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Cause and Effect

What does it mean to say that X causes Y ?

Correlation 6= causation

Intervening on a cause changes the distribution of the effect

P (sun rises | rooster crows) = P (sun rises |we ate coq au vin for dinner)
P (rooster crows | sun rises) 6= P (rooster crows |we stop the sun rising)
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What does it mean to say that X causes Y ?

Correlation 6= causation

Intervening on a cause changes the distribution of the effect

P (sun rises | rooster crows) = P (sun rises |we ate coq au vin for dinner)
P (rooster crows | sun rises) 6= P (rooster crows |we stop the sun rising)

Causal (Bayesian) models: Framework to describe causal relations from observed correlations

J. Pearl, Causality (2000).
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Quantum Cause and Effect

How to define causal relations between quantum events?

What do we take to be quantum events?

Classically: Events: random variables; Interventions: stochastic maps

Quantumly: Events: quantum states; Interventions: quantum channels

ρA|B = ρA|B′ = ρA

ρB|A 6= ρB|A′
ρB|AC = TrC(ρBC|A) = B(TrC(ρA)) = ρB|A

ρC|AB = TrB(ρBC|A) = C(TrB(ρA)) = ρC|A

Causal structure defined by ability to influence or “signal” from one operation to another

Quantum causal models [Barrett, Lorenz, Oreshkov, 2019]
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Causal Structure of Quantum Circuits

Quantum circuits have a causal structure

U1

U2

U3

U4
U5

U6

Need to consider circuits with modifiable operations

A circuit location A can influence another B if there is there is a path from A to B
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Defining the Scenario

Consider causal structure in a computational scenario

Black-box “operations” (quantum channels)

A : L(HAI )→ L(HAO )

Consume N queries A1, . . . ,AN in some “computation”

May have all Ai ≡ A (N queries to A), but they could also be different operations

A. A. Abbott Causal structure of quantum information 7 / 33



Defining the Scenario

Consider causal structure in a computational scenario

Black-box “operations” (quantum channels)

A : L(HAI )→ L(HAO )

Consume N queries A1, . . . ,AN in some “computation”

May have all Ai ≡ A (N queries to A), but they could also be different operations

A. A. Abbott Causal structure of quantum information 7 / 33



Higher Order Operations (Quantum Supermaps)

Higher order operation: (A1, . . . ,AN ) 7→ W(A1, . . . ,AN ) : L(HP )→ L(HF )

Multilinear in its arguments

W(A1, . . . ,AN ) a quantum channel whenever A1, . . . ,AN are quantum channels
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Formalising Causal Order

Compatibility with causal order

W is compatible with A1 ≺ A2 ≺ · · · ≺ AN if, for all i < j, Aj cannot signal to Ai:

for all ρ,A1, . . . ,Ai−1,Ai+1, . . . ,Aj ,A′j , . . . ,AN .

Note: W can be consistent with several causal orders

A. A. Abbott Causal structure of quantum information 9 / 33



Quantum Combs

What is the most general way to combine A1, . . . ,AN compatible with A1 ≺ A2 ≺ · · · ≺ AN?

Theorem (Chiribella, D’Ariano, Perinotti (2009))

W is compatible with A1 ≺ A2 ≺ · · · ≺ AN if and only if it has the form:

This quantum circuit with N open slots is called a quantum comb

Alternatively: process operator, channel with memory, process tensor, . . .

Quantum circuits are the most general computation with a fixed causal structure.
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Formalising Quantum Combs

Higher order operations can be nicely formulated in the Choi picture

Choi-Jamio lkowski isomorphism

CP maps C : L(HX)→ L(HY ) are in a bijection with PSD operators C ∈ L(HX ⊗HY )

C = I ⊗ C(|1〉〉〈〈1|), where |1〉〉 =
∑
i

|i〉 ⊗ |i〉

TP condition: TrY [C] = 1
X

Inverse: C(ρ) = TrX [(ρT ⊗ 1)C] = ρ ∗ C

Higher order maps:

W ↔W ∈ L(⊗i(HA
I
i ⊗HAOi ))

Quantum combs: Choi operator W has nice additional structure

Can be characterised with semidefinite programming
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Beyond Fixed Causal Structures

Fundamental questions:

What are the physical limits of information processing?

Does nature allow us to process information in noncausal ways?

One idea: Quantum circuits with closed-timelike curves (CTCs) [Deutsch, 1991]:

... ...U
Nature “magically” finds a consistent fixed point solution

Compatible with general relativity

Computationally (too?) powerful (PCTC = BQPCTC = PSPACE) [Aaronson & Watrous, 2008]

Nonlinear, . . .

A. A. Abbott Quantum control of causal structure 13 / 33



Beyond Fixed Causal Structures

Fundamental questions:

What are the physical limits of information processing?

Does nature allow us to process information in noncausal ways?

One idea: Quantum circuits with closed-timelike curves (CTCs) [Deutsch, 1991]:

... ...U
Nature “magically” finds a consistent fixed point solution

Compatible with general relativity

Computationally (too?) powerful (PCTC = BQPCTC = PSPACE) [Aaronson & Watrous, 2008]

Nonlinear, . . .

A. A. Abbott Quantum control of causal structure 13 / 33



Quantum Causal Order

Quantum Causal Structure: Can we have intrinsically quantum causal relations?

For example, superposition of cause and effect relations?

Should be linear and well-behaved: quantum supermap (like quantum combs)

Quantum Switch (Chiribella, D’Ariano, Perinotti, Valiron [2009])

Use a quantum system to coherently control order that two quantum operations
(channels/unitaries) are applied.

UA, UB : two unknown unitaries

|ψ〉t: target system; |φ〉c: control system
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For example, superposition of cause and effect relations?

Should be linear and well-behaved: quantum supermap (like quantum combs)

Quantum Switch (Chiribella, D’Ariano, Perinotti, Valiron [2009])

Use a quantum system to coherently control order that two quantum operations
(channels/unitaries) are applied.

UA, UB : two unknown unitaries

|ψ〉t: target system; |φ〉c: control system

UBUA ⊗ |0〉〈0|c + UAUB ⊗ |1〉〈1|c
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The Quantum Switch

The Quantum Switch is a quantum supermap: (A,B) 7→ Wswitch(A,B)

Not a quantum comb: Wswitch 6= qWA≺B + (1− q)WB≺A

Causally nonseparable supermap

To simulate with a circuit, must use at least one channel twice

X

The Quantum Switch is physically meaningful

Several experimental realisations with quantum optics

Vienna, Brisbane, Shanghai, Concepción, . . .
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Application: Commuting/Anticommuting Unitaries

Commuting vs. Anticommuting Unitary Problem (Chiribella [2012])

Input: Unitaries UA, UB (oracle access)

Promise: UA and UB either:

Commute: [UA, UB ] = UAUB − UBUA = 0,
Anticommute: {UA, UB} = UAUB + UBUA = 0.

Problem: Determine which is the case.

The quantum switch solves the problem perfectly with one use each of UA, UB :

Recall: Wswitch : (UA, UB) 7→ UBUA ⊗ |0〉〈0|c + UAUB ⊗ |1〉〈1|c

|ψ〉t ⊗ 1√
2
(|0〉c + |1〉c) Wswitch−−−−→ 1√

2
(UBUA |ψ〉t ⊗ |0〉c + UAUB |ψ〉t ⊗ |1〉c)

= 1
2{UA, UB} |ψ〉

t ⊗ |+〉c − 1
2 [UA, UB ] |ψ〉t ⊗ |−〉c

Impossible with a quantum comb
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Quantum N-Switch

How powerful is quantum control?

First step: Generalise the quantum switch

Quantum N -Switch
The quantum N -switch is a supermap WN :

(U1, . . . , UN ) 7→
∑
π

Uπ(N) · · ·Uπ(1) ⊗ |π〉〈π|
c
,

where π is a permutation of (1, . . . , N).

Coherent control of all N ! orders of gates

If we initialise the control to |φ〉c = 1√
N !

∑
π |π〉c, we apply the gates in a superposition of all

possible orders:

|ψ〉t ⊗ |φ〉c → 1√
N !

∑
π

Uπ(N) · · ·Uπ(1) |ψ〉
t ⊗ |π〉c .
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Simulating the N-Switch

How much overhead would simulating this with a quantum comb require?

Naive simulation: N2 queries (N of each Ui)

Theorem (Facchini and Perdrix (2014))

Any circuit simulating WN requires at least N2 − o(n7/4+ε) queries to {U1, . . . , UN}.
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Fourier Promise Problem

Fourier Promise Problem (Araújo, Costa, Brukner [2014])

Input: Unitaries U1, . . . , UN (oracle access).

Promise: Let x = 0, . . . , N !− 1 be a labelling of permutations πx and

Πx = Uπx(N−1) · · ·Uπx(1)Uπx(0).

Then the unitaries satisfy

∀x, Πx = ωxyΠ0, (where ω = ei
2π
N! )

for some y ∈ {0, . . . , N !− 1}.

Problem: Find y.

Quantum N -Switch: Solves perfectly (N total queries)

A. A. Abbott Quantum control of causal structure 19 / 33



Quantum N-Switch: Discussion

What do we learn from the N -Switch?

There are physically meaningful computations beyond the circuit model

Provides O(N2) advantage in transforming unknown operations

How useful is the quantum N -switch?

Fourier Promise Problem: Proof of principle utility

Other variants: Hadamard promise problem, . . .

Potentially useful for fundamentally quantum problems:

Quantum metrology (parameter estimation), . . .

Not a general model of computation with quantum control!
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Towards a General Model

We can have more general “switch-like” computations

Transformations on target between unitaries

Allow a quantum memory between queries

Can we imagine using quantum control in more general ways?

In quantum switch, control is fixed initially: static control

How can we have a dynamical, adaptive quantum control structure?

Goal: A generalised model of computation incorporating quantum control

A. A. Abbott A general model of circuits with quantum control of causal structure 21 / 33
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Reminder of Scenario

Goal
A generalised model of computation incorporating quantum control:

A physically well-defined (linear) quantum supermap W
Composition of A1, . . . ,AN not necessarily in a well-defined, classical order

A subtle requirement:

At the end, every operation should have been applied exactly once

Necessary for W to be linear and well-defined
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Circuits with Classical Control of Causal Order

Simpler situation: quantum circuits with classical control of causal order

Dynamical control structure: determine at each step which operation to apply

1) Input to circuit: a state ρ ∈ L(HP )

2) Perform a quantum instrument {M→k1∅ }k1 . Apply Ak1 to the target subsystem of

M→k1∅ (ρ) ∈ L(Ht ⊗Hα)
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Quantum instruments (generalised quantum measurements)

A quantum instrument is a set {Ma}a of CP maps such that M =
∑
aMa is CPTP.

Obtain outcome a with probability Tr[Ma(ρ)] and state becomes Ma(ρ)/Tr[Ma(ρ)].
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Circuits with Classical Control Revisted

Problem: For quantum control, we don’t want to destroy coherence by measuring

Intermediate step: Reformulate classical control with explicit control system

“Classical” control register [[(k1, . . . , kn)]] := |(k1, . . . , kn)〉〈(k1, . . . , kn)|
Classically controlled operations:

M1 =
∑
k1
M→k1∅ ⊗ [[(k1)]]

M2 =
∑
k1,k2

M→k2{k1} ⊗Π(k1),k2

...
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From Classical to Quantum Control

Turning the classical into quantum control requires a few tweaks:

Quantum control system: |{k1, . . . , kn−1}, kn〉
kn: The operation to apply at slot n
{k1, . . . , kn−1}: History recording which operations have already been used
For simplicity: Vn, An isometries; all An of same dimension

Circuit evolves coherently, exploring causal structures in a quantum superposition

[Wechs, Dourdent, Abbott, Branciard (2021)]
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Circuits with Quantum Control of Causal Order

V1: |ψ〉P →
∑
k1

(V→k1∅,∅ |ψ〉)
tα ⊗ |∅, k1〉C

Quantum control of Ak1 : →
∑
k1

(Ak1 ⊗ 1α)(V→k1∅,∅ |ψ〉)
tα ⊗ |∅, k1〉C

V2: →
∑

(k1,k2)
V→k2∅,k1 (Ak1 ⊗ 1α)(V→k1∅,∅ |ψ〉)

tα ⊗ |{k1}, k2〉C

. . .

VN+1: →
(∑

(k1,...,kN ) V
→F
{k1,...,kN−1},kN (AkN ⊗ 1α) · · · (V→k1∅,∅ |ψ〉)

tα
)
⊗ |{1, . . . , N}, F 〉
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Beyond the Quantum Switch

The quantum N -switch can be represented as quantum circuit with quantum control of causal order

Can we do anything else with this model?

Yes! We can have quantum dynamical causal structure.

Before slot n+ 1 we apply

Vn+1 =
∑

Kn−1,kn,kn+1

V
→kn+1

Kn−1,kn
⊗ |Kn−1 ∪ {kn}, kn+1〉〈Kn−1, kn|

kn+1 can depend on outcome of previous operations

Examples that exploit this have very recently been devised

Computations making use of this are active research topic

[Wechs, Dourdent, Abbott, Branciard (2021)]

A. A. Abbott A general model of circuits with quantum control of causal structure 27 / 33



Beyond the Quantum Switch

The quantum N -switch can be represented as quantum circuit with quantum control of causal order

Can we do anything else with this model?

Yes! We can have quantum dynamical causal structure.

Before slot n+ 1 we apply

Vn+1 =
∑

Kn−1,kn,kn+1

V
→kn+1

Kn−1,kn
⊗ |Kn−1 ∪ {kn}, kn+1〉〈Kn−1, kn|

kn+1 can depend on outcome of previous operations

Examples that exploit this have very recently been devised

Computations making use of this are active research topic

[Wechs, Dourdent, Abbott, Branciard (2021)]

A. A. Abbott A general model of circuits with quantum control of causal structure 27 / 33



Discussion

What can we do with quantum circuits with quantum control of causal order (QC-QCs)?

Can still simulate with O(N2) queries

What types of problems can we solve “efficiently” with QC-QCs?

Have an SDP characterisation, formulating interesting families of QC-QCs difficult

Applications beyond computation?

Is this the most general physical model of computation?

How else could we use quantum control, or other effects?

Do other supermaps have physical meaning?
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Quantum Shannon Theory without Causal Order

Quantum Shannon theory: quantum states, channels, but classical, causal trajectories for
information carriers

What if we allow for superposition, or quantum control, of trajectories?

c

t

[Chiribella & Kristjánsson, Quantum Shannon theory with superpositions of trajectories (2019)]
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Causal Activation of Capacity

Recall (fully) depolarising channel:

N : ρ 7→ Tr[ρ]
1

d

N = N ◦N has zero capacity (classical and quantum)

Causal activation: W|+〉〈+|(N ,N ) has nonzero classical capacity

c

t

Similar results for quantum capacity with other channels

Meaning of these results still debated

[Salek, Ebler, Chiribella (2018)]
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Causal Structure of Quantum Supermaps

Higher order operations, a.k.a. quantum supermaps:

Quantum combs

Quantum circuits with quantum control (QC-QCs)

???
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Process Matrices

Quantum supermaps beyond QC-QCs exist

Process matrix framework: most general operations compatible with local causality, but
without any global causality constraint

Introduced independently to study quantum gravity

Beyond QC-QCs, not clear if they have a physical interpretation

[Oreshkov, Costa, Brukner (2012)]

Equivalent to quantum circuits with linear CTCs (`CTCs):

BQP`CTCs ⊆ PP
[Araújo, Guérin, Baumeler (2017)]
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Summary

Need new tools to analyse causal structure of quantum information processing

Quantum combs (higher order quantum maps)
Quantum causal models

By exploiting quantum control, can process information in an indefinite causal order

Quantum switch
Generalised circuit model incorporating quantum control
Provides some advantages in quantum information
Only beginning to understand its potential and limits

Fundamental questions

What are the limits of physical information processing?
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The Quantum Switch as a Supermap

The Quantum Switch is a quantum supermap: (A,B) 7→ Wswitch(A,B)

If A,B are quantum channels with Kraus operators {Ki}i, {Lj}j , then Wswitch(A,B) has
Kraus operators

Sij = LjKi ⊗ |0〉〈0|c +KiLj ⊗ |1〉〈1|c .

A(ρ) =
∑
iKiρK

†
i [Wswitch(A,B)](ρtc) =

∑
i,j Sijρ

tcS†ij
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Fourier Promise Problem Working

Quantum N -Switch: Solves perfectly (N total queries)

1) Initial state: 1√
N !

∑N !−1
x=0 |ψ〉

t ⊗ |x〉c

2) Apply N -switch: → 1√
N !

∑N !−1
x=0 Πx |ψ〉t ⊗ |x〉c

3) Apply QFT to control: → 1
N !

∑N !−1
x,s=0 ω

−xsΠx |ψ〉t ⊗ |s〉c =
∑N !−1
x,s=0 ω

x(y−s)Π0 |ψ〉t ⊗ |s〉c

4) Measure the control: p(s) = 1
(N !)2 ‖

∑N !−1
x=0 ωx(y−s)Π0 |ψ〉t ⊗ |s〉c‖2 = δs,y

With a quantum comb?

The simulating the switch requires Ω(N2) queries.

Other approaches: need to determine phase to accuracy 2π/N !

Rigorous error-robust analysis lacking thus far. . .
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Example: Quantum Switch as a QC-QC

V1 =
∑
k1
V→k1∅,∅ ⊗ |∅, k1〉C =

∑
k1
1
Pt→t ⊗ 〈k1|Pc ⊗ |∅, k1〉C

V2 =
∑

(k1,k2)
V→k2∅,k1 ⊗ |{k1}, k2〉〈∅, k1|

C
=
∑
k1,k2

1⊗ |{k1}, k2〉〈∅, k1|C

V3 =
∑

(k1,k2)
V→F{k1},k2 ⊗ 〈{k1}, k2| =

∑
(k1,k2)

1
t→Ft ⊗ |k1〉Fc ⊗ 〈{k1}, k2|

|ψ〉Pt ⊗ |φ〉Pc V1−→ |ψ〉t ⊗ (〈A|φ〉 |∅, A〉+ 〈B|φ〉 |∅, B〉)
cU−−→ UA |ψ〉t ⊗ 〈A|φ〉 |∅, A〉+ UB |ψ〉t ⊗ 〈B|φ〉 |∅, B〉
V2−→ UA |ψ〉t ⊗ 〈A|φ〉 |{A}, B〉+ UB |ψ〉t ⊗ 〈B|φ〉 |{B}, A〉
cU−−→ UBUA |ψ〉t ⊗ 〈A|φ〉 |{A}, B〉+ UAUB |ψ〉t ⊗ 〈B|φ〉 |{B}, A〉
V3−→ UBUA |ψ〉Ft ⊗ 〈A|φ〉 |A〉+ UAUB |ψ〉Ft ⊗ 〈B|φ〉 |B〉
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