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outlines

Lecture 1:
• mathematical connections between different physical scales,

from quantum all the way to hydrodynamics;

• How to resolve oscillations in quantum dynamics

Lecture 2:

efficient numerical transitions from particles to mean-fields: random batch methods

Lecture 3:

Asymptotic-preserving schemes for multiscale kinetic equations



Four physical scales



Fundamental Physical Equations

• If relativistic effect is not considered, then these four physical laws 
basically cover all essential physical equations at the four different 
scales

• They describe the same problem at different scales

• If there is an external field then one needs to couple these equations 
with  field equations
Poisson equations (Gauss’s Law) for electric field;
Maxwell equations for electromagnetic field
Liouville (Vlasov)-poisson systems, Vlasov-Maxwell equations,    
Euler-Poisson system, etc.



N-body Schrodinger equation—the first principle computation



Too big to compute!

• Paul Dirac (1929): “The general theory of quantum mechanics is now 
complete … The underlying physical laws necessary for the mathematical theory 
of a large part of physics and the whole of chemistry are thus completely 
known , and the difficulty is only that the exact application of these laws leads 
to equations much too complicated to be soluble”

• If computer is big and fast enough to solve the N-body Schrodinger equation 
then we don’t need the other (more macroscopic) equations

• Quantum simulation is computational daunting!

CO2: 75 dimension                                   Benzene 162 dimensions



Dimension reduction

• Separating the computation of electrons from that of the nuclei

Born-Oppenheimer approximation;

Ehrenfest dynamics

• Mean-field approximation (approximation by 1-body system)

Hartree theory, Hartree-Fock theory (F. Golse’s course);

density function theory   



Newton’s equation  (microscopic; classical mechanics)

F=ma

• Hamiltonian system

i=1,… N



How big is N?

• P.E. Jabin’s slide  (also course by P. Degond)



Kinetic theory (mesoscopic, statistical physics)

The Boltzmann equation  (6 dimension +time!)

The Boltzmann’s H-Theorem (entropy condition)



Fluid dynamics (Euler/Navier-Stokes equations: macroscopic)

• Conservation of mass

• Conservation of momentum

• Conservation of energy

• Equation of state

• Adding viscosity and heat conductivity → Navier-Stokes equations



Mathematical connections between micro and macro 
physics

• If these equations describe the same physics, except at different 
scales, there must be mathematical connections between them:

one should be able to derive mathematically from equation in   

one scale to the other scales!

• Exploring these mathematical connections (rigorously) between 
different scales has generated some of the most important results 
in mathematical physics and PDEs



Hilbert’s sixth problem (axiomatize physics) 

• Hilbert’s expansion of the Boltzmann equation



From quantum to classical –the Wigner transform

Wigner transform

Wigner equation



when

classical Liouville equation

its (bi)characteristics are                  

Newton’s equation

when the Planck constant 

quantum mechanics becomes classical  

mechanics 

P.L. Lions-Paul ‘93, Gerard-Markowich-Mauser-Poupaud ‘97



From Newton’s equation to the Boltzmann equation

• N-body Newton’s equation

• N-body Liouville equation



Limit (mean field limit)

Marginal distribution

assume all particles are

identical, indistinguishable

molecular chaos assumption

diameter of particles

The Boltzmann-Grad limit

satisfies the Boltzmann equation  



The proof of the Boltzmann-Grad limit is very difficult

• Lanford 1974

• Gallegher-Saint-Raymond-Texier 2013

(valid for a fraction of mean free path)

(course by M. Pulvirenti)



From the Boltzmann equation to  fluid equations

Knudsen number (dimensionless mean free path)                              

• Moments

• Moment equations (conservations of mass, momentum and energy)—
not closed!

total energy=kinetic energy + internal energy



Fluid dynamic limit 

Local Maxwellian

Then one can close the moment equation → compressible Euler 
equations

By Chapman-Enskog expansion, one can expand to the next order 
in     to get the Navier-Stokes equations (Euler + viscosity + heat 
conductivity)

Only incompressible N-S limit was rigorously proved 

Bardos-Golse-Levermore (1991), Golse-Saint-Raymond (2003)



A summary

• Macroscopic equations are limits or asymptotic approximations of 
microscopic equations

• Microscopic (quantum or classical) equations are linear, and time 
reversible; meso- and macroscopic equations are nonlinear, and 
time irreversible

• Microscopic equations are harder for computation (too many 
degree of freedoms); macroscopic equations are harder for 
mathematical analysis (nonlinearity; Millennium problems)



Multiscale problems

• Space shuttle re-entry problem

• Supersonic flights 

thickness of Navier-Stokes shock profile

not correct

• Dislocation (at which continuum

assumption not valid）

• Chemical reaction—need quantum mechanics



Multiscale methodology I: hybridization

• Pros: macro part computational cost small

• Cons: how to determine the location

of the artificial interface and how to

define the connecting (boundary or

interface) conditions?

Micro→macro:  taking averaging, moments, etc.

macro→ micro: no unique definition (assuming local Maxwellian?)

Neuzert, Klar, Perthame, etc.



Multiscale methodology II: heterogeneous multiscale methods

• Microscopic simulation around macroscopic meshes

(to get equation of state, constitutive relations, forcing terms, etc.)

E & Engquist difficulty:  marco to micro transition



Computational Methodology III: Asymptotic-preserving (AP) schemes

• Design schemes that work crossing

scales—a micro-solver that automatically 

becomes a macro-solver in the macroscopic 

limit，when the numerical parameters do 

not resolve the microscopic scale

• Numerical schemes preserve the asymptotic 

transition from micro to macro scales





Is it always possible to allow              ? 

• Discrete Schrodinger → discrete Liouville

yes for time, no for space

the best one can do is          

(Gaussian beam/wave packet methods)

• Discrete Newton (Liouville) to discrete Boltzmann?

some success: Molecular dynamics-random batch methods

• Discrete Boltzmann to discrete Euler/Navier-Stokes

largely yes



AP I:  from quantum to classical mechanics

• Difficulty of quantum simulation:

large N:  curse of dimensionality

small    :  solution is highly oscillatory

Here we will only concentrate on the oscillation problem 



The Schrodinger equation

• If V(x)=0, a single plane wave solution

oscillation in both space and time!

typical mesh strategy:  





A time splitting spectral method

• Trotter splitting

• In step 1, one can use the spectral method and then integrate in time exactly in the Fourier 
space

• One can use the Strang splitting to get second order in time 





Mesh strategy

• To get accurate wave function one needs

via standard numerical analysis:

• To get the correct physical observables (position density, flux, 
energy etc) one just needs

(1)



How to prove this result? (Bao-J-Markowich ‘02)

• Recall the Wigner transform

the Wigner equation

As                  one gets the semiclassical limit (the Liouville equation)



Assume spatially continuous, since at each step the time integration is conducted exactly, the 
splitting scheme, upon Wigner transform, can be viewed as the splitting of the Wigner 
equation as:

Step 1:

Step 2:

As                   these two steps reach the following limit

Step 1：

Step 2: 

Which is the splitting scheme for the Liouville equation.

The above limit is taken with k fixed, thus k can be independent of (AP in time!)



Only for Physical observables, not wave function

the moments of Wigner transform only give  (all) the physical 
observables

• Position density

• Current density

• Energy density

Wave function cannot be completely recovered (loss of constant 
phase, for example)



A more rigorous analysis (Golse-J-Paul, JFoCM)



Monge-Kantorovich or Wasserstein distance with exponent 2

Husimi operator    



• Theorem

from here one can also deduce a error uniform in  



How about spatial discretization?

• The best one can do is

via Gaussian beam/Gaussian wave-packet methods  (Heller ‘81, Popov ’82, Ralston ‘82) 

Plug this ansatz to the Schrodinger equation and ignore higher order terms in x-y and 



Key: complex Riccati equation prevents blow-up→ no caustics!

• M is complex, and chosen to have positive definite imaginary part→ Gaussian

• Gaussian beam decomposition of initial data

Tanushev ‘08



• One first partition the domain into subdomain with width of            ,  putting one

Gaussian beam in each of these subdomains, with initial condition

which evolves according to the Guassian beam dynamics, and in the end superimpose all 

the beams to form an approximate solution to the Schrodinger equation

• Need to re-initialize once the width of Gaussian beam is over 

• Can expand T to higher order to get higher order approximation



convergence

• Liu-Runborg-Tanushev ’11

• Eulerian version:  Leung-Qian ‘09,  J-Wu-Yang ’11

• Non-truncative Gaussian wave packet transform: Russo-Smereka ‘13

• (phase-space) Frozen Gaussian beams—using Gaussian with fixed width 

(Heller ‘81,  Herman-Kluk ‘84,  Lu-Yang ‘11)



From J-Wu-Yang (CMS ’08)
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