The Causal Structure of Quantum Information

Alastair A. Abbott

Inria Grenoble - Rhône-Alpes

EPIT - 28 May 2021

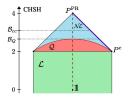
Quantum Foundations

Quantum foundations: the study of the conceptual and mathematical underpinnings of quantum theory

Quantum Foundations

Quantum foundations: the study of the conceptual and mathematical underpinnings of quantum theory

Quantum entanglement



Quantum measurement

Quantum causality

Quantum correlations

Quantum Foundations and Quantum Information

Quantum foundations: the study of the conceptual and mathematical underpinnings of quantum theory

Strong links between quantum foundations and quantum information

Quantum Foundations and Quantum Information

Quantum foundations: the study of the conceptual and mathematical underpinnings of quantum theory

Strong links between quantum foundations and quantum information

Quantum Computing: What types of computations does nature allow us to perform?

Quantum Foundations and Quantum Information

Quantum foundations: the study of the conceptual and mathematical underpinnings of quantum theory

Strong links between quantum foundations and quantum information

Quantum Computing: What types of computations does nature allow us to perform?

This lecture: Quantum causality

- Understand causal structure of quantum theory
- Fundamentally quantum causal structures?
- Exploit this for quantum information processing?

Outline

Causal structure of quantum information

Defining causal structure Causality and quantum circuits Quantum combs

Quantum control of causal structure

The Quantum Switch The Quantum *N*-Switch Application: Fourier Promise Problem

A general model of circuits with quantum control of causal structure Quantum circuits with quantum control

Other directions of study in quantum causality

What does it mean to say that X causes Y?

What does it mean to say that X causes Y?

What does it mean to say that X causes Y?

- Intervening on a cause changes the distribution of the effect
 - P(sun rises | rooster crows) = P(sun rises | we ate coq au vin for dinner)

What does it mean to say that X causes Y?

- Intervening on a cause changes the distribution of the effect
 - P(sun rises | rooster crows) = P(sun rises | we ate coq au vin for dinner)
 - $P(\text{rooster crows} | \text{sun rises}) \neq P(\text{rooster crows} | \text{we stop the sun rising})$

What does it mean to say that X causes Y?

- Intervening on a cause changes the distribution of the effect
 - P(sun rises | rooster crows) = P(sun rises | we ate coq au vin for dinner)
 - $P(\text{rooster crows} | \text{sun rises}) \neq P(\text{rooster crows} | \text{we stop the sun rising})$
- Causal (Bayesian) models: Framework to describe causal relations from observed correlations
 - J. Pearl, *Causality* (2000).

How to define causal relations between quantum events?

What do we take to be quantum events?

Classically: Events: random variables; Interventions: stochastic maps

How to define causal relations between quantum events?

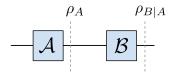
• What do we take to be quantum events?

Classically: **Events:** random variables; **Interventions:** stochastic maps Quantumly: **Events:** quantum states; **Interventions:** quantum channels

How to define causal relations between quantum events?

What do we take to be quantum events?

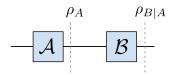
Classically: **Events:** random variables; **Interventions:** stochastic maps Quantumly: **Events:** quantum states; **Interventions:** quantum channels



How to define causal relations between quantum events?

What do we take to be quantum events?

Classically: **Events:** random variables; **Interventions:** stochastic maps Quantumly: **Events:** quantum states; **Interventions:** quantum channels

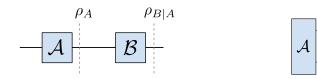


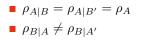
 $\rho_{A|B} = \rho_{A|B'} = \rho_A$ $\rho_{B|A} \neq \rho_{B|A'}$

How to define causal relations between quantum events?

What do we take to be quantum events?

Classically: **Events:** random variables; **Interventions:** stochastic maps Quantumly: **Events:** quantum states; **Interventions:** quantum channels





 $\rho_{BC|A} = \mathcal{B} \otimes \mathcal{C}(\rho_A)$

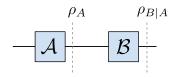
 ρ_A

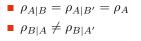
B

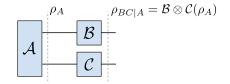
How to define causal relations between quantum events?

What do we take to be quantum events?

Classically: **Events:** random variables; **Interventions:** stochastic maps Quantumly: **Events:** quantum states; **Interventions:** quantum channels





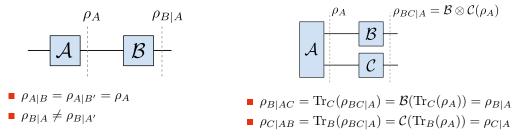


$$\rho_{B|AC} = \operatorname{Tr}_C(\rho_{BC|A}) = \mathcal{B}(\operatorname{Tr}_C(\rho_A)) = \rho_{B|A}$$
$$\rho_{C|AB} = \operatorname{Tr}_B(\rho_{BC|A}) = \mathcal{C}(\operatorname{Tr}_B(\rho_A)) = \rho_{C|A}$$

How to define causal relations between quantum events?

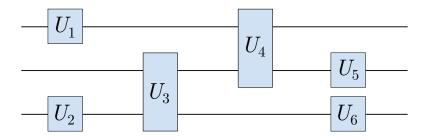
What do we take to be quantum events?

Classically: **Events:** random variables; **Interventions:** stochastic maps Quantumly: **Events:** quantum states; **Interventions:** quantum channels

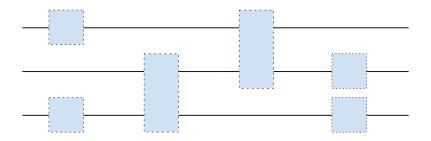


Causal structure defined by ability to influence or "signal" from one operation to another Quantum causal models [Barrett, Lorenz, Oreshkov, 2019]

Quantum circuits have a causal structure

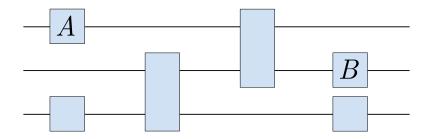


Quantum circuits have a causal structure



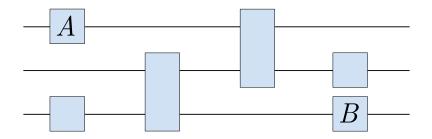
Need to consider circuits with modifiable operations

Quantum circuits have a causal structure



Need to consider circuits with modifiable operations

Quantum circuits have a causal structure



Need to consider circuits with modifiable operations

• A circuit location A can influence another B if there is there is a path from A to B

Defining the Scenario

Consider causal structure in a computational scenario

- Black-box "operations" (quantum channels)
 - $\mathcal{A}: \mathcal{L}(\mathcal{H}^{A^{I}}) \to \mathcal{L}(\mathcal{H}^{A^{O}})$

$$\rho - \mathcal{A} - \mathcal{A}(\rho)$$

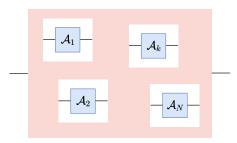
Defining the Scenario

Consider causal structure in a computational scenario

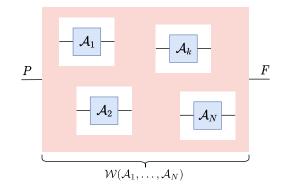
- Black-box "operations" (quantum channels)
 - $\mathcal{A}: \mathcal{L}(\mathcal{H}^{A^{I}}) \to \mathcal{L}(\mathcal{H}^{A^{O}})$

$$\rho - \mathcal{A} - \mathcal{A}(\rho)$$

- Consume N queries $\mathcal{A}_1, \ldots, \mathcal{A}_N$ in some "computation"
 - May have all $A_i \equiv A$ (N queries to A), but they could also be different operations



Higher Order Operations (Quantum Supermaps)



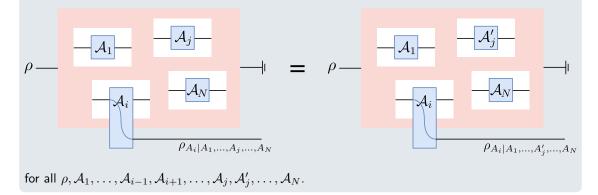
 $\text{Higher order operation: } (\mathcal{A}_1, \dots, \mathcal{A}_N) \mapsto \mathcal{W}(\mathcal{A}_1, \dots, \mathcal{A}_N) : \mathcal{L}(\mathcal{H}^P) \to \mathcal{L}(\mathcal{H}^F)$

- Multilinear in its arguments
- $\mathcal{W}(\mathcal{A}_1,\ldots,\mathcal{A}_N)$ a quantum channel whenever $\mathcal{A}_1,\ldots,\mathcal{A}_N$ are quantum channels

Formalising Causal Order

Compatibility with causal order

 \mathcal{W} is compatible with $A_1 \prec A_2 \prec \cdots \prec A_N$ if, for all i < j, A_j cannot signal to A_i :



Note: $\ensuremath{\mathcal{W}}$ can be consistent with several causal orders

Quantum Combs

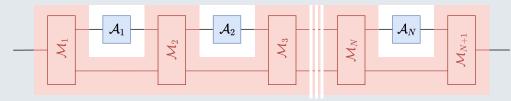
What is the most general way to combine A_1, \ldots, A_N compatible with $A_1 \prec A_2 \prec \cdots \prec A_N$?

Quantum Combs

What is the most general way to combine A_1, \ldots, A_N compatible with $A_1 \prec A_2 \prec \cdots \prec A_N$?

Theorem (Chiribella, D'Ariano, Perinotti (2009))

 \mathcal{W} is compatible with $A_1 \prec A_2 \prec \cdots \prec \mathcal{A}_N$ if and only if it has the form:



This quantum circuit with N open slots is called a quantum comb

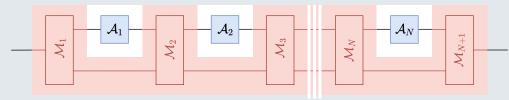
Alternatively: process operator, channel with memory, process tensor, ...

Quantum Combs

What is the most general way to combine A_1, \ldots, A_N compatible with $A_1 \prec A_2 \prec \cdots \prec A_N$?

Theorem (Chiribella, D'Ariano, Perinotti (2009))

 \mathcal{W} is compatible with $A_1 \prec A_2 \prec \cdots \prec \mathcal{A}_N$ if and only if it has the form:



This quantum circuit with N open slots is called a quantum comb

Alternatively: process operator, channel with memory, process tensor, ...

Quantum circuits are the most general computation with a fixed causal structure.

Formalising Quantum Combs

Higher order operations can be nicely formulated in the Choi picture

Choi-Jamiołkowski isomorphism

 $\mathsf{CP} \text{ maps } \mathcal{C}: \mathcal{L}(\mathcal{H}^X) \to \mathcal{L}(\mathcal{H}^Y) \text{ are in a bijection with PSD operators } C \in \mathcal{L}(\mathcal{H}^X \otimes \mathcal{H}^Y)$

$$C = \mathcal{I} \otimes \mathcal{C}(|\mathbb{1}\rangle\!\rangle\!\langle\!\langle \mathbb{1}|), \quad \text{where } |\mathbb{1}\rangle\!\rangle = \sum_{i} |i\rangle \otimes |i\rangle$$

• TP condition:
$$\operatorname{Tr}_Y[C] = \mathbb{1}^X$$

Inverse:
$$\mathcal{C}(\rho) = \operatorname{Tr}_X[(\rho^T \otimes \mathbb{1})C] = \rho * C$$

Formalising Quantum Combs

Higher order operations can be nicely formulated in the Choi picture

Choi-Jamiołkowski isomorphism

CP maps $\mathcal{C} : \mathcal{L}(\mathcal{H}^X) \to \mathcal{L}(\mathcal{H}^Y)$ are in a bijection with PSD operators $C \in \mathcal{L}(\mathcal{H}^X \otimes \mathcal{H}^Y)$

$$C = \mathcal{I} \otimes \mathcal{C}(|\mathbb{1}\rangle\!\!\!\rangle \langle\!\!\langle \mathbb{1}|), \quad ext{where } |\mathbb{1}\rangle\!\!\!\rangle = \sum_i |i
angle \otimes |i
angle$$

• TP condition:
$$\operatorname{Tr}_Y[C] = \mathbb{1}^X$$

Inverse:
$$\mathcal{C}(\rho) = \operatorname{Tr}_X[(\rho^T \otimes \mathbb{1})C] = \rho * C$$

Higher order maps:

 $\blacksquare \mathcal{W} \leftrightarrow W \in \mathcal{L}(\otimes_i(\mathcal{H}^{A_i^I} \otimes \mathcal{H}^{A_i^O}))$

Quantum combs: Choi operator \boldsymbol{W} has nice additional structure

Can be characterised with semidefinite programming

Outline

Causal structure of quantum information

Defining causal structure Causality and quantum circuits Quantum combs

Quantum control of causal structure

The Quantum Switch The Quantum *N*-Switch Application: Fourier Promise Problem

A general model of circuits with quantum control of causal structure Quantum circuits with quantum control

Other directions of study in quantum causality

Beyond Fixed Causal Structures

Fundamental questions:

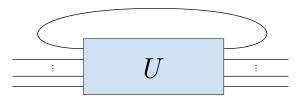
- What are the physical limits of information processing?
- Does nature allow us to process information in noncausal ways?

Beyond Fixed Causal Structures

Fundamental questions:

- What are the physical limits of information processing?
- Does nature allow us to process information in noncausal ways?

One idea: Quantum circuits with closed-timelike curves (CTCs) [Deutsch, 1991]:



- Nature "magically" finds a consistent fixed point solution
- Compatible with general relativity
- Computationally (too?) powerful (P_{CTC} = BQP_{CTC} = PSPACE) [Aaronson & Watrous, 2008]
- Nonlinear, ...

Quantum Causal Order

Quantum Causal Structure: Can we have intrinsically quantum causal relations?

- For example, superposition of cause and effect relations?
- Should be linear and well-behaved: quantum supermap (like quantum combs)

Quantum Causal Order

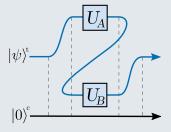
Quantum Causal Structure: Can we have intrinsically quantum causal relations?

- For example, superposition of cause and effect relations?
- Should be linear and well-behaved: quantum supermap (like quantum combs)

Quantum Switch (Chiribella, D'Ariano, Perinotti, Valiron [2009])

Use a quantum system to coherently control order that two quantum operations (channels/unitaries) are applied.

- U_A, U_B : two unknown unitaries
- $|\psi\rangle^t$: target system; $|\phi\rangle^c$: control system



Quantum Causal Order

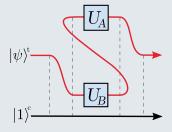
Quantum Causal Structure: Can we have intrinsically quantum causal relations?

- For example, superposition of cause and effect relations?
- Should be linear and well-behaved: quantum supermap (like quantum combs)

Quantum Switch (Chiribella, D'Ariano, Perinotti, Valiron [2009])

Use a quantum system to coherently control order that two quantum operations (channels/unitaries) are applied.

- U_A, U_B : two unknown unitaries
- $|\psi\rangle^t$: target system; $|\phi\rangle^c$: control system



Quantum Causal Order

Quantum Causal Structure: Can we have intrinsically quantum causal relations?

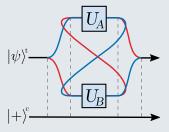
- For example, superposition of cause and effect relations?
- Should be linear and well-behaved: quantum supermap (like quantum combs)

Quantum Switch (Chiribella, D'Ariano, Perinotti, Valiron [2009])

Use a quantum system to coherently control order that two quantum operations (channels/unitaries) are applied.

- U_A, U_B : two unknown unitaries
- $|\psi\rangle^t$: target system; $|\phi\rangle^c$: control system

 $U_B U_A \otimes \left| 0
ight
angle \left| 0
ight
angle^c + U_A U_B \otimes \left| 1
ight
angle \left| 1
ight
angle^c
ight|^c$



The Quantum Switch

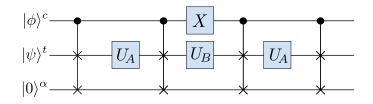
The Quantum Switch is a quantum supermap: $(\mathcal{A},\mathcal{B})\mapsto \mathcal{W}_{\mathsf{switch}}(\mathcal{A},\mathcal{B})$

- Not a quantum comb: $\mathcal{W}_{switch} \neq q \mathcal{W}^{A \prec B} + (1-q) \mathcal{W}^{B \prec A}$
- Causally nonseparable supermap

The Quantum Switch

The Quantum Switch is a quantum supermap: $(\mathcal{A}, \mathcal{B}) \mapsto \mathcal{W}_{\mathsf{switch}}(\mathcal{A}, \mathcal{B})$

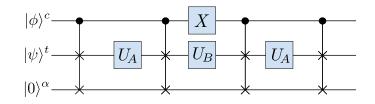
- Not a quantum comb: $\mathcal{W}_{switch} \neq q \mathcal{W}^{A \prec B} + (1-q) \mathcal{W}^{B \prec A}$
- Causally nonseparable supermap
- To simulate with a circuit, must use at least one channel twice



The Quantum Switch

The Quantum Switch is a quantum supermap: $(\mathcal{A}, \mathcal{B}) \mapsto \mathcal{W}_{\mathsf{switch}}(\mathcal{A}, \mathcal{B})$

- Not a quantum comb: $\mathcal{W}_{switch} \neq q \mathcal{W}^{A \prec B} + (1-q) \mathcal{W}^{B \prec A}$
- Causally nonseparable supermap
- To simulate with a circuit, must use at least one channel twice



The Quantum Switch is physically meaningful

- Several experimental realisations with quantum optics
 - Vienna, Brisbane, Shanghai, Concepción, ...

Application: Commuting/Anticommuting Unitaries

Commuting vs. Anticommuting Unitary Problem (Chiribella [2012])

Input: Unitaries U_A, U_B (oracle access)

Promise: U_A and U_B either:

- Commute: $[U_A, U_B] = U_A U_B U_B U_A = 0$,
- Anticommute: $\{U_A, U_B\} = U_A U_B + U_B U_A = 0.$

Problem: Determine which is the case.

Application: Commuting/Anticommuting Unitaries

Commuting vs. Anticommuting Unitary Problem (Chiribella [2012])

Input: Unitaries U_A, U_B (oracle access)

Promise: U_A and U_B either:

- Commute: $[U_A, U_B] = U_A U_B U_B U_A = 0$,
- Anticommute: $\{U_A, U_B\} = U_A U_B + U_B U_A = 0.$

Problem: Determine which is the case.

The quantum switch solves the problem perfectly with one use each of U_A, U_B :

Recall: $\mathcal{W}_{switch} : (U_A, U_B) \mapsto U_B U_A \otimes |0\rangle \langle 0|^c + U_A U_B \otimes |1\rangle \langle 1|^c$

$$\begin{split} \left|\psi\right\rangle^{t} \otimes \frac{1}{\sqrt{2}}(\left|0\right\rangle^{c} + \left|1\right\rangle^{c}) \xrightarrow{\mathcal{W}_{\text{switch}}} \frac{1}{\sqrt{2}}(U_{B}U_{A}\left|\psi\right\rangle^{t} \otimes \left|0\right\rangle^{c} + U_{A}U_{B}\left|\psi\right\rangle^{t} \otimes \left|1\right\rangle^{c}) \\ &= \frac{1}{2}\{U_{A}, U_{B}\}\left|\psi\right\rangle^{t} \otimes \left|+\right\rangle^{c} - \frac{1}{2}[U_{A}, U_{B}]\left|\psi\right\rangle^{t} \otimes \left|-\right\rangle^{c} \end{split}$$

Application: Commuting/Anticommuting Unitaries

Commuting vs. Anticommuting Unitary Problem (Chiribella [2012])

Input: Unitaries U_A, U_B (oracle access)

Promise: U_A and U_B either:

- Commute: $[U_A, U_B] = U_A U_B U_B U_A = 0$,
- Anticommute: $\{U_A, U_B\} = U_A U_B + U_B U_A = 0.$

Problem: Determine which is the case.

The quantum switch solves the problem perfectly with one use each of U_A, U_B :

Recall: $\mathcal{W}_{switch} : (U_A, U_B) \mapsto U_B U_A \otimes |0\rangle \langle 0|^c + U_A U_B \otimes |1\rangle \langle 1|^c$

$$\begin{split} \left|\psi\right\rangle^{t} \otimes \frac{1}{\sqrt{2}}(\left|0\right\rangle^{c} + \left|1\right\rangle^{c}) \xrightarrow{\mathcal{W}_{\text{switch}}} \frac{1}{\sqrt{2}}(U_{B}U_{A}\left|\psi\right\rangle^{t} \otimes \left|0\right\rangle^{c} + U_{A}U_{B}\left|\psi\right\rangle^{t} \otimes \left|1\right\rangle^{c}) \\ &= \frac{1}{2}\{U_{A}, U_{B}\}\left|\psi\right\rangle^{t} \otimes \left|+\right\rangle^{c} - \frac{1}{2}[U_{A}, U_{B}]\left|\psi\right\rangle^{t} \otimes \left|-\right\rangle^{c} \end{split}$$

Impossible with a quantum comb

Quantum *N*-Switch

How powerful is quantum control?

Quantum *N*-Switch

How powerful is quantum control?

First step: Generalise the quantum switch

Quantum N-Switch

The quantum N-switch is a supermap W_N :

$$(U_1,\ldots,U_N)\mapsto \sum_{\pi}U_{\pi(N)}\cdots U_{\pi(1)}\otimes |\pi\rangle\langle\pi|^c,$$

where π is a permutation of $(1, \ldots, N)$.

■ Coherent control of all *N*! orders of gates

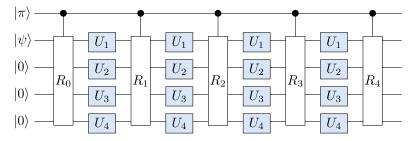
If we initialise the control to $|\phi\rangle^c = \frac{1}{\sqrt{N!}} \sum_{\pi} |\pi\rangle_c$, we apply the gates in a superposition of all possible orders:

$$|\psi\rangle^t \otimes |\phi\rangle^c \to \frac{1}{\sqrt{N!}} \sum_{\pi} U_{\pi(N)} \cdots U_{\pi(1)} |\psi\rangle^t \otimes |\pi\rangle^c.$$

Simulating the *N*-Switch

How much overhead would simulating this with a quantum comb require?

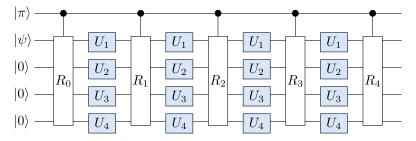
• Naive simulation: N^2 queries (N of each U_i)



Simulating the *N*-Switch

How much overhead would simulating this with a quantum comb require?

• Naive simulation: N^2 queries (N of each U_i)



Theorem (Facchini and Perdrix (2014))

Any circuit simulating \mathcal{W}_N requires at least $N^2 - o(n^{7/4+\epsilon})$ queries to $\{U_1, \ldots, U_N\}$.

Fourier Promise Problem

Fourier Promise Problem (Araújo, Costa, Brukner [2014])

Input: Unitaries U_1, \ldots, U_N (oracle access).

Promise: Let x = 0, ..., N! - 1 be a labelling of permutations π_x and

$$\Pi_x = U_{\pi_x(N-1)} \cdots U_{\pi_x(1)} U_{\pi_x(0)}.$$

Then the unitaries satisfy

$$\forall x, \quad \Pi_x = \omega^{xy} \Pi_0, \quad (\text{where } \omega = e^{i \frac{2\pi}{N!}})$$

for some $y \in \{0, ..., N! - 1\}$.

Problem: Find y.

Quantum N-Switch: Solves perfectly (N total queries)

Quantum *N*-**Switch**: **Discussion**

What do we learn from the N-Switch?

- There are physically meaningful computations beyond the circuit model
- Provides $O(N^2)$ advantage in transforming unknown operations

Quantum *N*-**Switch**: **Discussion**

What do we learn from the N-Switch?

- There are physically meaningful computations beyond the circuit model
- Provides $O(N^2)$ advantage in transforming unknown operations

How useful is the quantum N-switch?

- Fourier Promise Problem: Proof of principle utility
 - Other variants: Hadamard promise problem,
- Potentially useful for fundamentally quantum problems:
 - Quantum metrology (parameter estimation), ...

Quantum *N*-**Switch**: **Discussion**

What do we learn from the N-Switch?

- There are physically meaningful computations beyond the circuit model
- Provides $O(N^2)$ advantage in transforming unknown operations

How useful is the quantum N-switch?

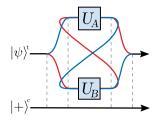
- Fourier Promise Problem: Proof of principle utility
 - Other variants: Hadamard promise problem,
- Potentially useful for fundamentally quantum problems:
 - Quantum metrology (parameter estimation),

Not a general model of computation with quantum control!

Towards a General Model

We can have more general "switch-like" computations

- Transformations on target between unitaries
- Allow a quantum memory between queries



Towards a General Model

We can have more general "switch-like" computations

- Transformations on target between unitaries
- Allow a quantum memory between queries



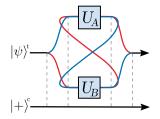
Can we imagine using quantum control in more general ways?

- In quantum switch, control is fixed initially: static control
- How can we have a dynamical, adaptive quantum control structure?

Towards a General Model

We can have more general "switch-like" computations

- Transformations on target between unitaries
- Allow a quantum memory between queries



Can we imagine using quantum control in more general ways?

- In quantum switch, control is fixed initially: static control
- How can we have a dynamical, adaptive quantum control structure?

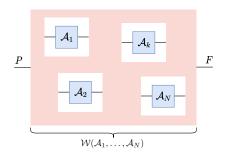
Goal: A generalised model of computation incorporating quantum control

Reminder of Scenario

Goal

A generalised model of computation incorporating quantum control:

- A physically well-defined (linear) quantum supermap \mathcal{W}
- Composition of $\mathcal{A}_1,\ldots,\mathcal{A}_N$ not necessarily in a well-defined, classical order



A subtle requirement:

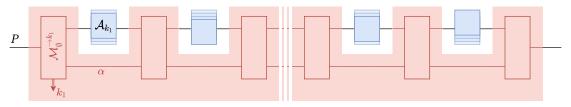
- At the end, every operation should have been applied exactly once
- \blacksquare Necessary for ${\mathcal W}$ to be linear and well-defined

Simpler situation: quantum circuits with classical control of causal order

Dynamical control structure: determine at each step which operation to apply

Simpler situation: quantum circuits with classical control of causal order

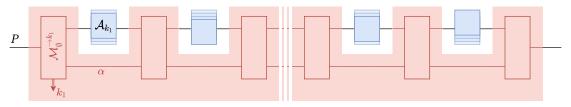
Dynamical control structure: determine at each step which operation to apply



1) Input to circuit: a state $\rho \in \mathcal{L}(\mathcal{H}_P)$

Simpler situation: quantum circuits with classical control of causal order

Dynamical control structure: determine at each step which operation to apply



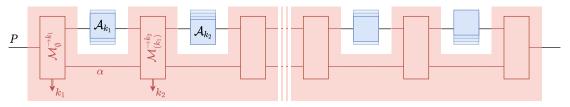
- 1) Input to circuit: a state $\rho \in \mathcal{L}(\mathcal{H}_P)$
- 2) Perform a quantum instrument $\{\mathcal{M}_{\emptyset}^{\rightarrow k_1}\}_{k_1}$. Apply \mathcal{A}_{k_1} to the target subsystem of $\mathcal{M}_{\emptyset}^{\rightarrow k_1}(\rho) \in \mathcal{L}(\mathcal{H}^t \otimes \mathcal{H}^{\alpha})$

Quantum instruments (generalised quantum measurements)

A quantum instrument is a set $\{\mathcal{M}_a\}_a$ of CP maps such that $\mathcal{M} = \sum_a \mathcal{M}_a$ is CPTP. Obtain outcome a with probability $\operatorname{Tr}[\mathcal{M}_a(\rho)]$ and state becomes $\mathcal{M}_a(\rho)/\operatorname{Tr}[\mathcal{M}_a(\rho)]$.

Simpler situation: quantum circuits with classical control of causal order

Dynamical control structure: determine at each step which operation to apply

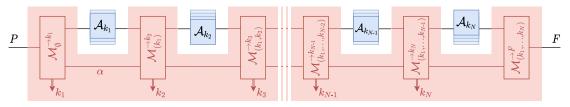


- 1) Input to circuit: a state $\rho \in \mathcal{L}(\mathcal{H}_P)$
- 2) Perform a quantum instrument $\{\mathcal{M}_{\emptyset}^{\rightarrow k_1}\}_{k_1}$. Apply \mathcal{A}_{k_1} to the target subsystem of $\mathcal{M}_{\emptyset}^{\rightarrow k_1}(\rho) \in \mathcal{L}(\mathcal{H}^t \otimes \mathcal{H}^{\alpha})$
- 3) Perform a quantum instrument $\{\mathcal{M}_{(k_1)}^{\rightarrow k_2}\}_{k_2}$. Apply \mathcal{A}_{k_2} to the target subsystem.
- 4) Etc.

[Wechs, Dourdent, Abbott, Branciard (2021)]

Simpler situation: quantum circuits with classical control of causal order

Dynamical control structure: determine at each step which operation to apply



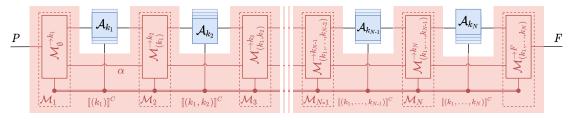
- 1) Input to circuit: a state $ho \in \mathcal{L}(\mathcal{H}_P)$
- 2) Perform a quantum instrument $\{\mathcal{M}_{\emptyset}^{\rightarrow k_1}\}_{k_1}$. Apply \mathcal{A}_{k_1} to the target subsystem of $\mathcal{M}_{\emptyset}^{\rightarrow k_1}(\rho) \in \mathcal{L}(\mathcal{H}^t \otimes \mathcal{H}^{\alpha})$
- 3) Perform a quantum instrument $\{\mathcal{M}_{(k_1)}^{\rightarrow k_2}\}_{k_2}$. Apply \mathcal{A}_{k_2} to the target subsystem.
- 4) Etc.

[Wechs, Dourdent, Abbott, Branciard (2021)]

Problem: For quantum control, we don't want to destroy coherence by measuring

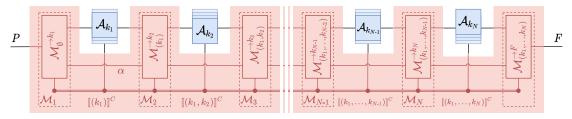
- Problem: For quantum control, we don't want to destroy coherence by measuring
- Intermediate step: Reformulate classical control with explicit control system

- Problem: For quantum control, we don't want to destroy coherence by measuring
- Intermediate step: Reformulate classical control with explicit control system



• "Classical" control register $[\![(k_1,\ldots,k_n)]\!] := |(k_1,\ldots,k_n)\rangle\!\langle (k_1,\ldots,k_n)|$

- Problem: For quantum control, we don't want to destroy coherence by measuring
- Intermediate step: Reformulate classical control with explicit control system



"Classical" control register [[(k₁,...,k_n)]] := |(k₁,...,k_n))\((k₁,...,k_n)|
 Classically controlled operations:

$$\mathcal{M}_1 = \sum_{k_1} \mathcal{M}_{\emptyset}^{\to k_1} \otimes \llbracket (k_1) \rrbracket$$
$$\mathcal{M}_2 = \sum_{k_1, k_2} \mathcal{M}_{\{k_1\}}^{\to k_2} \otimes \Pi_{(k_1), k_2}$$

From Classical to Quantum Control

Turning the classical into quantum control requires a few tweaks:

From Classical to Quantum Control

Turning the classical into quantum control requires a few tweaks:

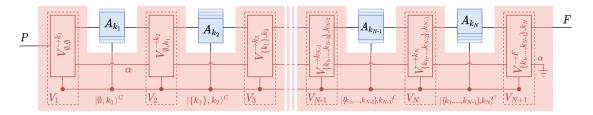
- Quantum control system: $|\{k_1, \ldots, k_{n-1}\}, k_n\rangle$
 - k_n : The operation to apply at slot n
 - $\{k_1, \ldots, k_{n-1}\}$: History recording which operations have already been used
 - For simplicity: V_n , A_n isometries; all A_n of same dimension

From Classical to Quantum Control

Turning the classical into quantum control requires a few tweaks:

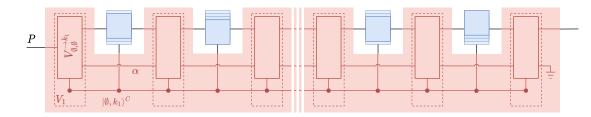
- Quantum control system: $|\{k_1, \ldots, k_{n-1}\}, k_n\rangle$
 - k_n : The operation to apply at slot n
 - $\{k_1, \ldots, k_{n-1}\}$: History recording which operations have already been used
 - For simplicity: V_n , A_n isometries; all A_n of same dimension

Circuit evolves coherently, exploring causal structures in a quantum superposition



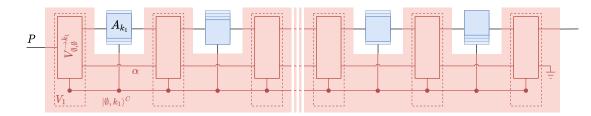
[Wechs, Dourdent, Abbott, Branciard (2021)]

Circuits with Quantum Control of Causal Order



• $V_1: |\psi\rangle^P \to \sum_{k_1} (V_{\emptyset,\emptyset}^{\to k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$

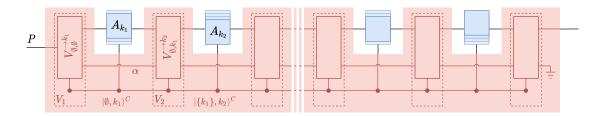
Circuits with Quantum Control of Causal Order



• $V_1: |\psi\rangle^P \to \sum_{k_1} (V_{\emptyset,\emptyset}^{\to k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$

• Quantum control of A_{k_1} : $\rightarrow \sum_{k_1} (A_{k_1} \otimes \mathbb{1}^{\alpha}) (V_{\emptyset,\emptyset}^{\rightarrow k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$

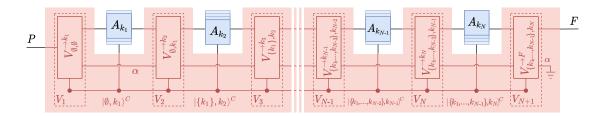
Circuits with Quantum Control of Causal Order



• $V_1: |\psi\rangle^P \to \sum_{k_1} (V_{\emptyset,\emptyset}^{\to k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$

- Quantum control of A_{k_1} : $\rightarrow \sum_{k_1} (A_{k_1} \otimes \mathbb{1}^{\alpha}) (V_{\emptyset,\emptyset}^{\rightarrow k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$
- V_2 : $\rightarrow \sum_{(k_1,k_2)} V_{\emptyset,k_1}^{\rightarrow k_2} (A_{k_1} \otimes \mathbb{1}^{\alpha}) (V_{\emptyset,\emptyset}^{\rightarrow k_1} |\psi\rangle)^{t\alpha} \otimes |\{k_1\},k_2\rangle^C$

Circuits with Quantum Control of Causal Order

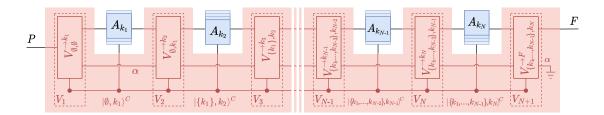


•
$$V_1: |\psi\rangle^P \to \sum_{k_1} (V_{\emptyset,\emptyset}^{\to k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$$

• Quantum control of A_{k_1} : $\rightarrow \sum_{k_1} (A_{k_1} \otimes \mathbb{1}^{\alpha}) (V_{\emptyset,\emptyset}^{\rightarrow k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$

$$V_2: \to \sum_{(k_1,k_2)} V_{\emptyset,k_1}^{\to k_2} (A_{k_1} \otimes \mathbb{1}^{\alpha}) (V_{\emptyset,\emptyset}^{\to k_1} |\psi\rangle)^{t\alpha} \otimes |\{k_1\}, k_2\rangle^C$$

Circuits with Quantum Control of Causal Order



•
$$V_1: |\psi\rangle^P \to \sum_{k_1} (V_{\emptyset,\emptyset}^{\to k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$$

- Quantum control of A_{k_1} : $\rightarrow \sum_{k_1} (A_{k_1} \otimes \mathbb{1}^{\alpha}) (V_{\emptyset,\emptyset}^{\rightarrow k_1} |\psi\rangle)^{t\alpha} \otimes |\emptyset, k_1\rangle^C$
- V_2 : $\rightarrow \sum_{(k_1,k_2)} V_{\emptyset,k_1}^{\rightarrow k_2} (A_{k_1} \otimes \mathbb{1}^{\alpha}) (V_{\emptyset,\emptyset}^{\rightarrow k_1} |\psi\rangle)^{t\alpha} \otimes |\{k_1\},k_2\rangle^C$

$$V_{N+1} \colon \to \left(\sum_{(k_1,\dots,k_N)} V_{\{k_1,\dots,k_{N-1}\},k_N}^{\to F} (A_{k_N} \otimes \mathbb{1}^{\alpha}) \cdots (V_{\emptyset,\emptyset}^{\to k_1} |\psi\rangle)^{t\alpha} \right) \otimes |\{1,\dots,N\},F\rangle$$

Beyond the Quantum Switch

The quantum N-switch can be represented as quantum circuit with quantum control of causal order

Can we do anything else with this model?

Beyond the Quantum Switch

The quantum N-switch can be represented as quantum circuit with quantum control of causal order

Can we do anything else with this model?

- Yes! We can have quantum dynamical causal structure.
- \blacksquare Before slot n+1 we apply

$$V_{n+1} = \sum_{\mathcal{K}_{n-1}, k_n, k_{n+1}} V_{\mathcal{K}_{n-1}, k_n}^{\to k_{n+1}} \otimes |\mathcal{K}_{n-1} \cup \{k_n\}, k_{n+1} \rangle \langle \mathcal{K}_{n-1}, k_n |$$

• k_{n+1} can depend on outcome of previous operations

- Examples that exploit this have very recently been devised
- Computations making use of this are active research topic

[Wechs, Dourdent, Abbott, Branciard (2021)]

What can we do with quantum circuits with quantum control of causal order (QC-QCs)?

- \blacksquare Can still simulate with ${\cal O}(N^2)$ queries
- What types of problems can we solve "efficiently" with QC-QCs?
- Have an SDP characterisation, formulating interesting families of QC-QCs difficult
- Applications beyond computation?

What can we do with quantum circuits with quantum control of causal order (QC-QCs)?

- \blacksquare Can still simulate with ${\cal O}(N^2)$ queries
- What types of problems can we solve "efficiently" with QC-QCs?
- Have an SDP characterisation, formulating interesting families of QC-QCs difficult
- Applications beyond computation?

Is this the most general physical model of computation?

- How else could we use quantum control, or other effects?
- Do other supermaps have physical meaning?

What can we do with quantum circuits with quantum control of causal order (QC-QCs)?

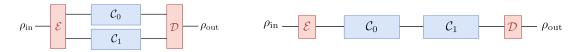
- \blacksquare Can still simulate with ${\cal O}(N^2)$ queries
- What types of problems can we solve "efficiently" with QC-QCs?
- Have an SDP characterisation, formulating interesting families of QC-QCs difficult
- Applications beyond computation?

Is this the most general physical model of computation?

- How else could we use quantum control, or other effects?
- Do other supermaps have physical meaning?

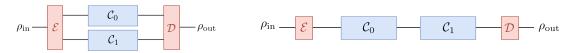
Quantum Shannon Theory without Causal Order

Quantum Shannon theory: quantum states, channels, but classical, causal trajectories for information carriers

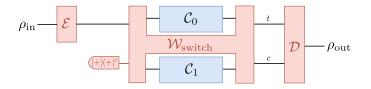


Quantum Shannon Theory without Causal Order

Quantum Shannon theory: quantum states, channels, but classical, causal trajectories for information carriers



What if we allow for superposition, or quantum control, of trajectories?



[Chiribella & Kristjánsson, Quantum Shannon theory with superpositions of trajectories (2019)]

Causal Activation of Capacity

Recall (fully) depolarising channel:

$$\mathcal{N}: \rho \mapsto \operatorname{Tr}[\rho] \frac{1}{d}$$

• $\mathcal{N} = \mathcal{N} \circ \mathcal{N}$ has zero capacity (classical and quantum)

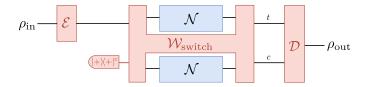
Causal Activation of Capacity

Recall (fully) depolarising channel:

$$\mathcal{N}: \rho \mapsto \operatorname{Tr}[\rho] \frac{1}{d}$$

• $\mathcal{N} = \mathcal{N} \circ \mathcal{N}$ has zero capacity (classical and quantum)

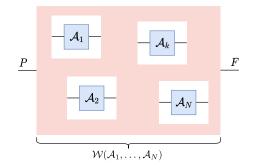
Causal activation: $\mathcal{W}_{|+\chi|+}(\mathcal{N},\mathcal{N})$ has nonzero classical capacity



- Similar results for quantum capacity with other channels
- Meaning of these results still debated

[Salek, Ebler, Chiribella (2018)]

Causal Structure of Quantum Supermaps



Higher order operations, a.k.a. quantum supermaps:

- Quantum combs
- Quantum circuits with quantum control (QC-QCs)

???

Process Matrices

Quantum supermaps beyond QC-QCs exist

- Process matrix framework: most general operations compatible with local causality, but without any global causality constraint
- Introduced independently to study quantum gravity
- Beyond QC-QCs, not clear if they have a physical interpretation

[Oreshkov, Costa, Brukner (2012)]

Process Matrices

Quantum supermaps beyond QC-QCs exist

- Process matrix framework: most general operations compatible with local causality, but without any global causality constraint
- Introduced independently to study quantum gravity
- Beyond QC-QCs, not clear if they have a physical interpretation

[Oreshkov, Costa, Brukner (2012)]

Equivalent to quantum circuits with linear CTCs (ℓ CTCs):

[Araújo, Guérin, Baumeler (2017)]

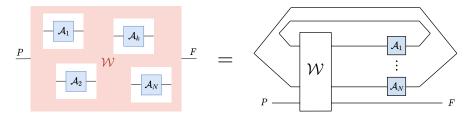
Process Matrices

Quantum supermaps beyond QC-QCs exist

- Process matrix framework: most general operations compatible with local causality, but without any global causality constraint
- Introduced independently to study quantum gravity
- Beyond QC-QCs, not clear if they have a physical interpretation

[Oreshkov, Costa, Brukner (2012)]

Equivalent to quantum circuits with linear CTCs (ℓ CTCs):



 $\blacksquare \mathsf{BQP}_{\ell\mathsf{CTCs}} \subseteq \mathsf{PP}$

[Araújo, Guérin, Baumeler (2017)]

Need new tools to analyse causal structure of quantum information processing

- Quantum combs (higher order quantum maps)
- Quantum causal models

By exploiting quantum control, can process information in an indefinite causal order

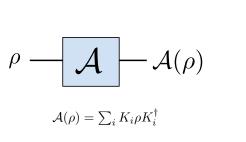
- Quantum switch
- Generalised circuit model incorporating quantum control
- Provides some advantages in quantum information
- Only beginning to understand its potential and limits
- Fundamental questions
 - What are the limits of physical information processing?

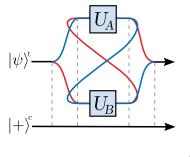
The Quantum Switch as a Supermap

The Quantum Switch is a quantum supermap: $(\mathcal{A}, \mathcal{B}) \mapsto \mathcal{W}_{\mathsf{switch}}(\mathcal{A}, \mathcal{B})$

• If \mathcal{A}, \mathcal{B} are quantum channels with Kraus operators $\{K_i\}_i, \{L_j\}_j$, then $\mathcal{W}_{switch}(\mathcal{A}, \mathcal{B})$ has Kraus operators

$$S_{ij} = L_j K_i \otimes |0\rangle \langle 0|^c + K_i L_j \otimes |1\rangle \langle 1|^c.$$





$$[\mathcal{W}_{\mathsf{switch}}(\mathcal{A},\mathcal{B})](\rho^{tc}) = \sum_{i,j} S_{ij} \rho^{tc} S_{ij}^{\dagger}$$

Fourier Promise Problem Working

Quantum N-Switch: Solves perfectly (N total queries)

1) Initial state:
$$\frac{1}{\sqrt{N!}} \sum_{x=0}^{N!-1} |\psi\rangle^t \otimes |x\rangle^c$$

2) Apply N-switch:
$$ightarrow rac{1}{\sqrt{N!}} \sum_{x=0}^{N!-1} \Pi_x \ket{\psi}^t \otimes \ket{x}^c$$

3) Apply QFT to control: $\rightarrow \frac{1}{N!} \sum_{x,s=0}^{N!-1} \omega^{-xs} \Pi_x |\psi\rangle^t \otimes |s\rangle^c = \sum_{x,s=0}^{N!-1} \omega^{x(y-s)} \Pi_0 |\psi\rangle^t \otimes |s\rangle^c$

4) Measure the control:
$$p(s) = \frac{1}{(N!)^2} \|\sum_{x=0}^{N!-1} \omega^{x(y-s)} \Pi_0 |\psi\rangle^t \otimes |s\rangle^c \|^2 = \delta_{s,y}$$

Fourier Promise Problem Working

Quantum N-Switch: Solves perfectly (N total queries)

1) Initial state:
$$\frac{1}{\sqrt{N!}} \sum_{x=0}^{N!-1} |\psi\rangle^t \otimes |x\rangle^c$$

2) Apply *N*-switch:
$$\rightarrow \frac{1}{\sqrt{N!}} \sum_{x=0}^{N!-1} \prod_x |\psi\rangle^t \otimes |x\rangle^c$$

3) Apply QFT to control: $\rightarrow \frac{1}{N!} \sum_{x,s=0}^{N!-1} \omega^{-xs} \Pi_x |\psi\rangle^t \otimes |s\rangle^c = \sum_{x,s=0}^{N!-1} \omega^{x(y-s)} \Pi_0 |\psi\rangle^t \otimes |s\rangle^c$

4) Measure the control:
$$p(s) = \frac{1}{(N!)^2} \|\sum_{x=0}^{N!-1} \omega^{x(y-s)} \Pi_0 |\psi\rangle^t \otimes |s\rangle^c \|^2 = \delta_{s,y}$$

With a quantum comb?

- The simulating the switch requires $\Omega(N^2)$ queries.
- Other approaches: need to determine phase to accuracy $2\pi/N!$
- Rigorous error-robust analysis lacking thus far...

$$\begin{split} \|\psi\rangle^{i} & \bigvee_{|+\rangle^{c}} \\ \bullet V_{1} = \sum_{k_{1}} V_{\emptyset,\emptyset}^{\to k_{1}} \otimes |\emptyset, k_{1}\rangle^{C} = \sum_{k_{1}} \mathbb{1}^{P_{t} \to t} \otimes \langle k_{1}|^{P_{c}} \otimes |\emptyset, k_{1}\rangle^{C} \\ \bullet V_{2} = \sum_{(k_{1},k_{2})} V_{\emptyset,k_{1}}^{\to k_{2}} \otimes |\{k_{1}\}, k_{2}\rangle\langle \emptyset, k_{1}|^{C} = \sum_{k_{1},k_{2}} \mathbb{1} \otimes |\{k_{1}\}, k_{2}\rangle\langle \emptyset, k_{1}|^{C} \\ \bullet V_{3} = \sum_{(k_{1},k_{2})} V_{\{k_{1}\},k_{2}}^{\to F} \otimes \langle \{k_{1}\}, k_{2}| = \sum_{(k_{1},k_{2})} \mathbb{1}^{t \to F_{t}} \otimes |k_{1}\rangle^{F_{c}} \otimes \langle \{k_{1}\}, k_{2}| \\ \end{split}$$

ττ

$$\begin{aligned} \|\psi^{i}-\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}\| \\ \|\psi^{i}\|$$

$$\begin{split} V_{1} &= \sum_{k_{1}} V_{\emptyset,\emptyset}^{\rightarrow k_{1}} \otimes |\emptyset, k_{1}\rangle^{C} = \sum_{k_{1}} \mathbb{1}^{P_{t} \rightarrow t} \otimes \langle k_{1}|^{P_{c}} \otimes |\emptyset, k_{1}\rangle^{C} \\ V_{2} &= \sum_{(k_{1},k_{2})} V_{\emptyset,k_{1}}^{\rightarrow k_{2}} \otimes |\{k_{1}\}, k_{2}\rangle\langle \emptyset, k_{1}|^{C} = \sum_{k_{1},k_{2}} \mathbb{1} \otimes |\{k_{1}\}, k_{2}\rangle\langle \emptyset, k_{1}|^{C} \\ V_{3} &= \sum_{(k_{1},k_{2})} V_{\{k_{1}\},k_{2}}^{\rightarrow F_{c}} \otimes \langle \{k_{1}\}, k_{2}| = \sum_{(k_{1},k_{2})} \mathbb{1}^{t \rightarrow F_{t}} \otimes |k_{1}\rangle^{F_{c}} \otimes \langle \{k_{1}\}, k_{2}| \\ &|\psi\rangle^{P_{t}} \otimes |\phi\rangle^{P_{c}} \xrightarrow{V_{1}} |\psi\rangle^{t} \otimes (\langle A|\phi\rangle |\emptyset, A\rangle + \langle B|\phi\rangle |\emptyset, B\rangle) \\ &\stackrel{cU}{\longrightarrow} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\emptyset, A\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\emptyset, B\rangle \\ &\stackrel{V_{2}}{\longrightarrow} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\}, B\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\{B\}, A\rangle \\ &\stackrel{cU}{\longrightarrow} U_{B}U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\}, B\rangle + U_{A}U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\{B\}, A\rangle \\ &\stackrel{V_{3}}{\longrightarrow} U_{B}U_{A} |\psi\rangle^{F_{t}} \otimes \langle A|\phi\rangle |A\rangle + U_{A}U_{B} |\psi\rangle^{F_{t}} \otimes \langle B|\phi\rangle |B\rangle \end{split}$$

•

$$\begin{split} \|\psi^{i}-\psi^{i}\|_{l+\gamma} & = \sum_{k_{1}} V_{\emptyset,\emptyset}^{\to k_{1}} \otimes |\emptyset,k_{1}\rangle^{C} = \sum_{k_{1}} \mathbb{1}^{P_{t} \to t} \otimes \langle k_{1}|^{P_{c}} \otimes |\emptyset,k_{1}\rangle^{C} \\ \mathbb{V}_{2} &= \sum_{(k_{1},k_{2})} V_{\emptyset,k_{1}}^{\to k_{1}} \otimes |\{k_{1}\},k_{2}\rangle\langle\emptyset,k_{1}|^{C} = \sum_{k_{1},k_{2}} \mathbb{1} \otimes |\{k_{1}\},k_{2}\rangle\langle\emptyset,k_{1}|^{C} \\ \mathbb{V}_{3} &= \sum_{(k_{1},k_{2})} V_{\{k_{1}\},k_{2}}^{\to F} \otimes \langle\{k_{1}\},k_{2}| = \sum_{(k_{1},k_{2})} \mathbb{1}^{t \to F_{t}} \otimes |k_{1}\rangle^{F_{c}} \otimes \langle\{k_{1}\},k_{2}| \\ & |\psi\rangle^{P_{t}} \otimes |\phi\rangle^{P_{c}} \xrightarrow{V_{1}} |\psi\rangle^{t} \otimes (\langle A|\phi\rangle |\emptyset,A\rangle + \langle B|\phi\rangle |\emptyset,B\rangle) \\ & \xrightarrow{cU} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\},B\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\emptyset,B\rangle \\ & \xrightarrow{V_{2}} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\},B\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\{B\},A\rangle \\ & \xrightarrow{CU} U_{B}U_{A} |\psi\rangle^{F_{t}} \otimes \langle A|\phi\rangle |A\rangle + U_{A}U_{B} |\psi\rangle^{F_{t}} \otimes \langle B|\phi\rangle |B\rangle \end{split}$$

$$\begin{aligned} \|\psi^{i}-\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}\| \\ \|\psi^{i}-\psi^{i}\| \\ \|\psi^{i}\| \\ \|\psi$$

$$\begin{aligned} \|\psi^{i}-\psi^{i}\|_{l+\gamma} & = \sum_{k_{1}} V_{\emptyset,\emptyset}^{\to k_{1}} \otimes |\emptyset,k_{1}\rangle^{C} = \sum_{k_{1}} \mathbb{1}^{P_{t} \to t} \otimes \langle k_{1}|^{P_{c}} \otimes |\emptyset,k_{1}\rangle^{C} \\ \mathbb{V}_{2} &= \sum_{(k_{1},k_{2})} V_{\emptyset,k_{1}}^{\to k_{2}} \otimes |\{k_{1}\},k_{2}\rangle\langle\emptyset,k_{1}|^{C} = \sum_{k_{1},k_{2}} \mathbb{1} \otimes |\{k_{1}\},k_{2}\rangle\langle\emptyset,k_{1}|^{C} \\ \mathbb{V}_{3} &= \sum_{(k_{1},k_{2})} V_{\{k_{1}\},k_{2}}^{\to F_{c}} \otimes \langle\{k_{1}\},k_{2}| = \sum_{(k_{1},k_{2})} \mathbb{1}^{t \to F_{t}} \otimes |k_{1}\rangle^{F_{c}} \otimes \langle\{k_{1}\},k_{2}| \\ &|\psi\rangle^{P_{t}} \otimes |\phi\rangle^{P_{c}} \xrightarrow{V_{1}} |\psi\rangle^{t} \otimes (\langle A|\phi\rangle |\emptyset,A\rangle + \langle B|\phi\rangle |\emptyset,B\rangle) \\ &\stackrel{cU}{\to} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\},B\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\emptyset,B\rangle \\ &\stackrel{V_{2}}{\to} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\},B\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\{B\},A\rangle \\ &\stackrel{U_{3}}{\to} U_{B}U_{A} |\psi\rangle^{F_{t}} \otimes \langle A|\phi\rangle |A\rangle + U_{A}U_{B} |\psi\rangle^{F_{t}} \otimes \langle B|\phi\rangle |B\rangle \end{aligned}$$

$$\begin{split} \|\psi^{i}-\psi^{i}\|_{l+\gamma} & = \sum_{k_{1}} V_{\emptyset,\emptyset}^{\to k_{1}} \otimes |\emptyset,k_{1}\rangle^{C} = \sum_{k_{1}} \mathbb{1}^{P_{t} \to t} \otimes \langle k_{1}|^{P_{c}} \otimes |\emptyset,k_{1}\rangle^{C} \\ \mathbb{1} V_{2} &= \sum_{(k_{1},k_{2})} V_{\emptyset,k_{1}}^{\to k_{1}} \otimes |\{k_{1}\},k_{2}\rangle\langle\emptyset,k_{1}|^{C} = \sum_{k_{1},k_{2}} \mathbb{1} \otimes |\{k_{1}\},k_{2}\rangle\langle\emptyset,k_{1}|^{C} \\ \mathbb{1} V_{3} &= \sum_{(k_{1},k_{2})} V_{\{k_{1}\},k_{2}}^{\to F_{c}} \otimes \langle \{k_{1}\},k_{2}| = \sum_{(k_{1},k_{2})} \mathbb{1}^{t \to F_{t}} \otimes |k_{1}\rangle^{F_{c}} \otimes \langle \{k_{1}\},k_{2}| \\ &|\psi\rangle^{P_{t}} \otimes |\phi\rangle^{P_{c}} \xrightarrow{V_{1}} |\psi\rangle^{t} \otimes (\langle A|\phi\rangle |\emptyset,A\rangle + \langle B|\phi\rangle |\emptyset,B\rangle) \\ &\stackrel{cU}{\to} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\},B\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\emptyset,B\rangle \\ &\stackrel{V_{2}}{\to} U_{A} |\psi\rangle^{t} \otimes \langle A|\phi\rangle |\{A\},B\rangle + U_{B} |\psi\rangle^{t} \otimes \langle B|\phi\rangle |\{B\},A\rangle \\ &\stackrel{CU}{\to} U_{B}U_{A} |\psi\rangle^{F_{t}} \otimes \langle A|\phi\rangle |A\rangle + U_{A}U_{B} |\psi\rangle^{F_{t}} \otimes \langle B|\phi\rangle |B\rangle \end{split}$$