics of uncertainties in the kinetic context
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the generalized polynomial chaos method (gPC)

- we consider a set of orthonormal basis function {gbj(z)} for the
space of random functions

- we expand the functions into a Fourier series w.r.t. this basis

f(z) =Xf;d;(2)

- truncate this series

- substitute Into the stochastic system to obtain a deterministic
system for the first N gPC coetfticients



one would like to show accuracy of the gPC method



one would like to show accuracy of the gPC method

for this one checks the boundedness or the decay in time of the
derivatives



one would like to show accuracy of the gPC method

for this one checks the boundedness or the decay in time of the
derivatives

this can be deduced from hypocoercivity



consider the (single species) BGK equation
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consider the (single species) BGK equation

one attempts to prove decay In time for f and its derivatives

for the linearized BGK equation decay In f has been done in

L1, Q., & Wang, L.. Uniform regularity for linear kinetic equations with random input based on hypocoercivity.
SIAM/ASA Journal on Uncertainty Quantification, 5(1), (2017)



consider the (single species) BGK equation

one attempts to prove decay In time for f and its derivatives

for the linearized BGK equation decay In f has been done in

L1, Q., & Wang, L.. Uniform regularity for linear kinetic equations with random input based on hypocoercivity.
SIAM/ASA Journal on Uncertainty Quantification, 5(1), (2017)

we generalize this result and show decay for all derivatives in z by
using Liapunov technigues from

Franz Achleitner, Anton Arnold, and Eric A. Carlen. On multi-dimensional hypocoerciv BGK models. Kinetic &
Related Models, 11(4), (2018)



write f=M++c¢€h



write f =M+ e€h
substituting gives

Oih + v, h = o(2)(M — h)

h=h(t,z,v,z)



write f =M+ e€h
substituting gives

Oih + v, h = o(2)(M — h)

h=h(t,z,v,z)

we can show

O h|| < Ce™ e N

Herzing, T., Klingenberg, C., Pirner, M.: "Hypocoercivity of the linearized BGK-equation with
stochastic coefficients", submitted (2021)
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Black-Scholes equation:
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ot 277
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numerics of uncertainties in the fluid context

(time inverted) Black-Scholes equation:
IV(S,t) 1 5 2d?V(S,t)  OV(S,1)
o 277 Tasr T as

deterministic diffusion coefficient (volatility)

rV(S,t) =0




numerics of uncertainties in the fluid context

(time inverted) Black-Scholes equation:

oV(S,t) 1 , ,0%V(S,t) oV (S, 1)
- —0°S - rS V(S5,t)=0
ot X osz g VIS
deterministic diffusion coefficient (volatility)
oV (S,t,0) 1 20207V (S,t,0)  _0V(S,t,0) B
57 = §Z(A@) S 6S2 - rS BYS TV(S, t, @) = (

stochastic diffusion coefficient (volatility)



in financial applications the diffusion coetfticient depends on finitely
many stochastic variables
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in financial applications the diffusion coetfticient depends on finitely
many stochastic variables
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the stochastic Galerkin approach is computationally costly



in financial applications the diffusion coetfticient depends on finitely
many stochastic variables

>(01,...,01)

the stochastic Galerkin approach is computationally costly

hence we improve computational efficiency using a machine learning
(bi-fidelity) approach

L. Liu and X. Zhu, A bi-fidelity method for the multiscale Boltzmann equation with random
parameters, Journal of Computational Physics 402 (2020)



market data
expected value |
exp val + std

i exp val - std

6 . : , . : . deterministic sol

0 20 40 60 80 100 120 140 160 180
t

Comparing the stochastic Black-Scholes model to real market data

Hellmuth, K., Klingenberg, C.: “Computing Black Scholes with uncertain volatility - a machine
learning approach, manuscript (2021)
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back to the kinetic problem

in the forward problem we are given a collision kernel and study
the effect of this on the solution

But there are situations where the parameters of the collision kernel
needs to be inferred from the solution

given (parts of) the solution to the kinetic problem, find the coetfticients

this Is the inverse problem for kinetic equations



we shall llustrate this



radiative transfer equation

Ou+0-Vyu=—pu+ [, 20, 0)u(t,z,0)dd +oT"
T = A, T —cTH ,ulgnl_l‘ Jom—1 u(t, x,0)do

u = u(t,x,0) describes the radiation intensity
1" 1s the temperature
®(0',0) given kernel, describing scattering of photons

i = u(x) isagiven absorption coeflicient

O given emission coeflicient



t,x,0

scattering



forward problem

solve u and T inside the body

- with given values u and T on the boundary,
/
the kernel (6", 0) . emission ¢ and absorbtion ¢ are known

x———-@-@‘ \
O emission

N T S 5.‘\:.:
“f,‘ (I)(H’ ) (t x,0") do’ + uy,
S Lult, z,0)df,

scattering



iInverse problem

reconstruct emission coefficient o

- given the kernel (6", 0) - and absorption u

- temperature T is given on the whole boundary

glven the Incoming aata u -
_glven the outgoing measurement Ur,



iInverse problem

given Q aetermine
S &Q emission O

scattering N
given



stationary case, set scattering @ = 0
O-V,u+pu=cT* 1inQ xS
AT —oT* = —p{u) in Q,

given

U = UpR on |l _,
[ = TB on 0O :
1

(u)(x) = S ) u(x,6)do

we prove that the emission coefficient o
- exists
- IS unique
- depends continuously on the data

Klingenberg, C., Lai, R., L1, Q.: "Reconstruction of the emission coetficient in the nonlinear radiative
transfer equation”, SIAM Journal on Applied Mathematics, Vol. 81, 1 (2021)



now consider the [Iimit to the macroscopic equation

this (stationary) kinetic model in the parabolic scaling leads to an
elliptic problem



the related problem for the corresponding macroscopic fluid
equation is ill-posed,
similar to the Calderon problem

V- -oVu
U|c‘)Q

@_

0 in €2,
f.

e

conductivity (in the kinetic case emission) o

Calderon problem: recover o from knowledge of
solution on the boundary



the ill posed Calderon problem is typically numerically solved by a so
called Tychonov regularization.
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the ill posed Calderon problem is typically numerically solved by a so
called Tychonov regularization.

we propose to solve it by approximating the inverse problem via the
Kinetic equation

so Instead of a Tychonov regularization we suggest
a “Kinetic regularization”

we Wil Illustrate this for chemotaxis



consider another kinetic model: chemotaxis

pbacteria move by either “running” in a straight line and at random
times rotating and the moving on



consider another kinetic model: chemotaxis

pbacteria move by either “running” in a straight line and at random
times rotating and the moving on

Tumbling mode Running mode

‘-.. .*,‘. '.,‘.‘ .‘/. i
counter-clockwise
rotation of flagella
' ———

clockwise

rotation of photo taken with an
flagells :
e electron microscope




C
hemotaxis

Tumble &




these bacteria like to move In the direction of a chemical attractant

Bacterial movement

Random walk Chemotaxis .
| (No stimulus) (Positive Stimulus) e skt @O
no chemical attractant &



chemotaxis

2 e

" ot

oo Vife = - | (@XISY - TS

—AS; = pe = | fedv
f 14

‘ 1 Pe(y, )
Ss(x7 t) _E e |x_y| dy

Chalub, F. A., Markowich, P. A., Perthame, B., & Schmeiser, C.: Kinetic models for chemotaxis and their
drift-diffusion limits. In Nonlinear Differential Equation Models, (2004)

B. Perthame, M. Tang, N. Vauchelet, Derivation of the bacterial run-and-tumble kinetic equation from a
model with biochemical pathway Journal of Mathematical Biology, Vol. 73, No. 5, (2016)



one can consider the limit of this mesoscopic model to a
macroscopic model, called Keller-Segel model

50— Ag+div(exVe) =0, >0, z €R?,

VCZ—)\d \x%*g’



N

Chalub, F. A., Markowich, P. A., Perthame, B., & Schmeiser, C.: Kinetic models for chemotaxis and their
drift-diffusion limits. In Nonlinear Differential Equation Models, (2004)

t Is proven
solution of the kinetic chemotaxis problem

— (as € — 0)
to solution of macroscopic Keller-Segel model

so solutions of the forward problems converge (kinetic -> macroscopic)



given a situation where the solution to the inverse problem for the
Kinetic equation is well-posed

the solution to the inverse problem for the macroscopic equation is ||
0Osed



for the inverse problem

the well-posed solution to the inverse problem of the kinetic

?

chemotaxis equation

— (as € —>0)
to an ill posed solution of the inverse problem to the Keller-Segel
modael
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now we move to stochastic versions of these equations

N practice only noisy data is available
thus we use the probabillistic setting

we consider the inverse problem In a Bayesian setting

we consider the solution of the inverse problem both in the kinetic and
macroscopic setting

we consider the convergence of one to the other in a norm suitable to
this context



We prove convergence In the Bayesian setting, in an appropriate
norm

Helmuth, K., Klingenberg, C., L1, Q., Tank, M.: “Multiscale convergence of the inverse problem for
chemotaxis in the Bayesian setting", manuscript (2021)
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Conclusion

N applications certain modeling parameters of PDE models are not
Known accurately

the uncertainty quantification paradigm was to assume they are given
stochastic functions

we suggest to determine these modeling parameters by solving an
iInverse problem

it seems natural that this question leads to looking at inverse problems
N the Bayesian setting

in future work we plan to devise efficient machine learning algorithms
for these inverse problems



Thank you for your attention |



