Asymptotic-Preserving schemes for
Multiscale Physical Problems

Shi Jin
Shanghai Jiao Tong University, China

CIRM-Jean-Morlet Chair Program: Research School
January 2021



outlines

Lecture 1.
* mathematical connections between different physical scales,
from quantum all the way to hydrodynamics;

* How to resolve oscillations iIn quantum dynamics
Lecture 2:
efficient numerical transitions from particles to mean-fields: random batch methods

Lecture 3:

Asymptotic-preserving schemes for multiscale kinetic equations



Four physical scales

Time
A
1s - Continuum Theory
(Navier-Stokes)
_ Kinetic Theory
6 _
10™s (Boltzmann)
10-10¢ - Moledular Dynamics
S (Newton's Equation)
10-15¢ - Quantum Mechanics
S (Schrodinger)
] T T T -'
14 1nm 1um 1m

Space



Fundamental Physical Equations

* |t relativistic effect Is not considered, then these four physical laws
bas||cally cover all essential physical equations at the tour different
scales

* They describe the same problem at different scales

* If there I1s an external field then one needs to couple these equations
with field equations

Poisson equations (Gauss’'s Law) for electric field:;

Maxwell equations for electromagnetic field

Liouville (Viasov)-poisson systems, Viasov-Maxwell equations,
Euler-Poisson system, etc.



N-body Schrodinger equation—the first principle computation

Ehf)t{b(f X, y) — H(I)(IL X, Y)

hQ
[ &.I:J +HE(y‘X)

M;

|
11
o

m hg Z Zﬁ.,
He(y.x) = Z 2m,; By +Z iz _yk‘ Z |r

j<k =



Too big to compute!

* Paul Dirac (1929): “The general theory of quantum mechanics is now
complete - The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus completely
known , and the difficulty is only that the exact application of these laws leads
to equations much too complicated to be soluble”

* |f computer is big and fast enough to solve the N-body Schrodinger equation
then we don't need the other (more macroscopic) equations

* Quantum simulation is computational daunting!
CO2: 75 dimension Benzene 162 dimensions
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Dimension reduction

* Separating the computation of electrons from that of the nuclel
Born-0Oppenheimer approximation;
Ehrenfest dynamics

* Mean-field approximation (approximation by 1-body system)
Hartree theory, Hartree-Fock theory (F. Golse’s course);
density runction theory




Newton's equation (microscopic; classical mechanics)
F=ma

* Hamiltonian system
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How big 1s N?

* PE Jabin's slide (also course by P. Degond)



Kinetic theory (mesoscopic, statistical physics)

The Boltzmann equation (6 dimension +time!)

f(t,x,v) is the phase space distribution function of time t
position x, and velocity v pp—

of
{T‘l‘\f fo—_Q(f f)(\!) XEQCRd’UERd

Q(f, F) [E [ B = v )V = AW (v )] o, ]

The Boltzmann's H-Theorem (entropy condition)

O(fInf)+ V., -(vfinf) <0



Fluid dynamics (Euler/Navier-Stokes equations: macroscopic)

(Op

* Conservation of mass o T Vapu =0,

* Conservation of momentum | ”’7 LV, pueu + pl) = 0,

* Conservation of energy % LV, (@ 4 ) — 0.
p=0-1 (E - ép\%z)

* Equation of state
) = (d-e* + 2)/(]?‘

» Adding viscosity and heat conductivity = Navier-Stokes equations



Mathematical connections between micro and macro
oNysICS

* |f these equations describe the same physics, except at different
scales, there must be mathematical connections between them:

one should be able to derive mathematically from equation in
one scale to the other scales!

* Exploring these mathematical connections (rigorously) between
different scales has generated some of the most important results
IN mathematical physics and PDEs



Hilbert's sixth problem (axiomatize physics)

STEPS OF REDUCTION

How a Reversible
micro-description

is turned to Dissipative
macro-description?

Reversible
micro - model

ARCHIMEDES
L)

1-st Irreversible
model

. Kinetic
equation
(Boltzmann)

* |Hydrodynamic
equation

How a system with
many degrees of freedom
becomes one with a small number
of degrees of freedom?

MAC RO Ao ipar-Sap b= Marsdmenn Nodis, LY,

* Hilbert's expansion of the Boltzmann equation



From guantum to classical —the Wigner transform

The unveasonable efficiency
of mathematics in

9 science is a gift we
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when ¢ — ()

Oy + 5 . ng — V;FV(J’J) - ng — (0  classical Liouville equation

_ iIts (bi)characteristics are
L= ga &_ — _vmv(ﬂi') Newton'’s equation

when the Planck constant
c—0

quantum mechanics becomes classical

mechanics
P.L. Lions-Paul ‘93 Gerard-Markowich-Mauser-Poupaud 97



From Newton's equation to the Boltzmann equation

* N-body Newton's equation

;

).<.‘ Vi, Zl...ZN:ZN:(XN-;VN):(Xl"'XN'!Vl"'VN)
Qvi=— > Velxi—x)
j=1..N
L J#i Probability measure WN(Zy)dZy on R3V x R3N

* N-body Liouville equation
N
W (1) = Lyw"(t) L= [Vi- Vg + Fi-Vy]
=1

F,‘ = — Z VQ(X,' — Xj)

JiFi



N — oo Limit (mean field limit)
Zit) = [ dzan . daW( Bz i) =1 Marginal distribution

WN(zl...z,-...zj...zN) = WN(zl...zj...z;...zN) assume a” pal’tiC|eS are
identical, indistinguishable

N (x1. vi. 30, vo) = N (x1, vi) N (0, 1) molecular chaos assumption

o

©—0. N— oo. ne2— const. £ diameter of particles

The Boltzmann-Grad limit
V(x1,v1) satisfies the Boltzmann equation



The prooft of the Boltzmann-Grad limit is very difficult

* Lanford 1974
* Gallegher-Saint-Raymond-Texier 2013
(valid for a fraction of mean free path)

Boltzmann:
Hard Spheres and
Short-range Potentials

(course by M. Pulvirenti)



From the Boltzmann equation to fluid equations

Of+v-Vof =—-09Q(f. f) < Knudsen number (dimensionless mean free path)
* Moments
n = f(v)dv, u = l f(v)vdv, 1 = ll f()|v — ul dv.
Rd n Jpd an  Jpd

* Moment equations (conservations of mass, momentum and energy)—

not closed!
n nu
O [nu|+Vy- | nu@u+P | =0
E Eu+Pu+Q

E = %-;;|-u_|‘—’- + %-nT ; total energy=kinetic energy + internal energy



Fluid dynamic limit ¢ — 0

| n v — ul? | :
_ o[ — ocal Maxwellian
f — J[[n_-u.,T) (ETE'T)‘UQ exXp ( o7 )

Then one can close the moment equation =2 compressible Euler
equations

By Chapman-Enskog expansion, one can expand to the next order

IN € to get the Navier-Stokes equations (Euler + viscosity + heat
conductivity)

Only incompressible N-S limit was rigorously proved
Bardos-Golse-Levermore (1991), Golse-Saint-Raymond (2003)



A summary

* Macroscopic equations are limits or asymptotic approximations of
mIicroscopic equations

* Microscopic (quantum or classical) equations are linear, and time
reversible; meso- and macroscopic equations are nonlinear, and
time Irreversible

* Microscopic equations are harder for computation (too many
degree of freedoms); macroscopic equations are harder for
mathematical analysis (nonlinearity; Millennium problems)




Multiscale problems

* Space shuttle re-entry problem

g:10% ~ 1 meters

* Supersonic flights
thickness of Navier-Stokes shock profile e

Molecular

Plasticit
nOt CorreCt €0y hRZin A Dynamics Quantu'm
o ... Mechanics
‘, ( I,_._‘- T }‘_ Y 16' ‘

* Dislocation (at which continuum

assumption not valid)
* Chemical reaction—need quantum mechanics



Multiscale methodology I: hybridization

* Pros: macro part computational cost small

J—
e

_—

 Cons: how to determine the location /~

(

o _ Kinetic
of the artificial interface and how to \

T

define the connecting (boundary or —

Interface) conditions?
Micro=>macro: taking averaging, moments, etc.

macro—> micro: no unique definition (assuming local Maxwellian?)

Neuzert, Klar, Perthame, etc.



Multiscale methodology II: heterogeneous multiscale methods

* Microscopic simulation around macroscopic meshes
(to get equation of state, constitutive relations, forcing terms, etc.)
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Computational Methodology Ill: Asymptotic-preserving (AP) schemes

* Design schemes that work crossing
scales—a micro-solver that automatically
becomes a macro-solver in the macroscopic
limit, when the numerical parameters do
not resolve the microscopic scale

 Numerical schemes preserve the asymptotic
transition from micro to macro scales




Uniform convergence (Golse-Jin-Levermore '99)

e e—0 |FE = FO = Oe)
Fs g ffs)
a classical numerical analysis typically gives
550 50 &= |1F5= F =00/, 1<s<r
the scheme is AP
%g e—0 N ];.0 |75 = FY = O()  uniformly in ¢
|FS— FO = 00"
OA one adds up the errors
% &1 L
&1 = [|[F5—Fll =0k +4d")
By comparing the two error estimates
| F5 — F?|| = min (&1, E2)
which has an upper bound around & = O(5"/*™)
> -
(0,0) } |F5 — Fé| = 0@"7¢™),  uniformly in &




s 1t always possible to allow ax at>>e ?

* Discrete Schrodinger = discrete Liouville
yes for time, no for space

the best one can do is Ar= ©O (;;UQ)

(Gaussian beam/wave packet methods)

* Discrete Newton (Liouville) to discrete Boltzmann?

some success: Molecular dynamics-random batch methods

* Discrete Boltzmann to discrete Euler/Navier-Stokes
largely yes



AP |. from quantum to classical mechanics
* Difficulty of quantum simulation:
large N: curse of dimensionality

small k: solution is highly oscillatory

Here we will only concentrate on the oscillation problem



The Schrodinger equation

2
iedu® = —%Aug + V(x)u®, u(0,x) =ui,(x) (tz)cRxR?

* It V(x)=0, a single plane wave solution

u(t,x) = exp<gi (g o %|52>>

osclllation in both space and time!

typical mesh strategy: E= At h=o0(e), k=o()



* Nyquist-Shannon sampling theorem: need a few
grid points per wave length

bidbdbbblornwarna~

* This is a daunting talk for most high frequency
waves, including quantum dynamics, compuations
in high dimensions



A time splitting spectral method

* Trotter Sp|ltt|ﬂg Step 1. From time ¢t = t,, to time ¢t = t,,41, first solve the free Schrodinger
equation

2
- £ ~ :
168{&& —|_ Ea_rlu: — O. (5.2)

Step 2. On the same time interval, i.e., t € [t,,t,+1], solve the ordinary
differential equation (ODE)
iedu® — V(x)u® =0, (5.3)

with the solution obtained from Step 1 as initial data for Step 2. Equation
(5.3) can be solved exactly since |u(t,x)| is left invariant under (5.3),

u(t,z) = |u(0,z)| V@)t

* |n step 1, one can use the spectral method and then integrate in time exactly in the Fourier
space

* One can use the Strang splitting to get second order in time



nf(x, 1) = |uf(x, 1)]?

position density

JE(x, 1) = ¢ Im(ué(x, HVu'(x, 1))

current density
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Mesh strategy

* To get accurate wave function one needs
k=o0(e) h=0(¢)
via standard numerical analysis:

e . 1 h " CTk
Hll (fn) — U HL2 = (Tm I (8(b _a)) + -

* To get the correct physical observables (position density, flux,
energy etc) one just needs

k= 0(1)



How to prove this result? (Bao-J-Markowich 02)

* Recall the Wigner transform

| — € € .
e ) . - _ - )IO"{(;:
w(f,2)(x, &) = oy fRﬂ f(x + 2J)g(x 20)c do

the Wigner equation w; +& - Viw® + 0 [V w® =0

f Vix +5a) = V(x — 5a)

£

OV w (x, &, 1) = W (x, o, 1)e's da

(2 )4

As & — ( one gets the semiclassical limit (the Liouville equation)

w! +&- Vo' =V, V(x) Vew’ =0



Assume spatially continuous, since at each step the time integration is conducted exactly, the
splitting scheme, upon Wigner transform, can be viewed as the splitting of the Wigner
equation as:

Step 1: wf -+ é . wa‘g =0, 1€ [t,?, tn—l—l]
Step 2:

w;, + O [VIw® =0, telt, ]
As & — ( these two steps reach the following limit
Stepl: wl(‘)+§'vxw0:0= I € [tnatn—l—l]
Step 2: W’ — VoV Vew® =0, 1€ty tyr1]

Which is the splitting scheme for the Liouville equation.

The above limit is taken with k fixed, thus k can be independent of €& (AP in time!)



Only for Physical observables, not wave function

the moments of Wigner transtorm only give (all) the physical
observables

* Position density ff(“’?)—/w w(t,, €) de.
* Current density )= | Ew(t, &) dé
Rd
* Energy density (o) = | Hw, Q' (e, A Hr.) = 5 + V(o)

Rd

Wave function cannot be completely recovered (loss of constant
phase, for example)



A more rigorous analysis (Golse-J-Faul, JFoOCM)

Definition 2.4. For all p and p’, Borel probability measures on R*?, we set

1/2
distak.2(p.p') == inf ( /R (g=q'P+1p- p'|2)n(dqdpdq’dp’))

mell(p,p")

where 11(p, p") designates the set of couplings of p and p’. More precisely, 11(p, p")
is the set of Borel probability measures on R*xR>*® with first and second marginals

p and p' resp., i.e. such that
ngdeQd (o(q.p) +0'(¢',p"))m(dgdpdq’dp")

= [Rgd o(a.p)p(dadp) + | . &"(a".p")p (dg'dp’)

for all ¢, ¢ € C,(R*?).



Monge-Kantorovich or Wasserstein distance with exponent 2

Definition 2.4. For all p and p’, Borel probability measures on R*?, we set

1/2
distaica(p.p) = inf (fde (lg=q'F* +Ip —p’IQ)W(dqdde'dp’))

where 11(p, p") designates the set of couplings of p and p'. More precisely, 11(p, p")
is the set of Borel probability measures on R**xR2? with first and second marginals

p and p’ resp..

Let ReD($). The Wigner transform of R is

where r = r(x,y) is the integral kernel of R

Husimi operator Wi (R) := "</, (R)



* Theorem

distark 2 (Wa(R™), Wa(R(nAt)))
< CpAt+2Vdh (1+exp (57(1 + max(1,Lip(vV)?))))

from here one can also deduce a error uniform in A



How about spatial discretization?

* The bestonecandois Ar = @ (;;1/2)
via Gaussian beam/Gaussian wave-packet methods (Heller ‘81, Popov 82, Ralston 82)

o (L a,y) = A(t, y) el BT /e

1 ..
T(IL £z, 7}) — S(IL y) _'_p(zl y) ) (:E o TJ) + 5(37 T y)—rﬂ[(f y)(:)j o TJ) + O(:E T y’3)

Plug this ansatz to the Schrodinger equation and ignore higher order terms in x-y and &

dy dp
ar P ar ~ V"
dM 9 9
= _M*—
dt VyV,
s 1, dA 1
— == — — = ——(Tx(M))A
dt 2‘p| v dt 2( I ))



Key: complex Riccati equation prevents blow-up=> no caustics!

* M is complex, and chosen to have positive definite imaginary part=> Gaussian
* Gaussian beam decomposition of initial data

Theorem 8.2. Let the initial data be given by
‘ us, () = ain(x) eiSin(z)/e
Tanushev ‘08 ) (
with aiy, € C1(R?) N L2(RY) and S;, € C*(R?), and define

Qpc(‘rj y()) == Clm(yo) elT(IyO)/C’
where
1
T yo) = Talyo) + T (¥ —yo) + 5(33 —y0) Ty (z — o),
Ta(y()) = Sin(y())7 T3(y()) = Vmsin(yo)j T”y(y()) _ V;%Sm(yo) Lid,
Then

1
< Ce2,
L2

= 2 [ o= ) )
R

where ry € C5°(R?), rg > 0 is a truncation function with 74 = 1 in a ball of
radius # > 0 around the origin, and C' is a constant related to 6.



* One first partition the domain into subdomain with width of o(-/2), putting one
Gaussian beam In each of these subdomains, with initial condition

y(0,90) =yo, p(0,y0) = VaSin(yo),
M(0,y0) = VS (yo) + 11d,
S(0,40) = Sin(yo),  A(0,50) = ain(yo)
which evolves according to the Guassian beam dynamics, and in the end superimpose all

the beams to form an approximate solution to the Schrodinger equation

i (t7) = 2=y 2 [l =yt ) (e o)
R(

* Need to re-initialize once the width of Gaussian beam is over o (s1/?)

* Can expand T to higher order to get higher order approximation



convergence

* Liu-Runborg-Tanushev '11

Theorem 8.4. If u°(¢,x) denotes the exact solution to the Schrédinger
equation (2.1) and ug, . is the kth-order Gaussian beam superposition, then

sup [l () — (1) < D) (814
t|<T

for any T' > 0.

* FEulerian version: Leung-Qian ‘09, J-Wu-Yang'11

* Non-truncative Gaussian wave packet transform: Russo-Smereka ‘13

* (phase-space) Frozen Gaussian beams—using Gaussian with fixed width
(Heller ‘81, Herman-Kluk ‘84, Lu-Yang '11)

U (o, po) = fRd ul (y) o~ (ipo-(y—y0) = 5ly—wol*)/ dy.

upa(t, ) =

(27T6)_3d/2 // a(ta ’yoypo)’l/)(yoapo) e(ip(t)-(a:—y(t))—%\m—y(t)P)/g dpo dyo
R4 x R4
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Figure 9.1. Example 9.4: numerical errors between the solution of
the Schrodinger equation and (a) the geometrical optics solution,
(b) the geometrical optics with phase shift built in, and (¢) the
Gaussian beam method. Caustics are around @ = +0.18.

From J-Wu-Yang (CMS 08)
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