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Quantum effects in reactive collisions

may change reaction rate by orders of magnitude!

A+ BC
e Tunnel effects:
o through barrier, I
: AB +C \\Z
@ corner cutting. BB /
/’_"”__:7'

e Zero-point energy:

@ 1n reactants / products, ﬁd /
Science 331,411 (2011).

o all along trajectories,

o “energy leaking” below ground quantum level.

...hot taken into account by classical trajectories.
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Quantum effects in trajectory simulations

e Can we account for quantum effects—at least in part—by
means of trajectories’

e Here we will look specifically at the sampling of trajectory
initial conditions.

First, need to get back to 1D quantum trajectories [3°



Quantum trajectory approach

the “no-wave” formulation

 Originates in (but quite different from) deBroglie-Bohm.

e The trajectory ensemble itself 1s the fundamental quantum
state entity, rather than the wave function W.

 Bill Poirier, Bohmian mechanics without pilot waves, Chem. Phys. 370, 4 (2010).

e J. Schiff and Bill Poirier, Quantum mechanics without wavefunctions, JCP 136,031102 (2012).

e G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, Classical-like trajectory simulations for accurate
computation of quantum reactive scattering probabilities. Comput. Theor. Chem., 990, 3 (2012).



Stationary scattering state - 1D

Hamilton eqs of motion
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Stationary scattering state - 1D

Hamilton eqs of motion

(x,p) “real space” (r,s) “quantum space”
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Stationary scattering state - 1D

(x,p) “real space”
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Stationary scattering state - 1D

Hamilton eqs of motion

(x,p) “real space” (r,s) “quantum space”
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H(x, p, r, s) reduces to classical Hamiltonian when r =0 and s = p



Stationary scattering state - 1D

Hamilton eqs of motion

(x,p) “real space” (r,s) “quantum space”

. S _6_H 7.4_p—s_87“233 _8[—]
YT ~ Op m mh2  Os
._ oV aH . Arst o8
"% T o1 T 2 i

Hamiltonian:

2.4

s(2p — s 21745

Hr,porys) =222 4y - 222

2m mh

H(x, p, r, s) reduces to classical Hamiltonian when r =0 and s = p

== four initial conditions:

1 for time translation / 1 for total energy / 2 to specify particular quantum state U ()
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Stationary scafttering state - 11

Hamilton eqs of motion -

(z,p) “real space” (7, 5) “qu‘duumcf 3
= _0_H -_p_5_8T283 - OE
Cm - T m mh? ~ Os
.__(9_V _ & ._47“34 __3_[_[
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Hamiltonian:
s(2p — s 27“284
H(z,p,r,s) = 20 —5) V(z) 2
2m mh

H(x, p, r, s) reduces to classical Hamiltonian when r=0 and s = p

[~ four initial conditions:

1 for time translation / 1 for total energy / 2 to specify particular quantum state U ()
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Stationary scattering state - 1D 2

The classical limit!...
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Tunneling mrougna 1D Eckart barrier @,

ﬂ

backward-time S
propagation incident —

— transmitted

reflected <+ j

Outgoing
plane wave
on the right side

k i
| > x

LL

U(x = +o00) = k§1/2T explikRT]

U(z — —o0) =k '/? (explikpz] + R exp|—ikpz])

Transmission proba: Pr = |T|°
Reflection proba: Pr = |R|?
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Initial conditions:

Lo = TR
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Tunneling through a 1D Eckart barrier 2

solution quantum trajectory Eckart potential: __

V(z) = Vi sech?(ax)

a=3.0a.u.

|\IJ($)‘2 E=W m = 2000 a.u.

Vo = 400 em ™!
\ N |
2| \ / ® ODE itegration by means of
time( 56) a simple (adaptive step-size)

Runge-Kutta propagator.

time
N
|
—R
Q

typical CPU time = 0.03 s

-
/ - extremely deep tunneling

8 L
NV EN, 5.48 (— 43)
-10 l Exact PTransmission 1.5641888074199039 (— 43)
S 0 5 Computed PTransmission 1.5641888074199345 (—43)
X Relative Error ~2.0 (-14)

One single trajectory

gives the exact solution



EXxtension to multi-D systems
assume tunneling is most important

along reaction coordinate ‘X’

A+ BC

e x — follows quantum motion

along reaction path, \ i
AB + C 2

o exact tunneling / interferences.

e y — classical vibration,

o will need to choose the y W/ M. H. Alexander,
. . . Science 331,411 (2011).
(undetermined vibrational

phase at random.
X

Write down quantum and classical motion eqs [~



2D Hamilton eqgs of motion

notice the tunnel / interference extra space!

5H |

T = 6_H Y — aHo 7'- — 6H S— .
 Ops P = "5z ~ Op, Pr=""5r>
quantum tunnel / interference
,_0H . _ oH
= p,=

Opy 9y X=Yy coupling

classical ‘5

Dr (2pa: o pr) 2r2pﬁ , pz ,
o - 2m mh2  2m Viz,y)

Hamiltonian
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prototype 2D chemical system
2D bottleneck potential

x-Eckart barrier + y-harm. osc.

1
Viz,y) =V SeChZ(OzZE) + §k(aj)y2

k(z) = ko [1 + b/ cosh®(az)]

g coupling parameter

~ |X —rquantum motion
> classical motion

—




2D trajectory parametric plot

(), y(t)




Trajectory ensemble sampling

“Iraditional” classical sampling

e Takes care of tunnel effects but does not account for

quantization of reactant/product states.
e State-resolved ‘v’ reaction probabilities obtained \ .- __

by “binning” trajectories into energy regions =
centered on individual quantum states ‘v’ of N /
the classical y-oscillator. =y

e Solution? Restrict asymp. channel phase space to
EBK quantization:

Problem: lack of micro-reversibility,

Problem: computationally inefficient.

To fix this we propose the Phase Space Approximation n@
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Trajectory ensemble sampling )

Phase Space Approximation (PSA)

Bill Poirier, Algebraically Self-Consistent Quasiclassical Approximation on Phase Space, Found. Phys. 30, 1191 (2000).

e Derives from exact Wigner-Weyl formalism (Bill Poirier).

e Vibrational quantum state — classical phase space region
of area 21 4.

e Main difference with traditional sampling:
for a given quantum state v all trajectories have the
same kinetic energy

—> energy conservation 1s not enforced.

Provides exact reactive scattering for separable systems ngb
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trajectory ensemble sampling s

...more on PSA sampling

e Individual 1D quantum states for
the y-oscillator are represented by
phase-space regions of area 2mh

Py

e All trajectories have different -

energies: Lo # Erotal 1




PSA vs traditional sampling

Standard sampling

E.: is conserved

Etot \

PSA sampling
Eo: Is not conserved

Etot

\ // nOminql Etot
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cumulative reaction probabilities - CRPs

X and ¥y motions decoupled (b=0)



cumulative reaction probabilities - CRPs
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cumulative reaction probabilities - CRPs
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cumulative reaction probabilities - CRPs

CRP

X and ¥y motions decoupled (b=0)
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cumulative reaction probabilities - CRPs
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cumulative reaction probabilities - CRPs

X and ¥y motions decoupled (b=0)
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cumulative reaction probabilities - CRPs

X and ¥ motions decoupled (b=0)

= = = = Classical -

no-wave
/Y no-wave

exact

classical -

PSA
traditional

- traditional
- PSA

x/y decoupled

J

PSA sampling gives
exact CRPs.



cumulative reaction probabilities - CRPs

narrower bottleneck (b=1)

' = = = = classical - PSA
0.02

classical

no-wave
/% no-wave - PSA

exact




cumulative reaction probabilities - CRPs

CRP

1.5

0.5

wider bottleneck (b=-0.25)

= = = = Classical -

VA

classical
no-wave

no-wave -

exact

PSA

PSA



® New trajectory sampling procedure.
® Correct quantum state thresholds.
® LHasy to use.

® Would be interesting to investigate for fully classical
systems.

® Try to use 1t all along trajectories to avoid “energy leak™?
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