Lecture |

Efficient Numerical Methods for Particle Systems
Shi Jin
Shanghai Jiao Tong University, China

CIRM-Jean-Morlet Chair Program: Research School
January 2021



Newton's equations—interacting particle systems

F=ma
dX' = V'dt
V= [b(X7) +ay D K(XT = X7) = V] dt 4 o iV

{WH | are ii.d. Wiener processes, or the standard Brownian motions

Mean-field limit
1
aN = —— 1.4
N=N (1.4)
so that as N — oo the empirical distribution p™) = N='S0 §(x — X)) @ 6(v — V)
converges almost surely under the weak topology to the solutions of the limiting PDE

Ohf=-V. - (vf)—V,- ((b(:z:) + K o*, [ — qm)f) T %UQAUf. (1.5)



Applications

* Physics and chemistry: molecular
dynamics,

electrostatics, astrophysics
(stars, galaxies)

* Biology: flocking, swarming,
chemotaxis, -

. SQcial sc.iences: wealth
distribution, opinion dynamics,

pedestrian dynamics -
* Data sciences: clustering,

* Numerical particle methods for
kinetic/mean-field equations

* Course by P. Degond



i .
* Courtesy of P.E. Jabin



The computational cost

Itisclearto be of O(N?*) pertimestep (or O(N7) ifitis] particle
Interaction)

Fast Multipole Methods were developed to address this issue for binary
Interactions

We introduce the random batch methods to reduce the computational cost
to O(N) per time step and it works for general interacting potentials



The Random Batch Method (J-L. L/i-J-G. Liu, JCP 20)

at each time step,

* random shuffling: group N particles randomly to n groups
(batches), each batch has p (p <« N, often p = 2) particles

* particles interacting only inside their own batches



Algorithm-1 (RBM-1)

1: formin1:[1'/7] do

2: Divide {1,2,..., N = pn} into n batches randomly.

3: for each batch C, do
4: Update X"’s (i € C,) by solving for t € [t,,—_1,t,,) the following

dX' =V"dt,

| | N — 1 | | | |
dV' = |b(X") + an| ) Z K(X'—=X7) =~V dt +odW".
p—1 .
}ECQ :j#?

5: end for

6: end for




The computational cost Is O(N)

* Random shuffling algorithm:

for example the Durstemtd’'s modern revision of Fisher-
Yates shuffle algorithm costs  O(N)

In MATLAB: randperm(N)

* The summation costis O(N) due to small batch size p



Algorithm II: RBM-r
RBM with replacement

* At each time step, draw a batch of size p randomly, interacting
within this batch, for n independent times

1: formin 1:[T/7| do
2: for k from 1 to N/p do

3: Pick a set Cp of size p randomly with replacement.
4: Update X' V' (i € Cg) by solving the following SDE for time 7
dX'=V'dt,
. . NN —1 . . . .
AV’ = {b(XT') + av(N -1 Z K(X'=X7)=AV'| dt + o dW"
p—1 &=
Jecq 7.7757*
5: end for

6: end for



Remarks

* For these methods to be competitive over the deterministic solvers,
the time step 7 needs to be independent of N (we will prove this for
special V and K)



Relevant approaches in other fields

* stochastic gradient (or coordinate) descent methods in machine
learning (use small and random batches to do gradient descent)

* Direct simulation Monte-Carlo methods (Birds, Bobylev, Nanbu)—
based on binary collisions-- for Boltzmann equation; and its
adaptation for mean-field equations of flocking models using random
binary interactions (Albi, Pareschi, Carrillo)



A strong convergence analysis for RBM-1

Notations

Analysis solution: (X;, Vi)

RBM solution: (X, V)

synchronization condition:  x%(0) = X'(0) ~ po, W' =W"
Norm of error:  [lv] = \/E[o]>

Mean-field scaling: anx =1/(IN 1)

Proposition 3.1. Let b(-) be Lipschitz continuous, and |b|, |Vb| have polynomial growth.
The interaction kernel K is Lipschitz continuous. Then,

sup VEX! - X2+ E[V! - VI]? < O(T)\/ T4 (3.5)
te[0.7] p—1

where C(T') is independent of N.



A long-time result (J-L. L/-Y. Sun 20)

Assumption 3.1. Suppose b = —VU for some U that is bounded below inf, U(z) > —oc,
and there exist Ays > A, > 0 such that the eigenvalues of H := V?U satisfy

Am S Ni(x) <Ay, V1<i<d,xe R,

The interaction kernel K is bounded and Lipschitz continuous. Moreover, the friction v and
the Lipschitz constant L of K (-) satisfy

v > A+ 2L, A, > 2L, (3.6)

Theorem

sup VE| X1 () — X1(0)2 + E|V1(t) — V(1) < c\/

T .
+ 72,
t>0 1

p_

where the constant C' does not depend on p and N.



A key lemma (consistency)

1
(x) == —— K(z" — o’ K( 1 —
W)= o SR =) - g 3
J1C JiaF#
Lemma 3.2. It holds that
Ex?j (X) = 0
Moreover, the second moment is given by
f 1 1
E|y;(x)]? :( — )A?- .
P = (o=~ ) Ao,
where
1 ¢
A Z |K xh — I — m K(l — )



stability

Introduce the filtration {F x>0 by
Fro1 = a( X5 WH).CYt < tg_1,j < k —1). (3.4)
Thus, Fi_; is the o-algebra generated by the initial values X¢ (i = 1,...,N), Wi(t)

7

t <tp_q, and CY), j < k —1. Clearly, F,_; contains the information on how batches are
constructed for t € [tp_1,11).

J

Lemma 3.4. Under Assumption 3.1, it holds for ¢ > 1 that

sup (E(X7 (1)) + [VV()|9) + E(X (1)) + [V(1)]9) < Cy.

t>0

Besides, for any k >0 and q > 2,

sup  |E(I X (07 + [V ()] Frei)| < O+ [ X (tr1)|? + [V (tr—-1)]9)

teti—1.tr)

holds almost surely.



Mean-field limit and AP diagram
(for first order systems)

N — o
Yy - p
v
- o
T T
= =
(1 ~
“E\’j . > [
11\’ — OO0

Corollary 3.1. Suppose Assumption 3.1 holds, then

Walia (), u(t)) < C(V7 + N=1/2+e)

for any e > 0.

(Cattiaux-Guillin-Malrieu)

* If the deterministic flow is not contracting, one may still get
Wa (i) (), u(t)) < C(T) (VT + N 1/2), vt e [0,T)]

(Dobrushin, Benachour-Roynette-Talay-Vallois, Jabin-Wang)

* Similar theorem for disparate species and weights (J-Li-].G. Liu)



Example 1: The Dyson Brownian motion

The eigenvalues of a Hermitian matrix valued Ornstein-Ulenbeck process
satisfies Dyson Brownian maotion:

1 1 1
IX:(t) = —BX\; (1 — 1t 1B.; 1< 43< N
dX;(t) ﬁj()_l_‘wk:;?-/\j_/\k?( +\/W( £ (1<j<N)

(Tao, Erdos-Yau)

It has a mean-field [imit

op(x,t) + 0z (p(u — Bx)) =0, u(x,t) = w(Hp)(x,t)

. ' ) _ 2
* Analytical solution (for g =1) oz, t) = \/20((?) r Lo(t)=1+e 2
alt)m
: o 1
* Invariant measure (semi-circle law): p(x) = —V2- x?



Comparison between RBM-1 and RMB-r
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Figure 4: The RMB-1 simulation of the Dyson Brownian motion. The empirical densities at
varions times are plotted. The red curve is the density distribution predicted by the analytic
solution (4.8), The black curve is the equilibrium semicircle law (4.7).
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Figure 5: The RBM-r simulation of Dyson Brownian motion. The ‘time’ is regarded as
7 = 1073 for N/2 iterations. The red curve is the density distribution predicted by analytic
golution (4.8). The black curve is the equilibrium semicirele law (4.7).



Example 2: charged particles on sphere

Thomson problem is to determine the stable configuration of N electrons
on a sphere. When N becomes large, this could lead to the so-called
spherical crystals. The configuration may have some meta-states (local
minimizers of the energy surface). When the number of particles is large,
the spherical crystals have defects due to the topology of the sphere.

In the N — oo limit, the mean field energy

1 1
B =3 || @) ds,ds,
2 JISx S ICE y‘

is minimized

In the overdamped limit and with suitable scaling, we then have
interacting particle system on sphere

dX'=Pg (i[ ZF(X'E — Xj)) dt + \/2D,dBY% F: Coulomb
L g#



RBM-r (consider b, = 0 )

= Randomly picking two indices. Then for ¢t € [t t,. ) solve

m—1"

. Xt — XJ
dX"' = E . — dt
— 3

g:1(%,5)=1 X — X

where I(%,7) = 1 means that i, j are in the same batch.

= Project the obtained points back to the sphere by dividing its
magnitude.
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Figure 6: Charged particles on sphere. The first row is for N = 60 while the second row
corresponds to N = 800. The first column shows the distributions at the end of simulation
while the second column shows how the energy changes with 'time’.



Singular potential K

It K has singularity (for example Lenard-Jones potential at r=0)
decompose K into a short range, singular part (with cut-off) and

long-range smooth part, and use RBM on the long-range part
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Random Batch Ewald for Molecular Dynamics Simulation
(with L. LI, Z. Xu and Y. Zhao)

B = Z Ky (b — b0)2 1. Z ko (6 — 60)% + Z ky[cos(nw + ) + 1]

bonds q,'ngf?s tor sions

i Z (i’g_% 5. Z q*'qi- Long Range
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Monte Carlo: Sampling from Boltzmann distribution
Molecular dynamics: Solving the Newton’s equation



Consider a periodic lattice

= U +U-
qiq; 1 2
; sJZl jl'PU —|—TLL|
Change to Fourier space
2H 2 Y N ‘
Uy =37 }L2|P( )PP =\ [l
k#0 i=1

Force:

Fi=-V,U=- Z ;ﬁt K/ (4e) Im(e™

1 , crf(y/alr; + nlL|)
Ul = 9 ; Z diq; )

erfe(y/a|r; + nL|)

|75 + L
[/, — lzf G
2 2 - - v |'P?J—|—TLL|

N
— E QI e%k.ri
=1

*rip(k))

Tij +nlL

;S G L)1 B L F,
6 Y GG +nL) o = B Fio

7,m

where we recall r;; = r; — 7r;, pointing towards particle j, and

2\/76_(”

Gr) = erfe(y/ar)

r2

r



Random Batch Ewald

PME (particle mesh Ewald) or PPPM (Particle-Particle-Particle Mesh): Cut off in
Fourier space for high wave number

Random-batch Ewald: does'’t cut off high k, but uses random mini-natch
sampled k from Gaussian distribution (importance sampling which reduces the

variance
) Py, = S/ ()

(sampling can be done offline and then randomly drawn p samples for each
iteration)

P S
Amkeq; _ |
F, ~ F}, Z Pz (e T o))
(=




Charge inversion In a salty environment
(All-atom simulation for 17736 water molecules)

! re .. Time (s)
Ewald (¢ =0 mM) | 0.0014 | 90.0 8.7 16698
RBE (¢ =0 mM) 0.0072 | 40.0 | p =100 1167

Ewald (¢ =196 mM) | 0.0014 | 90.0 8.7 137217
RBE (¢ =196 mM) | 0.0072 | 40.0 | p = 100 15258

Table 2: Computational time per leb simulation steps. The RBE samples from all frequen-
cies and it shows p values in the n,. column.
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Figure 3: CPU time per step for the classical Ewald and the RBE methods with inereasing
N



With L. Hong's group

SJTU I1 supercomputer

10,000,000
Water molecules

100nm
. . . An order of magnitude faster
Much higher parallel efficiency (computational speed)
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RDF(0-0)
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Kinetic and potential energy fluctuations
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Both fluctuations of the kinetic and potential energies
agree with the PPPM



Other applications and extensions

» Sampling:
Stein variational gradient descent
L. L, Y. L, -G Liu, JF. Lu
Sampling of Gibbs measure that corresponds to particle systems with Lenard- Jones potential
L. L, Z Xuand X Zhao
» Control of synchronalization in particle system
E. Zuazua, etc.
» agent-based models for collective behavior (flocking, swarming, synchronization)
S.Y. Ha SJin, D. Kim, D. Ko
» Quantum Monte-Carlo:
Jin-X Li
» Quantum N-body Schrodinger: uniformin N and A for reduced (1-body) density operator
Golse-J-Paul



