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Motivation

Paradigm for collective organisation

Courtesy S. Seror, B. Holland (Paris-Sud), Numerical simulation of a mathematical model



Motivation

Adler’s famous experiment for E. Coli (1966)

Self-attraction + attraction towards fresh nutrient

Explain this pattern ; its asymmetry (experiments Curie institute)

E. coli is a chemotactic bacterium

Several strains are used ; the phenomena is robust

Fluid dynamics is not dominant



Chemotaxis : Keller-Segel
∂

∂t
n(t, x)− ∆n(t, x)︸ ︷︷ ︸

brownian motion

+ div(nχ∇(c+ S))︸ ︷︷ ︸
oriented drift

= 0, cell population density

τ
∂c

∂t
− ∆c(t, x)︸ ︷︷ ︸

molecular diffusion

+ rc(t, x)︸ ︷︷ ︸
degradation

= n(t, x)︸ ︷︷ ︸
production

, concentration of chemoattractant

τS
∂S

∂t
− ∆S(t, x)︸ ︷︷ ︸

molecular diffusion

+ rSn(t, x)S(t, x)︸ ︷︷ ︸
consumption

= 0, nutrient

Internal mathematical interest

Finite time blow-up

Cannot sustain robust traveling bands

In opposition with kinetic/hyperbolic models



Chemotaxis : Flux Limited K.-S.

The Flux Limited Keller-Segel (Dolak-Schmeiser, Erban-Othmer)

∂
∂tn(t, x)−∆n(t, x) + div(nU) = 0,

U = χc(ct, cx) ∇c|∇c| − χS(St, Sx) ∇S|∇S|
∂
∂tc−Dc∆c = n(t, x)

∂
∂tS −DS∆S = −n(x, t) S(t, x)

admits traveling band solutions

Can be fit to the experimental data



Chemotaxis : Flux Limited K.-S.

Superimposition of the calculated (pink) and the experimental (blue)

concentration profiles at three different times.

Where does the FLKS comes from ?

The kinetic formalism uses rules for individual behaviour



Kinetic models (80-90’s)

E. Coli is known to move by run and tumble Alt, Dunbar, Othmer,

Stevens, Hillen...

A beautiful example of multiscale motion



Kinetic models (80-90’s)

f(t, x, ξ) the population density of cells moving with the velocity ξ

c(t, x) the chemoattractant concentration

∂

∂t
f(t, x, ξ) + ξ · ∇xf︸ ︷︷ ︸

run

= K[c, S]f︸ ︷︷ ︸
tumble

,

K[c, S]f =
∫
B
K(c, S; ξ, ξ′)f(ξ′)dξ′ −

∫
B
K(c, S; ξ′, ξ)dξ′ f,

Various forms of the tumbling kernel K[c, S] have been proposed

Typical K(c; ξ, ξ′) = k
(
c(x− εξ′)

)
(with chemoattractant only)



Kinetic models : asymptotic

Based on the run time ε : K(c; ξ, ξ′) = k
(
c(x− εξ′)

)
∂

∂t
fε(t, x, ξ) +

ξ · ∇xfε
ε

=
K[c]

ε2
,

Before blow-up time

fε(t, x, ξ)→ n(t, x), cε(t, x)→ c(t, x),

∂

∂t
n(t, x)− div[D∇n(t, x)] + div(nχ∇c) = 0,

and the transport coefficients are given by

D(c) =
D0

k(c)
, χ(c) = χ0

k′(c)

k(c)
.



Pulse waves
                                                                  

When c increases,
jumps are longer

∂

∂t
f(t, x, ξ) + ξ · ∇xf = K[c]f

K(c; ξ, ξ′) = Kε

(
∂c

∂t
+ ξ′.∇c

)

Macroscopic limit is the Flux Limited K.-S. system



Pulse waves

angular distribution

and mean run time

∂

∂t
f(t, x, ξ) + ξ · ∇xf = K[c]f

K(c; ξ, ξ′) = Kε

(
∂c

∂t
+ ξ′.∇c

)

Can one explain the tumbling rate



Biochemical pathways

Can one explain the tumbling rate Kε

(
∂c
∂t + ξ′.∇c

)
?

Use the internal biochemical pathway controling tumbling

(Erban-Othmer, Dolak-Schmeiser),

g(t, x, ξ,m) receptor methylation level (internal state).



Biochemical pathways

Principle : internal state m adapts to the external state

m ≈M(c)

∂

∂t
gε(t, x, ξ,m) + ξ · ∇xgε +

1

ε

∂

∂m
[R(m−M(c))gε] = Kε[m, c][gε]

Kε[m, c][gε] =
∫ [

K(
m−M(c)

ε
, ξ, ξ′)gε(x, ξ′,m)−K(..., ξ′, ξ)gε(t, x, ξ,m)

]
dξ′

Fast adaptation, stiff response

Theorem The limit ε→ 0 gives

gε → δ(m−M(c))f(s, ξ, t) and K
(
∂c
∂t + ξ′.∇c

)



Abnormal diffusions

ε1+µ ∂

∂t
g(t, x, ξ,m) + εξ · ∇xg + εs∆mg = K[m, c][g]

When K[m, c][g] degenerates,

K[m, c][g] ≈ 0 as m→∞,

the limiting behaviour is fractional Laplacian

∂n

∂t
−∆αn = 0



Conclusion

Flux-Limited Keller-Segel system relies on a multiscale approach
(molecule to cell to population)

It is possible to fit quantitatively the experimental data

Numerous mathematical questions (singularities, asymptotic, fractional
derivatives, waves...)
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