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Quantum States Can’t be Copied

Park (1970); Dieks & Wootters-Zurek (1982)

What is 
uncloneability?

Aaronson (2009)
Quantum Copy-Protection 
and Quantum Money

Aaronson (2016) 
Qcrypt 2016 after-dinner 
speech 



What is uncloneability?

“Security for an encryption scheme can be defined in terms of a game”

What is security?

Why should you care?



Uncloneable Authenticity

Quantum Money
Wiesner (ca. 1969)
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Written in 1968
Published 1983



Wiesner’s conjugate coding
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• Can easily verify | ⟩𝑏𝑏 𝜃𝜃 if b, 𝜃𝜃 are known. 

• Intuitively: without knowledge of the encoding basis, no third 
party can create two quantum states that pass this verification 
with high probability.

Pick basis 𝜃𝜃 ∈ {0,1} . 
Pick bit 𝑏𝑏 ∈ {0,1}.
let 𝑏𝑏 𝜃𝜃 = 𝐻𝐻𝜃𝜃 𝑏𝑏

Given a single copy of | ⟩𝑏𝑏 𝜃𝜃 for random b,𝜃𝜃:

𝜽𝜽 𝒃𝒃 𝒃𝒃 𝜽𝜽

0 0 0
0 1 1
1 0 +
1 1 −
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©AAAS (1992)

For bit-strings 𝜃𝜃 = 𝜃𝜃1𝜃𝜃2 …𝜃𝜃𝑛𝑛 , 𝑏𝑏 = 𝑏𝑏1𝑏𝑏2 …𝑏𝑏𝑛𝑛, define
| ⟩𝑏𝑏 𝜃𝜃= | ⟩𝑏𝑏1 𝜃𝜃1 ⊗ | ⟩𝑏𝑏2 𝜃𝜃2 … ⊗ | ⟩𝑏𝑏𝑛𝑛 𝜃𝜃𝑛𝑛

A quantum banknote is | ⟩𝑏𝑏 𝜃𝜃 for random 𝑏𝑏,𝜃𝜃 ∈ {0,1}𝑛𝑛 :



Security of Wiesner’s quantum money

“attack”
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How does the difficulty of 
cloning quantum money scale 
with the number of qubits, 𝑛𝑛? 

Answer:

verify

verify



QUANTUM MONEY “REVIVAL”
Noise-tolerant (‘feasible with current technology’) quantum money

• Pastawski, Yao, Jiang, Lukin, Cirac (2012)

Quantum Money with classical verification
• Gavinsky (2012)

Public-key quantum money (can be verified by any user) 
• Farhi, Gosset, Hassidim, Lutomirski, and Shor (2012) 
• Aaronson and Christiano (2012)
• Zhandry (2017)
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Open Question: Public-key quantum money feasible with current or 
short-term technology (“NISQ”-era public-key quantum money)?
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Uncloneable Information

Example 1: Certified Deletion Broadbent, Islam (2020)



Bob decides
• return the closed safe before the 

combination is revealed as a proof that 
message was not read

XOR
• Keep the safe and when the combination 

is available, open & read the contents

A “physical” type of encryption:

Can we achieve this in a digital world?

Alice inserts a message 
into a safe, closes it and 
sends it to Bob. 

Certified Deletion



Can we achieve this in a digital world?
No! 
Proof by contradiction… 

Bob can :
• Convince Alice that he did not read the message(use copy #1)
AND

• Using combination, open & read the content (use copy #2)



Quantum mechanics enables the best of the 
physical and digital worlds: 

• Encoding (encrypting) a classical message 
into a quantum state

• Bob can prove that he deleted the message 
by sending Alice a classical string

Quantum Encryption with 
Certified Deletion
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𝜽𝜽 0 1 0 1

𝑟𝑟 0 1 1 0

𝑟𝑟 𝜃𝜃 0 − 1 +
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0 1

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 1 0

Basic prepare-and-measure certified deletion scheme by example:

𝜃𝜃 random

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: substring of 𝑟𝑟 where 𝜃𝜃 = 0

𝑟𝑟 random

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: substring of 𝑟𝑟 where 𝜃𝜃 = 1

• To encrypt 𝑚𝑚 ∈ 0,1 2, send 𝑟𝑟 𝜃𝜃 ,𝑚𝑚⊕ 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• To delete the message, measure all qubits in diagonal basis to get 𝑦𝑦 =∗ 1 ∗ 0 .
• To verify the deletion, check that the 𝜃𝜃 = 1 positions of 𝑑𝑑 equal 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

• To decrypt using key 𝜃𝜃, measure qubits in position where 𝜃𝜃 = 0, to get 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, then use  
𝑚𝑚⊕ 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to compute 𝑚𝑚.

Wiesner encoding



Proof intuition

As the probability of predicting 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 increases 
(i.e. adversary produces convincing “proof of 
deletion”) 

The probability of guessing 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 decreases 
(i.e. adversary is unable to decrypt, even given 
the key) 
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𝜽𝜽 0 1 0 1

𝑟𝑟 0 1 1 0

𝑟𝑟 𝜃𝜃 0 − 1 +
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0 1

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 1 0

𝐻𝐻 𝑋𝑋 + 𝐻𝐻 𝑍𝑍 ≥ log
1
𝑐𝑐

Maassen & Uffink, 1988



Certified Deletion Security Game 

𝑚𝑚𝑚𝑚𝑚𝑚 ∈ {0,1}𝑛𝑛

Key θ, 𝑟𝑟
𝑏𝑏 ∈𝑅𝑅 {0,1}

𝑏𝑏 = 0:𝑚𝑚 = 0𝑛𝑛
𝑏𝑏 = 1:𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦

Accept ⇔ 𝑦𝑦 is 
consistent with 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(looking only at 
positions where 𝜃𝜃 = 1)

𝑏𝑏𝑏
𝜃𝜃

win ⇔ 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑏𝑏′ = 𝑏𝑏)

𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟𝑦𝑦 𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟𝑦𝑦

| ⟩𝑟𝑟 𝜃𝜃 , 𝑚𝑚⊕ 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Certified Deletion: 
𝑃𝑃 𝑤𝑤𝑤𝑤𝑛𝑛 ≤ 1

2
+ 𝑛𝑛𝐴𝐴𝑚𝑚𝑛𝑛(𝜆𝜆).

{
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1. Consider Entanglement-based game 

2. Use Entropic uncertainty relation (Tomamichel & Renner 2011):
𝑋𝑋: outcome if Alice measures n qubits in computational basis
𝑍𝑍: outcome if Alice measures n qubits in diagonal basis
𝑍𝑍𝑏:outcome of Bob who measures n qubits in diagonal basis

𝐻𝐻𝑐𝑐𝑑𝑑𝑛𝑛𝜖𝜖 𝑋𝑋 𝐸𝐸 + 𝐻𝐻𝑐𝑐𝑑𝑑𝑚𝑚𝜖𝜖 𝑍𝑍 𝑍𝑍′ ≥ 𝑛𝑛,

𝐻𝐻𝑐𝑐𝑑𝑑𝑛𝑛𝜖𝜖 𝑋𝑋 𝐸𝐸 : average prob. that Eve guesses 𝑋𝑋 correctly
𝐻𝐻𝑐𝑐𝑑𝑑𝑚𝑚𝜖𝜖 𝑍𝑍 𝑍𝑍′ : # of bits that are required to reconstruct 𝑍𝑍 from 𝑍𝑍′.

By giving an upper bound on the max-entropy, we obtain a lower 
bound on the min-entropy. 

Refinements of the basic protocol:
-reduce and make uniform E’s advantage: Use privacy amplification (2-universal hash 
function) to make 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 exponentially close to uniform from E’s point of view:

𝑃𝑃 𝑤𝑤𝑤𝑤𝑛𝑛 ≤ 1
2

+ 𝑛𝑛𝐴𝐴𝑚𝑚𝑛𝑛(𝜆𝜆).
-noise tolerance: Accept 𝑦𝑦 if less than 𝑘𝑘𝑘𝑘 bits are wrong; use error correction.

Proof Outline

Kundu, Tan (2020) : Composably secure device-independent encryption with 
certified deletion



Uncloneable Information

Example 2: Uncloneable Encryption
Gottesman (2002)
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When encryption is classical:

Classical ciphertexts can be copied, hence it is 
always possible for the adversary and the 
honest party to perfectly decrypt, given 𝑘𝑘.
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Uncloneable Encryption Security Game

Optimal Security:

Wiesner-encoding based scheme (in the Quantum Random Oracle Model (QROM):
[Broadbent, Lord 2020] 
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To encrypt 𝑚𝑚 ∈ {0,1}𝑛𝑛 ,
Prepare | ⟩𝑏𝑏 𝜃𝜃 for random
𝑏𝑏,𝜃𝜃 ∈ {0,1}𝑛𝑛

| ⟩𝑏𝑏 𝜃𝜃 , 𝑚𝑚⊕𝑏𝑏

Uncloneable Encryption Scheme + Security

How well can Bob 
and Charlie 
simultaneously
guess m? 
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How well can Bob and 
Charlie simultaneously
guess b?

𝜃𝜃

𝜃𝜃

𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴
A B C

Measures qubits in a random basis 
𝜃𝜃 ∈ {0,1}𝑛𝑛 to obtain b.

Optimal winning probability: 

Idea: amplify this using a QROM. 



Open Questions: 
• Security for uncloneable encryption without the QROM.
• Show security for a indistinguishability-based definition

• Instead of asking that Bob and Charlie simultaneously 
guess m (given the key) ask that they not be able to both
distinguish an encryption of m from an encryption of a 
fixed message.

• Solve the “Uncloneable bit” problem:

Find a scheme where 

𝑏𝑏1

𝑏𝑏2

𝜓𝜓 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑘𝑘 𝑏𝑏
𝑏𝑏 ∈𝑅𝑅 {0,1}
𝑘𝑘 ∈𝑅𝑅 0,1 𝑛𝑛

Pr 𝑏𝑏1 = 𝑏𝑏2 = 𝑏𝑏 →
1
2 𝑎𝑎𝑚𝑚 𝑛𝑛 → ∞



Uncloneable Functionality

Copy-protected Software
Aaronson (2009)



What is quantum copy protection?

𝑓𝑓

𝑓𝑓(𝑥𝑥)
𝑥𝑥



What is quantum copy protection?

“Cannot 
simultaneously 

evaluate 𝑓𝑓”

𝑓𝑓



Quantum software is reusable

𝑓𝑓𝑐𝑐(𝑥𝑥)

𝑥𝑥

⊕ 𝑓𝑓𝑐𝑐(𝑥𝑥)0

⋅

𝜂𝜂-correctness implies output program is O(𝜂𝜂)-close to original program

to a certain extent



Limitations of Quantum Copy-Protection

Learnable Functions  
• Cannot be copy-protected

Perfectly correct (𝜼𝜼 = 𝟎𝟎)
• Cannot be secure against unbounded adversaries



Point Functions

*results hold for a more general class of functions called compute-and-compare 
(Colandangelo, Majenz, Poremba 2020)   



What is quantum copy protection?

𝑓𝑓𝑐𝑐

𝑓𝑓𝑐𝑐(𝑥𝑥)
𝑥𝑥

Pr 𝑥𝑥 = 𝐴𝐴 = 1
2

Pr 𝑥𝑥 = 𝐴𝐴𝑏 = 1
2(2𝑛𝑛−1)

Average Correctness: 
Up to some error term 𝜂𝜂, outcome 
is correct in expectation over 
choice of 𝑥𝑥.



What is quantum copy protection?

What is 𝑓𝑓𝑐𝑐 𝑥𝑥1 ?

What is 𝑓𝑓𝑐𝑐(𝑥𝑥2)?

0

1
𝑓𝑓𝑐𝑐

Coladangelo, Majenz and Poremba (2020)



What is copy protection?

𝑤𝑤𝑤𝑤𝑛𝑛 ⇔ Alice outputs 𝑓𝑓𝑐𝑐 𝑥𝑥1 AND Bob outputs 𝑓𝑓𝑐𝑐 𝑥𝑥2

ϵ − security: Pr 𝑤𝑤𝑤𝑤𝑛𝑛 ≤
1
2 + 𝜖𝜖

Pr 𝑥𝑥𝑑𝑑 = 𝐴𝐴 = 1
2

Pr 𝑥𝑥𝑑𝑑 = 𝐴𝐴𝑏 = 1
2(2𝑛𝑛−1)

Challenge Distribution

*can be generalized to other functions and challenge distributions



Results on Quantum Copy Protection

Aaronson 2009: 
• All functions (not learnable)
• Assumes a quantum oracle

Aaronson, Liu, Liu, Zhandry, Zhang 2020:
• All functions (not learnable)
• Assumes a classical oracle

Coladangelo, Majenz, Poremba 2020: 
• Point functions
• Assumes a quantum random oracle

Broadbent, Jeffery, Lord, Podder, Sundaram 2021: 
• Point Functions
• Restricted Class of Adversaries

• “Honest-Malicious”
• No other assumptions



Secure Software Leasing

You may use 
my software for 

one week

Theorem: Honest-Malicious 
copy-protection implies SSL 



Secure Software Leasing
Ananth and La Placa (2020): 
• impossibility of SSL in general
• Construction of SSL for point functions, against 

honest evaluators assuming:
• quantum-secure subspace obfuscators
• a common reference string,
• difficulty of Learning With Errors (LWE) 

Kitagawa, Nishimaki, and Yamakawa (2020):
• SSL against honest evaluators for point functions 

(and more)
• Assuming LWE (only)

Coladangelo, Majenz and Poremba  (2020): 
• SSL for point functions, assuming:

• Quantum Random Oracle

Broadbent, Jeffery, Lord, Podder,Sundaram (2021):
• SSL for point functions, average correctness

• no assumptions 



Achieving Honest-Malicious Copy-Protection

Quantum Total 
Authentication

Honest-Malicious,
Avg Correct

Copy-protected 
Point Functions

Secure 
Software 

Leasing of
Point Functions,

Avg Correct



Quantum Message Authentication

𝑚𝑚



Quantum Message Authentication

𝑚𝑚 �𝑚𝑚
Fake 
news!



Quantum Message Authentication

𝑚𝑚 𝑚𝑚



Quantum Total Authentication

𝑚𝑚

nothing to 
do with 𝑚𝑚
or with 𝑘𝑘

Garg, Yuen, and Zhandry (2017)



Quantum Total Authentication

Total authentication is realized by 2-designs (Alagic and Majenz 2017) , 
and the strong trap code (Dulek, Speelman 2018).



Copy Protection from Quantum Total Authentication

Point function 𝑓𝑓𝑐𝑐: {0,1 }𝑛𝑛 → {0,1}, 𝑓𝑓𝑐𝑐 𝑞𝑞 = 1 ⇔ 𝐴𝐴 = 𝑞𝑞
Let Auth𝑘𝑘 , Verf𝑘𝑘 be 𝜖𝜖- secure Quantum Total Authentication Scheme
Idea: Point function on point 𝐴𝐴 ↔ Auth𝑐𝑐 and  Verf𝑐𝑐 on fixed state 𝜓𝜓



Quantum 
Copy-
Protection
Open 
Problems

1. Standard correctness for copy protection
without assumptions?

2. Security for copy protection without 
assumptions, against two malicious 
evaluators? 

3. Unconditional SSL for functions beyond 
compute-and-compare? 

4. NISQ-ready Quantum Copy-Protection?
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