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What is uncloneability?

What Is security?

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 270-299 (1984)
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"Security for an encryption scheme can be defined in terms of a game”

Why should you care?



Uncloneable Authenticity

Quantum Money

Wiesner (ca. 1969)



Submitted to IEEE, Information Theory

This paper treats a class of codes made possible by
restrictions on measurement related to the uncertainty

principal. Two concrete examples and some general

results are given. .

Written in 1968 i
Conjugate Coding

Published 1983

Stephen Wiesner

* columbia University, New York, N.Y¥.
Department of Physics

Thé:EEEEg}ainty pri%EE%EE:;mpcses restrictions on the

capacity of certain types of communication channels. This

- paper will show that in compensation this "guantum noise'",

guantum mechanics allows us(novel forms of coding yithout

analogue in communication channels adequately described by -

classieal physicé.

* Research éupported in part by the National Science Foundation.




Wiesner’s conjugate coding
rickbasiso € (0,1 . [N

Pick bit b € {0,1}.

0 0

let |b)g = HY|b)
0 1 |1)
1 0 |+)
1 1 |—)

Given a single copy of |b)g for random b, 9:

 Can easily verify |b)g if b, 8 are known.

* Intuitively: without knowledge of the encoding basis, no third
party can create two quantum states that pass this verification
with high probability.




For bit-strings 8 = 6,0, ...0,,,b = b1 b, ... by, define
|bYo=|b1)e, @ |b2)g, - & |bn)e,

A quantum banknote is |b)g for random b, 8 € {0,1}" :

A quantum banknote, containing particles in a secret set
of quantum states, cannot be copied by counterfeiters, who
would disturb the particles by attempting to observe them.

©OAAAS (1992)



Security of Wiesner’s guantum money

“attack”

, -**,”:‘1 @J

How does the difficulty of
cloning quantum money scale

) ] Optimal counterfeiting attacks and generalizations for
with the number of qubits, n? Wiesner’s quantum money

Abel Molina,* Thomas Vidick,! and John Watrous*

Feb 20,2012
Answer: S

Abstract

We present an analysis of Wiesner's quantum money scheme, as well as some natural gen-

eralizations of it, based on semidefinite programming. For Wiesner's original scheme, it is

n determined that the optimal probability for a counterfeiter to create two copies of a bank note

from one, where both copies pass the bank's test for validity, is (3/4)" for n being the number

of qubits used for each note. Generalizations in which other ensembles of states are substituted

for the one considered by Wiesner are also discussed, including a scheme recently proposed by

Pastawski, Yao, Jiang, Lukin, and Cirac, as well as schemes based on higher dimensional quan-

tum systems. In addition, we introduce a variant of Wiesner’s quantum money in which the

verification protocol for bank notes involves only classical communication with the bank. We

show that the optimal probability with which a counterfeiter can succeed in two independent

verification attempts, given access to a single valid n-qubit bank note, is (3/4 + \,-’E/S}”_ We
also analyze extensions of this variant to higher-dimensional schemes. 8




QUANTUM MONEY “REVIVAL’

Noise-tolerant (‘feasible with current technology’) quantum money
« Pastawski, Yao, Jiang, Lukin, Cirac (2012)

Quantum Money with classical verification
« Gavinsky (2012)

Public-key quantum money (can be verified by any user)
* Farhi, Gosset, Hassidim, Lutomirski, and Shor (2012)

« Aaronson and Christiano (2012)
« Zhandry (2017)

Open Question: Public-key quantum money feasible with current or

short-term technology ("NISQ"-era public-key quantum money)?
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Uncloneable Information

Example 1. Certified Deletion sroadbent. 1stam oz0



Certified Deletion

A “physical” type of encryption:

Alice inserts a message
into a safe, closes it and
sends it to Bob.

" @D
Bob decides

» return the closed safe before the
combination is revealed as a proof that
message was not read

XOR

» Keep the safe and when the combination

Is available, open & read the contents

Can we achieve this in a digital world?




Can we achieve this in a digital world?
[\ e}

Proof by contradiction..

! ! Encodey (msg) Encodey, (msg) .
>
hd Encodey (msg)

Bob can:
« Convince Alice that he did not read the message(use copy #1)
AND
« Using combination, open & read the content (use copy #2)




Quantum Encryption with

Certified Deletion

Quantum mechanics enables the best of the
physmal and digital worlds:
Encoding (encrypting) a classical message
into a quantum state
« Bob can prove that he deleted the message
by sending Alice a classical string




Basic prepare-and-measure certified deletion scheme by example:

r random
Wiesner encoding |r)9 |O) |—) |1) |+)
Teomp: Substring of r where 6 = 0 Tcomp 0 1
Tgiag: Substring of r where 6 = 1 Tdiag 1 0

« Toencryptm € {0,1}?, send |r)g, m D Tcomp

* To delete the message, measure all qubits in diagonal basistogety =x1 % 0.
* To verify the deletion, check that the 6 = 1 positions of d equal 74.

* To decrypt using key 6, measure qubits in position where 6 = 0, to get 1,4y, then use
m @ 1omp to compute m. 15



Proof intuition

T 0 1 1 0

7)o 0) |-) 1) |+)

Teomp 0 1

rdiag 1 0

As the probability of predicting 74;,, INCreases

(Le. adversary produces convincing “proof of

deletion”) 1
HX)+HZ) > logz

The probability of guessing 7, decreases

(Le. adversary Is unable to decrypt, even given
the key)

Maassen & Uffink, 1988 16



Certified Deletion Security Game

Accept © yis
consistent with Tdiag
(looking only at

O positions where § = 1)

win & Accept AND (b' = b)

0

 ———
memory ' memory

»
»

Certified Deletion:
P(win) <3+ negl(d).



Proof Outlineg

1. Consider Entanglement-based game

Measure .
A system in 0 Accept< yin 9 Use Entropic uncertainty relation (Tomamichel & Renner 2011):
. 6 positions where . . e . .
basis — r - 0= 1is X: outcome if Alice measures n qubits in computational basis
. . consistent with ~ Z: outcome if Alice measures n qubits in diagonal basis
' y Tdiag Z':outcome of Bob who measures n qubits in diagonal basis
A P )
ABE He (X |E)+ Hiux(Z 1 Z') = n,
® ' ¢
. ’ ( H:..(X | E) :average prob. that Eve guesses X correctly
€ !
G- . HS . (Z | Z"): # of bits that are required to reconstruct Z from Z'.
B system in
diagonal basis
Y By giving an upper bound on the max-entropy, we obtain a lower

bound on the min-entropy.

Refinements of the basic protocol:
-reduce and make uniform E’s advantage: Use privacy amplification (2-universal hash
function) to make 14, exponentially close to uniform from E’s point of view:

. 1
P(win) < >+ negl(d).
-noise tolerance: Accept y if less than ké bits are wrong; use error correction.

Kundu, Tan (2020) : Composably secure device-independent encryption \xnth
certified deletion



Uncloneable Information

Example 2: Uncloneable Encryption

Gottesman (2002)



When encryption is classical:

Classical ciphertexts can be copied, hence it is
always possible for the adversary and the
honest party to perfectly decrypt, given k.

v

v



Uncloneable Encryption Security Game

£

m Eg {0, 1}n |¢> = Enci(m) N '
ke {0, 10 - |
— My
“ Optimal Security: .

Pr(mi = ms =m) < 5= + negl(k)

/\

Wiesner-encoding based scheme (in the Quantum Random Oracle Model (QROM):
[Broadbent, Lord 2020]

Pr(m; = ma = m) < 95~ + negl(k)

21



Uncloneable Encryption Scheme + Security

®
hd

To encryptm € {0,1}",
Prepare |b)g for random
b,6 € {0,1}"

/ HWw” n Bob

|b)91m®b

22



Measures qubits in a remdom basis

9 € {0,1}" to obtain b, How well can Bob and
Charlie simultaneously
guess b?

PABC

New Journal of Physics

The open access journal for physics

A monogamy-of-entanglement game with
applications to device-independent

1
quantum cryptography Optimal winning probability: (2 T 2

) n
Marco Tomamichel'?, Serge Fehr*?, Jedrzej Kaniewski'
and Stephanie Wehner'

! Centre for Quantum Technologies (CQT), National University of Singapore, > 1 2 n

Sinqupore °

2 Centrum Wiskunde and lnformaucd (CWI), Amsterdam, The Netherlands

E-mail: cqtmarco@nus.edu.sg and serge.fehr@cwi.nl Idea: amplify this using a QROM. 23

New Journal of Phvsics 15 (2013) 103002 (24pp)

|H

N




Open Questions:

« Security for uncloneable encryption without the QROM.

« Show security for a indistinguishability-based definition

« Instead of asking that Bob and Charlie simultaneously

guess m(given the key) ask that they not be able to both
distinguish an encryption of /m from an encryption of a
fixed message.

« Solve the "Uncloneable bit" problem:

®

9
“ ) = Ency.(b)_ ' / .

b ez {0,1}
k eq (0,1)" \ ' ——— b,

Find a scheme where

Pr(b1=b2=b)—>5 asn — oo



Uncloneable Functionality

Copy-protected Software

Aaronson (2009)



What is quantum copy protection?




What is quantum copy protection?

—
g
"Cannot
simultaneously

; evaluate f"

ﬁ‘A




Quantum SOft\X/are iS reusab[etoacertainextent

n-correctness implies output program is 0(n)-close to original program



Limitations of Quantum Copy-Protection

o an

Learnable Functions
« Cannot be copy-protected

Perfectly correct(n = 0)
« Cannot be secure against unbounded adversaries



Point Functions

fp+10,1}" —{0,1}

{0,1}"™:

0000
0001
0010
0011

0100 =0
0101
D 0110

0111 1

1111

“results hold for a more general class of functions called compute-and-compare
(Colandangelo, Majenz, Poremba 2020)



What is quantum copy protection?

Pr[x = p] == Average Correctness:
2 Up to some error term n, outcome
/ 1 ' ' i
Pr[x = p'] = TeEEn IS correct in expectation over

choice of x.



What is quantum copy protection?

)
What is £, ﬁ/_]
\_
—
M

A[ Whatis f,(x2)?

Coladangelo, Majenz and Poremba (2020)



What is copy protection?

| What is f,(x1)? \
o o)

What is f,(x2)?

win < Alice outputs f,,(x;) AND Bob outputs f,(x;)

' 1
Prix; =p'] = 2(2"—1) € — security: Pr(win) < > + €

‘can be generalized to other functions and challenge distributions



Results on Quantum Copy Protection

Aaronson 2009:
e All functions (not learnable)
« Assumes a quantum oracle

Aaronson, Liu, Liu, Zhandry, Zhang 2020:
e All functions (not learnable)
« Assumes a classical oracle

Coladangelo, Majenz, Poremba 2020:
» Point functions
* Assumes a quantum random oracle

Broadbent, Jeffery, Lord, Podder, Sundaram 2021.

=  Point Functions
n EZ * Restricted Class of Adversaries
E « "Honest-Malicious”
AA

* No other assumptions



Secure Software Leasing

e
You may use
my software for
one week




Secure Software Leasing

Ananth and La Placa (2020):
« impossibility of SSL in general
« Construction of SSL for point functions, against
honest evaluators assuming:
¢ quantum-secure subspace obfuscators
« a common reference string,
« difficulty of Learning With Errors (LWE)

Kitagawa, Nishimaki, and Yamakawa (2020):
« SSL against honest evaluators for point functions
(and more)
* Assuming LWE (only)

Coladangelo, Majenz and Poremba (2020):
« SSL for point functions, assuming:
« Quantum Random Oracle

Broadbent, Jeffery, Lord, Podder,Sundaram (2021):
« SSL for point functions, average correctness
e NO assumptions



Achieving Honest-Malicious Copy-Protection

Quantum Total
Authentication

—r
LA
an

@onest—MaliciouB
Avg Correct
Copy-protected

Point Functions
=

B

-~

4 =
Secure
Software

Leasing of

Point Functions,

“/

Avg Correct

o




Quantum Message Authentication




Quantum Message Authentication

news!




Quantum Message Authentication




Quantum Total Authentication

e nothing to
.?QX’.. do with m
'«:‘ or with k

Garg, Yuen, and Zhandry (2017)



N aaSSESSS—S—
Quantum Total Authentication

E, |kXk By k)|
[k || i kX ‘i ® Correctness:
M — Authy Ver), —iM i i
1 ¢ o Very o Authy(p) = p @ [AXA
/ 7 :

® Ver, = Ver, cond. on accept.

e ‘. ® Security:
By [k)K] “ || iEklk)(k‘i Real and ideal outputs are
M — Authe Ver, —IM | e-close in trace distance:
- | Toid
r Pk | | d
Sz v 77 Elk)k| @ pic =e E[k)k| @ pi

Figure: An ideal adversary, conditioned on acceptance.

Total authentication is realized by 2-designs (Alagic and Majenz 2017),

and the strong trap code (Dulek, Speelman 2018).




Copy Protection from Quantum Total Authentication

Point function f,: {0,1}* - {0,1},f,(q) =1 p=q
Let Authy, Verf,, be e- secure Quantum Total Authentication Scheme
Idea: Point function on point p < Auth,, and Verf, on fixed state [)

On input of £, : {0,1}" — {0,1}: Correctness
s ® By correctness of the authentication scheme:
1. Output Auth, (|10 7]).
Pr[CP.Eval(CP.Protect(f,). p) = 1] =1
CP.Eval ® By properties of the authentication scheme:

On input of o and g: E Pr[CP.Eval(CP.Protect(f,). ¢) = 0] > 1 — 2¢
q

1. Compute Verf,(0o).
® Note: We achieve correctness averaged over all
2. Output 1 if and only if the inputs, not necessarily for all inputs.

verification accepts.




Quantum

Copy-
Protection

Open
Problems

Standard correctness for copy protection
without assumptions?

Security for copy protection without
assumptions, against two malicious
evaluators?

Unconditional SSL for functions beyond
compute-and-compare?

NISQ-ready Quantum Copy-Protection?
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