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Quantum effects in reactive collisions

Tunnel effects:
through barrier,
corner cutting.

Zero-point energy:
in reactants / products,
all along trajectories,
“energy leaking” below ground quantum level.

may change reaction rate by orders of magnitude!

A + BC

AB + C

M. H. Alexander, 
Science 331, 411 (2011).
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…not taken into account by classical trajectories.



Quantum effects in trajectory simulations

Can we account for quantum effects—at least in part—by 
means of trajectories?
Here we will look specifically at the sampling of trajectory 
initial conditions.
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First, need to get back to 1D quantum trajectories ☞



Quantum trajectory approach
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the “no-wave” formulation 

Originates in (but quite different from) deBroglie-Bohm.
The trajectory ensemble itself is the fundamental quantum 
state entity, rather than the wave function 𝚿.

• Bill Poirier, Bohmian mechanics without pilot waves, Chem. Phys. 370, 4 (2010).
• J. Schiff and Bill Poirier, Quantum mechanics without wavefunctions, JCP 136, 031102 (2012).
• G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, Classical-like trajectory simulations for accurate 

computation of quantum reactive scattering probabilities. Comput. Theor. Chem., 990, 3 (2012).
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Exact quantum trajectories for 1D scattering states
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ṙ =
p� s

m
� 8r2s3

m~2
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Stationary scattering state - 1D (#2)
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The classical limit!…
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The classical limit!…



Tunneling through a 1D Eckart barrier (#1)
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incident   →

reflected  ←

→ transmitted

x
xL xR

 (x ! +1) = k�1/2
R T exp[ikRx]

 (x ! �1) = k�1/2
L (exp[ikLx] +R exp[�ikLx])

time = 0

Outgoing 
plane wave
on the right side

x0 = xR

ẋ0 =
p
2E/m

ẍ0 =
...
x 0 = 0

Initial conditions:

Transmission proba:

Reflection proba:

PT = |T |2

PR = |R|2

x(t)

backward-time  
propagation



Tunneling through a 1D Eckart barrier (#2)

ODE integration by means of  
a simple (adaptive step-size) 
Runge-Kutta propagator. 
typical CPU time = 0.03 s
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extremely deep tunneling

E/V 5.48 (– 43)
Exact         PTransmission 1.5641888074199039 (– 43)
Computed PTransmission 1.5641888074199345 (– 43)
Relative Error ~ 2.0 (–14)

0

One single trajectory 
gives the exact solution

Eckart potential:
V (x) = V0 sech2(↵x)

↵ = 3.0 a.u.

m = 2000 a.u.

V0 = 400 cm�1

solution quantum trajectory

| (x)|2

time(x)

E = V0



Extension to multi-D systems

x ➝ follows quantum motion  
along reaction path,

exact tunneling / interferences.
y ➝ classical vibration,

will need to choose the  
(undetermined vibrational  
phase at random.

assume tunneling is most important  
along reaction coordinate ‘x’

A + BC

AB + C

M. H. Alexander, 
Science 331, 411 (2011).
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Write down quantum and classical motion eqs ☞

y

x



2D Hamilton eqs of motion
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notice the tunnel / interference extra space! 

x⬌y coupling



prototype 2D chemical system 

1117

y x

x-Eckart barrier + y-harm. osc.

x → quantum motion
y → classical motion

2D bottleneck potential

coupling parameter

V (x, y) = V0 sech2(↵x) +
1

2
k(x)y2

k(x) = k0
⇥
1 + b/ cosh2(↵x)

⇤

v=0 asymp. 

v=1 asymp. 

!y = V0☞



2D trajectory parametric plot
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y (
a.u

.)

-2
 0

 2
 4

 6
 8

-1

-0.5

 0

 0.5

 1

-20000

-15000

-10000

-5000

 0

–15

–20

–10

–5

0

–

–

–

Ti
m

e 
(1

03
 a

.u
.)

x(t), y(t)



Trajectory ensemble sampling (#1)

Takes care of tunnel effects but does not account for 
quantization of reactant/product states.
State-resolved ‘v’ reaction probabilities obtained  
by “binning” trajectories into energy regions  
centered on individual quantum states ‘v’ of  
the classical y-oscillator.
Solution? Restrict asymp. channel phase space to 
EBK quantization:

Problem: lack of micro-reversibility,
Problem: computationally inefficient.

“Traditional” classical sampling

v=0

v=1

y

To fix this we propose the Phase Space Approximation ☞
13



Trajectory ensemble sampling (#2)

Derives from exact Wigner-Weyl formalism (Bill Poirier). 
Vibrational quantum state ➝ classical phase space region 
of area 2π ℏ.
Main difference with traditional sampling:  
for a given quantum state v all trajectories have the 
same kinetic energy  
⟹ energy conservation is not enforced.

Phase Space Approximation (PSA)
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Bill Poirier, Algebraically Self-Consistent Quasiclassical Approximation on Phase Space, Found. Phys. 30, 1191 (2000).

Provides exact reactive scattering for separable systems ☞



trajectory ensemble sampling (#3)

Individual 1D quantum states for 
the y-oscillator are represented by 
phase-space regions of area 

All trajectories have different 
energies:

15

qy

p y

v = 2

v = 0
v = 1

bin # 1

qy

p y

v = 2

v = 0
v = 1

…more on PSA sampling

2⇡~

Etraj 6= Etotal



PSA vs traditional sampling
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v=0

v=1

v=0

v=1

Etot nominal Etot

Standard sampling 
Etot is conserved

PSA sampling 
Etot is not conserved

Etot



cumulative reaction probabilities - CRPs
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x and y motions decoupled (b=0)
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cumulative reaction probabilities - CRPs
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x and y motions decoupled (b=0)
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⇓

PSA sampling gives 
exact CRPs.

☞



cumulative reaction probabilities - CRPs
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narrower bottleneck  (b=1)

exact

classical
classical - PSA

no-wave
no-wave - PSA



cumulative reaction probabilities - CRPs
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wider bottleneck  (b= –0.25)

exact

classical
classical - PSA

no-wave
no-wave - PSA



Conclusions

New trajectory sampling procedure. 
Correct quantum state thresholds. 
Easy to use. 
Would be interesting to investigate for fully classical 
systems. 
Try to use it all along trajectories to avoid “energy leak”?  

20


