An inverse problem for a model of cell motion and chemotaxis

Christian Klingenberg

Mathematics Dept., Würzburg University, Germany

An inverse problem for a model of cell motion and chemotaxis

Christian Klingenberg

Mathematics Dept., Würzburg University, Germany
jointly with:
Kathrin Hellmuth Würzburg University, Germany
Ru-yu Lai Univ. of Minnesota, Minneapolis, USA
Qin Li Univ. ofWisc. in Madison, USA
Marlies Pirner
Min Tang
Würzburg University, Germany
Shanghai Jiao Tong Univ., China and others

I will now describing the context of this topic
there are various ways to model phenomena in nature

today's lecture will focus kinetic equations

today's lecture will focus kinetic equations and its fluid limits

one needs to rescale time and space to go from one description to the next

```
time
scale
one needs to rescale time and space to go from one description to the next
one needs to rescale time and space to go from one description to the next

one needs to rescale time and space to go from one description to the next
one needs to rescale time and space to go from one description to the next

\section*{we shall focus on}


\section*{example}
kinetic neutron transport equation:
\[
\partial_{t} f+\frac{1}{\varepsilon} v \cdot \nabla_{x} f=\frac{\sigma_{T}}{\varepsilon^{2}}\left(\frac{1}{2} \int_{-1}^{1} f d v^{\prime}-f\right)
\]
kinetic neutron transport equation:
\[
\partial_{t} f+\frac{1}{\varepsilon} v \cdot \nabla_{x} f=\frac{\sigma_{T}}{\varepsilon^{2}}\left(\frac{1}{2} \int_{-1}^{1} f d v^{\prime}-f\right)
\]
macroscopic diffusion equation:
\[
\rho_{t}=\partial_{x}\left(\frac{1}{3 \sigma_{T}} \partial_{x} \rho\right)
\]
with \(\quad \rho(t, x)=\frac{1}{2} \int_{-1}^{1} f\left(v^{\prime}\right) d v^{\prime}\)
kinetic neutron transport equation:
\[
\partial_{t} f+\frac{1}{\varepsilon} v \cdot \nabla_{x} f=\frac{\sigma_{T}}{\varepsilon^{2}}\left(\frac{1}{2} \int_{-1}^{1} f d v^{\prime}-f\right)
\]
macroscopic diffusion equation:
\[
\rho_{t}=\partial_{x}\left(\frac{1}{3 \sigma_{T}} \partial_{x} \rho\right)
\]
with \(\quad \rho(t, x)=\frac{1}{2} \int_{-1}^{1} f\left(v^{\prime}\right) d v^{\prime}\)
given a PDE model at the mesoscopic level with given initial and boundary data
one would like to prove well-posedness of this solution \(f_{\epsilon}\)
given a PDE model at the mesoscopic level with given initial and boundary data one would like to prove well-posedness of this solution \(f_{\epsilon}\)
\[
\partial_{t} f+\frac{1}{\varepsilon} v \cdot \nabla_{x} f=\frac{\sigma_{T}}{\varepsilon^{2}}\left(\frac{1}{2} \int_{-1}^{1} f d v^{\prime}-f\right)
\]
given a PDE model at the mesoscopic level with given initial and boundary data
one would like to prove well-posedness of this solution \(f_{\epsilon}\)
given the corresponding PDE model at the macroscopic level with given initial and boundary data one would like to prove well-posedness of this solution \(\rho\)
given a PDE model at the mesoscopic level with given initial and boundary data
one would like to prove well-posedness of this solution \(f_{\epsilon}\)
given the corresponding PDE model at the macroscopic level with given initial and boundary data
one would like to prove well-posedness of this solution \(\rho\)
\[
\rho_{t}=\partial_{x}\left(\frac{1}{3 \sigma_{T}} \partial_{x} \rho\right)
\]
given a PDE model at the mesoscopic level with given initial and boundary data
one would like to prove well-posedness of this solution \(f_{\epsilon}\)
given the corresponding PDE model at the macroscopic level with given initial and boundary data one would like to prove well-posedness of this solution \(\rho\)
finally one would like to prove convergence under the appropriate
\[
\text { scaling }\left(\int f_{\epsilon} d v \rightarrow \rho\right)
\]

\section*{rigorous proof of this limit is difficult}

there are huge difficulties in showing well-posedness of the 2-d compressible Euler equations
\[
\begin{array}{r}
\partial_{t} \varrho+\operatorname{div}_{x}(\varrho v)=0 \\
\partial_{t}(\varrho v)+\operatorname{div}_{x}(\varrho v \otimes v)+\nabla_{x}[p(\varrho)]=0
\end{array}
\]
consider this initial value problem in 2 space dimensions


Two shocks
for example:
Standard solution consists of just one shock

in addition to the standard solution there are many "wild solutions"


Klingenberg, Simon Markfelder: "The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock" Archive for Rational Mechanics and Analysis (2018)
this is the standard solution


\section*{this is one of many "wild solutions"}


Riemann data
all of these many solutions are entropy solutions
E. Feireisl; C. Klingenberg; S. Markfelder, "On the density of 'wild' initial data for the compressible Euler system", Calculus of Variations (2020)
as long as we don't know well-posedness of the limit of Boltzmann for \(\epsilon \rightarrow 0\) in the hyperbolic scaling (namely the Euler equations) it is difficult to prove this limit
example of a well-posedness proof for a kinetic equation

\section*{a multi-species kinetic model}
\[
\begin{aligned}
& \partial_{t} f_{1}+v \cdot \nabla_{x} f_{1}+\frac{F_{1}}{m_{1}} \cdot \nabla_{v} f_{1}=Q_{11}\left(f_{1}, f_{1}\right)+Q_{12}\left(f_{1}, f_{2}\right) \\
& \partial_{t} f_{2}+v \cdot \nabla_{x} f_{2}+\frac{F_{2}}{m_{2}} \cdot \nabla_{v} f_{2}=\underbrace{}_{22}\left(f_{2}, f_{2}\right)+Q_{21}\left(f_{2}, f_{1}\right)
\end{aligned}
\]

\section*{we use the BGK approximation}
\[
\begin{aligned}
& \partial_{t} f_{1}+\nabla_{x} \cdot\left(v f_{1}\right)+\frac{F_{1}}{m_{1}} \nabla_{v} f_{1}=\nu_{11} n_{1}\left(M_{1}-f_{1}\right)+\nu_{12} n_{2}\left(M_{12}-f_{1}\right) \\
& \partial_{t} f_{2}+\nabla_{x} \cdot\left(v f_{2}\right)+\frac{F_{2}}{m_{2}} \nabla_{v} f_{2}=\nu_{22} n_{2}\left(M_{2}-f_{2}\right)+\nu_{21} n_{1}\left(M_{21}-f_{2}\right)
\end{aligned}
\]
we use the BGK approximation
\[
\begin{aligned}
& \partial_{t} f_{1}+\nabla_{x} \cdot\left(v f_{1}\right)+\frac{F_{1}}{m_{1}} \nabla_{v} f_{1}=\nu_{11} n_{1}\left(M_{1}-f_{1}\right)+\nu_{12} n_{2}\left(M_{12}-f_{1}\right) \\
& \partial_{t} f_{2}+\nabla_{x} \cdot\left(v f_{2}\right)+\frac{F_{2}}{m_{2}} \nabla_{v} f_{2}=\nu_{22} n_{2}\left(M_{2}-f_{2}\right)+\nu_{21} n_{1}\left(M_{21}-f_{2}\right) \\
& M_{1}(x, v, t)=\frac{n_{1}}{\sqrt{2{\sqrt{T_{1}} m_{1}}^{m_{1}}}} \exp \left(-\frac{\left|v-u_{1}\right|^{2}}{2 \frac{T_{1}}{m_{1}}}\right) \\
& M_{12}(x, v, t)=\frac{n_{12}}{\sqrt{2 \pi \frac{T_{12}}{m_{1}}}} \exp \left(-\frac{\left|v-u_{12}\right|^{2}}{2 \frac{T_{12}}{m_{1}}}\right) \\
& M_{2}(x, v, t)=\frac{n_{2}}{\sqrt{2 \pi{\frac{T_{2}}{m_{2}}}^{3}}} \exp \left(-\frac{\left|v-u_{2}\right|^{2}}{2 \frac{T_{2}}{m_{2}}}\right) \\
& M_{21}(x, v, t)=\frac{n_{21}}{\sqrt{2 \pi{\frac{\left(T_{21} 1\right.}{m_{2}}}^{3}}} \exp \left(-\frac{\left|v-u_{21}\right|^{2}}{2 \frac{T_{21}}{m_{2}}}\right.
\end{aligned}
\]
we use the BGK approximation
\[
\begin{aligned}
& \partial_{t} f_{1}+\nabla_{x} \cdot\left(v f_{1}\right)+\frac{F_{1}}{m_{1}} \nabla_{v} f_{1}=\nu_{11} n_{1}\left(M_{1}-f_{1}\right)+\nu_{12} n_{2}\left(M_{12}-f_{1}\right) \\
& \partial_{t} f_{2}+\nabla_{x} \cdot\left(v f_{2}\right)+\frac{F_{2}}{m_{2}} \nabla_{v} f_{2}=\nu_{22} n_{2}\left(M_{2}-f_{2}\right)+\nu_{21} n_{1}\left(M_{21}-f_{2}\right) \\
& M_{1}(x, v, t)=\frac{n_{1}}{\sqrt{2 \pi \frac{T_{1}}{m_{1}}}} \exp \left(-\frac{\left|v-\left|u_{1}\right|^{2}\right.}{2 \frac{T_{1}}{m_{1}}}\right) \quad M_{12}(x, v, t)=\frac{n_{n_{12}}}{\sqrt{2 \pi \frac{T_{1} 2}{m_{1}}}}{ }^{3} \exp \left(-\frac{\left|v-u_{u_{12}}\right|^{2}}{2 \frac{T_{1}}{m_{1}}}\right) \\
& M_{2}(x, v, t)=\frac{\overline{n_{2}}}{\left.\sqrt{2 \pi \frac{T_{2}}{m_{2}}}\right)^{3}} \exp \left(-\frac{\left|v-\left|u_{2}\right|^{2}\right.}{2 \frac{T_{2}}{m_{2}}}\right) \\
& M_{21}(x, v, t)=\frac{n_{21}}{{\sqrt{2 \pi{\frac{T_{21}}{m_{2}}}^{3}}}^{3}} \exp \left(-\frac{\left|v-u_{21}\right|^{2}}{2 \frac{T_{21}}{m_{2}}}\right.
\end{aligned}
\]
can determine these coefficients such that conservation properties, H-theorem holds

Klingenberg, C., Pirner, M., Puppo, G.: "A consistent kinetic model for a two component mixture with an application to plasma", Kinetic and Related Models Vol. 10, No. 2, pp. 445-465 (2017)

\section*{we can show well-posedness of this model}
- Klingenberg, C. \& Pirner, M.: "Existence, Uniqueness and Positivity of solutions for BGK models for mixtures", Journal of Differential Equations, 264, pp. 207-227 (2019)
\[
\begin{aligned}
& \partial_{t} f_{1}+\nabla_{x} \cdot\left(v f_{1}\right)+\frac{F_{1}}{m_{1}} \nabla_{v} f_{1}=\nu_{11} n_{1}\left(M_{1}-f_{1}\right)+\nu_{12} n_{2}\left(M_{12}-f_{1}\right) \\
& \partial_{t} f_{2}+\nabla_{x} \cdot\left(v f_{2}\right)+\frac{F_{2}}{m_{2}} \nabla_{v} f_{2}=\nu_{22} n_{2}\left(M_{2}-f_{2}\right)+\nu_{21} n_{1}\left(M_{21}-f_{2}\right)
\end{aligned}
\]

\section*{next we consider uncertainties in the kinetic context}

\section*{examples:}
- when deriving the collision kernel from measurements there might be uncertainties (with variable z):
\[
\epsilon \partial_{t} f(v)+v \partial_{x} f(v)=\frac{\sigma(x, z)}{\epsilon}\left[\frac{1}{2} \int_{-1}^{1} f\left(v^{\prime}\right) d v^{\prime}-f(v)\right]
\]

\section*{next we consider uncertainties in the kinetic context}
examples:
- when deriving the collision kernel from measurements there might be uncertainties (with variable z):
\[
\epsilon \partial_{t} f(v)+v \partial_{x} f(v)=\frac{\sigma(x, z)}{\epsilon}\left[\frac{1}{2} \int_{-1}^{1} f\left(v^{\prime}\right) d v^{\prime}-f(v)\right]
\]
- the measurements of the initial and boundary data might be uncertain

\section*{there could also be uncertainties in the fluid context}

\section*{examples:}
- the diffusivity coefficient my be known only with uncertainty
\[
\rho_{t}=\partial_{x}\left[\frac{1}{3 \sigma(x, z)} \partial_{x} \rho\right]
\]

\section*{there could also be uncertainties in the fluid context}

\section*{examples:}
- the diffusivity coefficient my be known only with uncertainty
\[
\rho_{t}=\partial_{x}\left[\frac{1}{3 \sigma(x, z)} \partial_{x} \rho\right]
\]
- the measurements of the initial and boundary data might be uncertain

\section*{numerics of uncertainties in the kinetic context} generalized polynomial chaos stochastic Galerkin method (gPC)
the generalized polynomial chaos method (gPC)

\section*{the generalized polynomial chaos method (gPC)}
- we consider a set of orthonormal basis function \(\left\{\phi_{j}(z)\right\}\) for the space of random functions

\section*{the generalized polynomial chaos method (gPC)}
- we consider a set of orthonormal basis function \(\left\{\phi_{j}(z)\right\}\) for the space of random functions
- we expand the functions into a Fourier series w.r.t. this basis
\[
f(z)=\Sigma f_{j} \phi_{j}(z)
\]

\section*{the generalized polynomial chaos method (gPC)}
- we consider a set of orthonormal basis function \(\left\{\phi_{j}(z)\right\}\) for the space of random functions
- we expand the functions into a Fourier series w.r.t. this basis
\[
f(z)=\Sigma f_{j} \phi_{j}(z)
\]
- truncate this series
- substitute into the stochastic system to obtain a deterministic system for the first N gPC coefficients

\section*{one would like to show accuracy of the gPC method}
one would like to show accuracy of the gPC method
for this one checks the boundedness or the decay in time of the derivatives
one would like to show accuracy of the gPC method
for this one checks the boundedness or the decay in time of the derivatives
this can be deduced from hypocoercivity
consider the (single species) BGK equation
\[
\partial_{t} f+v \partial_{x} f=\sigma(\underset{\sim}{z})(\mathcal{M}-f)
\]
consider the (single species) BGK equation
\[
\partial_{t} f+v \partial_{x} f=\sigma(\underset{\neq c}{z})(\mathcal{M}-f)
\]
one attempts to prove decay in time for \(f\) and its derivatives
consider the (single species) BGK equation
\[
\partial_{t} f+v \partial_{x} f=\sigma(\underset{\substack{z \\ \text { stochastic variable }}}{z})(\mathcal{M}-f)
\]
one attempts to prove decay in time for \(f\) and its derivatives
for the linearized BGK equation decay in \(f\) has been done in
Li, Q., \& Wang, L.. Uniform regularity for linear kinetic equations with random input based on hypocoercivity. SIAM/ASA Journal on Uncertainty Quantification, 5(1), (2017)
consider the (single species) BGK equation
\[
\partial_{t} f+v \partial_{x} f=\sigma(\underset{\substack{z \\ \text { stochastic variable }}}{z})(\mathcal{M}-f)
\]
one attempts to prove decay in time for \(f\) and its derivatives
for the linearized BGK equation decay in \(f\) has been done in
Li, Q., \& Wang, L.. Uniform regularity for linear kinetic equations with random input based on hypocoercivity. SIAM/ASA Journal on Uncertainty Quantification, 5(1), (2017)
we generalize this result and show decay for all derivatives in z by using Liapunov techniques from

Franz Achleitner, Anton Arnold, and Eric A. Carlen. On multi-dimensional hypocoerciv BGK models. Kinetic \& Related Models, 11(4), (2018)
write \(\quad f=\mathcal{M}+\epsilon h\)
write \(\quad f=\mathcal{M}+\epsilon h\)
substituting gives
\[
\begin{aligned}
\partial_{t} h+v \partial_{x} h & =\sigma(z)(\mathcal{M}-h) \\
h & =h(t, x, v, z)
\end{aligned}
\]
write \(\quad f=\mathcal{M}+\epsilon h\)
substituting gives
\[
\begin{aligned}
\partial_{t} h+v \partial_{x} h & =\sigma(z)(\mathcal{M}-h) \\
h & =h(t, x, v, z)
\end{aligned}
\]
we can show
\[
\left\|\partial_{z}^{l} h\right\| \leq C e^{-\lambda t} \quad l \in \mathcal{N}
\]

Herzing, T., Klingenberg, C., Pirner, M.: "Hypocoercivity of the linearized BGK-equation with stochastic coefficients", submitted (2021)
numerics of uncertainties in the fluid context

\section*{numerics of uncertainties in the fluid context}

Black-Scholes equation:
\[
\frac{\partial V(S, t)}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V(S, t)}{\partial S^{2}}+r S \frac{\partial V(S, t)}{\partial S}-r V(S, t)=0
\]

\section*{numerics of uncertainties in the fluid context}
(time inverted) Black-Scholes equation:
\[
\begin{aligned}
& \quad \frac{\partial V(S, t)}{\partial t}-\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V(S, t)}{\partial S^{2}}+r S \frac{\partial V(S, t)}{\partial S}-r V(S, t)=0 \\
& \text { deterministic diffusion coefficient (volatility) }
\end{aligned}
\]

\section*{numerics of uncertainties in the fluid context}
(time inverted) Black-Scholes equation:
\[
\begin{aligned}
& \quad \frac{\partial V(S, t)}{\partial t}-\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V(S, t)}{\partial S^{2}}+r S \frac{\partial V(S, t)}{\partial S}-r V(S, t)=0 \\
& \text { deterministic diffusion coefficient (volatility) }
\end{aligned}
\]
\[
\frac{\partial V(S, t, \Theta)}{\partial t}-\frac{1}{2} \Sigma(\Theta)^{2} S^{2} \frac{\partial^{2} V(S, t, \Theta)}{\partial S^{2}}+r S \frac{\partial V(S, t, \Theta)}{\partial S}-r V(S, t, \Theta)=0
\]
stochastic diffusion coefficient (volatility)
in financial applications the diffusion coefficient depends on finitely many stochastic variables
\[
\Sigma\left(\Theta_{1}, \ldots, \Theta_{L}\right)
\]
in financial applications the diffusion coefficient depends on finitely many stochastic variables

\section*{\(\Sigma\left(\Theta_{1}, \ldots, \Theta_{L}\right)\)}
the stochastic Galerkin approach is computationally costly
in financial applications the diffusion coefficient depends on finitely many stochastic variables

\section*{\(\Sigma\left(\Theta_{1}, \ldots, \Theta_{L}\right)\)}
the stochastic Galerkin approach is computationally costly
hence we improve computational efficiency using a machine learning
(bi-fidelity) approach
L. Liu and X. Zhu, A bi-fidelity method for the multiscale Boltzmann equation with random parameters, Journal of Computational Physics 402 (2020)


Comparing the stochastic Black-Scholes model to real market data
Hellmuth, K., Klingenberg, C.: "Computing Black Scholes with uncertain volatility - a machine learning approach, manuscript (2021)
back to the kinetic problem

\section*{back to the kinetic problem}
in the forward problem we are given a collision kernel and study the effect of this on the solution
in the forward problem we are given a collision kernel and study the effect of this on the solution

But there are situations where the parameters of the collision kernel needs to be inferred from the solution
in the forward problem we are given a collision kernel and study the effect of this on the solution

But there are situations where the parameters of the collision kernel needs to be inferred from the solution
given (parts of) the solution to the kinetic problem, find the coefficients
in the forward problem we are given a collision kernel and study the effect of this on the solution

But there are situations where the parameters of the collision kernel needs to be inferred from the solution
given (parts of) the solution to the kinetic problem, find the coefficients
this is the inverse problem for kinetic equations

\title{
we shall illustrate this
}

\section*{radiative transfer equation}
\[
\begin{aligned}
& \partial_{t} u+\theta \cdot \nabla_{x} u=-\mu u+\int_{\mathbb{S}^{n-1}} \Phi\left(\theta^{\prime}, \theta\right) u\left(t, x, \theta^{\prime}\right) d \theta^{\prime}+\sigma T^{4} \\
& \partial_{t} T=\Delta_{x} T-\sigma T^{4}+\mu \frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} u(t, x, \theta) d \theta
\end{aligned}
\]
\(u \equiv u(t, x, \theta)\) describes the radiation intensity
\(T\) is the temperature
\(\Phi\left(\theta^{\prime}, \theta\right)\) given kernel, describing scattering of photons \(\mu \equiv \mu(x)\) is a given absorption coefficient
\(\boldsymbol{\sigma}\) given emission coefficient

scattering
forward problem
solve \(u\) and \(T\) inside the body
- with given values \(u\) and \(T\) on the boundary,
- the kernel \(\Phi\left(\theta^{\prime}, \theta\right)\), emission \(\sigma\) and absorbtion \(\mu\) are known

scattering

\section*{inverse problem}

\section*{reconstruct emission coefficient \(\sigma\)}
- given the kernel \(\Phi\left(\theta^{\prime}, \theta\right)\), and absorption \(\mu\)
- temperature \(\mathbf{T}\) is given on the whole boundary
- given the incoming data \(u_{\mid \Gamma_{-}}\)
- given the outgoing measurement \(u_{\mid \Gamma_{+}}\)

\section*{inverse problem}

stationary case, set scattering \(\Phi=0\)
\[
\left.\begin{array}{ll}
\theta \cdot \nabla_{x} u+\mu u=\sigma T^{4} & \text { in } \Omega \times \mathbb{S}^{n-1} \\
\Delta_{x} T-\sigma T^{4}=-\mu\langle u\rangle & \text { in } \Omega \\
u=u_{B} \\
T=T_{B}
\end{array} \right\rvert\, \begin{aligned}
& \text { on } \Gamma_{-}, \\
& \text {on } \partial \Omega \\
& \langle u\rangle(x):=\frac{1}{\left|\mathbb{S}^{n-1}\right|} \int_{\mathbb{S}^{n-1}} u(x, \theta) d \theta
\end{aligned}
\]
we prove that the emission coefficient \(\sigma\)
- exists
- is unique
- depends continuously on the data

Klingenberg, C., Lai, R., Li, Q.: "Reconstruction of the emission coefficient in the nonlinear radiative transfer equation", SIAM Journal on Applied Mathematics, Vol. 81, 1 (2021)
now consider the limit to the macroscopic equation
this (stationary) kinetic model in the parabolic scaling leads to an elliptic problem
the related problem for the corresponding macroscopic fluid equation is ill-posed, similar to the Calderon problem
\[
\begin{aligned}
\nabla \cdot \sigma \nabla u & =0 \text { in } \Omega \\
\left.u\right|_{\partial \Omega} & =f
\end{aligned}
\]
conductivity (in the kinetic case emission) \(\sigma\)


Calderon problem: recover \(\sigma\) from knowledge of solution on the boundary
the ill posed Calderon problem is typically numerically solved by a so called Tychonov regularization.
the ill posed Calderon problem is typically numerically solved by a so called Tychonov regularization.
we propose to solve it by approximating the inverse problem via the kinetic equation
the ill posed Calderon problem is typically numerically solved by a so called Tychonov regularization.
we propose to solve it by approximating the inverse problem via the kinetic equation
so instead of a Tychonov regularization we suggest a "kinetic regularization"
the ill posed Calderon problem is typically numerically solved by a so called Tychonov regularization.
we propose to solve it by approximating the inverse problem via the kinetic equation

\author{
so instead of a Tychonov regularization we suggest \\ a "kinetic regularization"
}
we will illustrate this for chemotaxis

\section*{consider another kinetic model: chemotaxis}
bacteria move by either "running" in a straight line and at random times rotating and the moving on
consider another kinetic model: chemotaxis

\section*{bacteria move by either "running" in a straight line and at random times rotating and the moving on}

Tumbling mode


Running mode


photo taken with an electron microscope

\section*{Chemotaxis}

these bacteria like to move in the direction of a chemical attractant
Bacterial movement


Random walk
(No stimulus)
no chemical attractant

\section*{chemotaxis}
\[
\begin{gathered}
\varepsilon^{2} \frac{\partial f_{\varepsilon}}{\partial t}+\varepsilon v \cdot \nabla_{x} f_{\varepsilon}=-\int_{V}\left(T_{\varepsilon}^{*}[S] f-T_{\varepsilon}[S] f^{\prime}\right) d v^{\prime} \\
-\Delta S_{\varepsilon}=\rho_{\varepsilon}=\int_{V} f_{\varepsilon} d v \\
S_{\varepsilon}(x, t)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\rho_{\varepsilon}(y, t)}{|x-y|} d y
\end{gathered}
\]

Chalub, F. A., Markowich, P. A., Perthame, B., \& Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. In Nonlinear Differential Equation Models, (2004)
B. Perthame, M. Tang, N. Vauchelet, Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway Journal of Mathematical Biology, Vol. 73, No. 5, (2016)
one can consider the limit of this mesoscopic model to a macroscopic model, called Keller-Segel model
\[
\begin{aligned}
& \frac{\partial}{\partial t} \varrho-\Delta \varrho+\operatorname{div}(\varrho \chi \nabla c)=0, \quad t \geq 0, x \in \mathbb{R}^{d}, \\
& \nabla c=-\lambda_{d} \frac{x}{|x|^{d}} \star \varrho,
\end{aligned}
\]

Chalub, F. A., Markowich, P. A., Perthame, B., \& Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. In Nonlinear Differential Equation Models, (2004)
it is proven
solution of the kinetic chemotaxis problem
\(\rightarrow \quad(\) as \(\quad \epsilon \rightarrow 0)\)
to solution of macroscopic Keller-Segel model
so solutions of the forward problems converge (kinetic -> macroscopic)
given a situation where the solution to the inverse problem for the kinetic equation is well-posed
the solution to the inverse problem for the macroscopic equation is ill posed

\section*{for the inverse problem}
the well-posed solution to the inverse problem of the kinetic chemotaxis equation
\[
\xrightarrow{?} \quad(\text { as } \quad \epsilon \rightarrow 0)
\]
to an ill posed solution of the inverse problem to the Keller-Segel model
now we move to stochastic versions of these equations
now we move to stochastic versions of these equations
in practice only noisy data is available
thus we use the probabilistic setting
now we move to stochastic versions of these equations
in practice only noisy data is available
thus we use the probabilistic setting
we consider the inverse problem in a Bayesian setting
now we move to stochastic versions of these equations
in practice only noisy data is available
thus we use the probabilistic setting
we consider the inverse problem in a Bayesian setting macroscopic setting
now we move to stochastic versions of these equations
in practice only noisy data is available
thus we use the probabilistic setting
we consider the inverse problem in a Bayesian setting
we consider the solution of the inverse problem both in the kinetic and macroscopic setting
we consider the convergence of one to the other in a norm suitable to this context

\section*{we prove convergence in the Bayesian setting, in an appropriate norm}

Helmuth, K., Klingenberg, C., Li, Q., Tank, M.: "Multiscale convergence of the inverse problem for chemotaxis in the Bayesian setting", manuscript (2021)

Conclusion

\section*{Conclusion}
in applications certain modeling parameters of PDE models are not known accurately

\section*{Conclusion}
in applications certain modeling parameters of PDE models are not known accurately
the uncertainty quantification paradigm was to assume they are given stochastic functions

\section*{Conclusion}
in applications certain modeling parameters of PDE models are not known accurately
the uncertainty quantification paradigm was to assume they are given stochastic functions
we suggest to determine these modeling parameters by solving an inverse problem

\section*{Conclusion}
in applications certain modeling parameters of PDE models are not known accurately
the uncertainty quantification paradigm was to assume they are given stochastic functions
we suggest to determine these modeling parameters by solving an inverse problem
it seems natural that this question leads to looking at inverse problems in the Bayesian setting

\section*{Conclusion}
in applications certain modeling parameters of PDE models are not known accurately
the uncertainty quantification paradigm was to assume they are given stochastic functions
we suggest to determine these modeling parameters by solving an inverse problem
it seems natural that this question leads to looking at inverse problems in the Bayesian setting
in future work we plan to devise efficient machine learning algorithms for these inverse problems

Thank you for your attention !```

