
Quantum error correction and fault-tolerance

May 31, 2021

Online material:

• John Preskill’s course at Caltech

• Dan Browne’s course at UCL on “Topological Codes and Computation”

• Daniel Gottesman https://arxiv.org/abs/0904.2557

1 Lecture 1

Outline of this lecture:

• general motivation,

• classical error correction and fault-tolerance,

• an example: Shor’s 9 qubit code,

• correcting arbitrary errors.

1.1 General motivation

A main theme in quantum information science is the protection of quantum information. This is
of course extremely relevant in the context of quantum cryptography when we want to prevent an
adversary to access some information. Quite often, the adversary will be modeled as “the rest of
the universe”, or the “environment”, which is exactly the same setup as when one wants to protect
quantum information for communication (quantum internet), storage (quantum memories) and
more crucially for computation. If quantum information decoheres during the computation or if
every gate of the circuit is a little bit noisy, it’s not clear at all how to perform a long calculation
and get a meaningful result. For instance, if every gate has fidelity 99%, then the relevant quantum
information is gone after about a hundred gates. Running interesting algorithms such as Shor’s
require much more gates than that. What’s the solution? Quantum error correction!

In fact, and quite amazingly, it is possible to develop error correction and fault-tolerant tech-
niques for quantum information. This is far from obvious since the quantum errors seem to belong
to a continuum, much like what happens for analog computing, which was abandoned pretty
much for this reason. The key difference is that measuring part of the system will collapse the

1

https://arxiv.org/abs/0904.2557

error onto a finite, discrete set, and it will be sufficient to be able to correct errors from that set. As
we will see, quantum error correction is possible in principle, but remains quite costly. In theory,
one can use quantum error correction and quantum fault-tolerance to perform arbitrarily long
quantum computations with reasonable (polylogarithmic in the number of gates) overhead (if the
qubits and gates are good enough): this is the threshold theorem.

Theorem 1 (Aharonov, Ben-Or ’97). Provided that the noise level is below some constant threshold,
a logical circuit using m qubits and containing T gates can replaced by a fault-tolerant circuit using
O(m polylog(mT)) qubits.

In practice, however, the overhead is quite large and finding better techniques is a major open
problem is we want to build large-scale universal quantum computers. For instance, breaking
cryptographic size RSA key requires a few thousands ideal qubits, but between 106 and 109 phys-
ical (good enough) qubits. This is because qubits and quantum gates are much more noisy than
classical bits and gates.

The NISQ era: computing without error correction. In fact, today, quantum error correc-
tion has barely been experimentally implemented. Some recent experiments have shown that a
protected qubit can store information longer than unprotected ones, but only for restricted noise
models. Because of the lack of experimentally available quantum error correcting schemes, a lot of
the current research tries to study noisy intermediate scale quantum (NISQ) systems, i.e. systems
of about 50 to 100 qubits, without any error correction mechanism. In this setup, one cannot imple-
ment Shor and it’s interesting to understand whether this kind of machines can do anything useful
better than a classical computer (say, for solving approximately optimization problems). This is
related to the challenge of quantum supremacy (demonstrated by Google in Nov. 2019) which aims
at demonstrating a task for which a quantum machine is provably much faster than any classical
computer. Usually, the tasks for which we can prove this kind of advantage are pretty useless in
practice.

In this course, however, we are optimistic and assume that experimentalists will manage to
improve qubits as well as quantum gates, and will be able to individually control a large number
of qubits. If this is the case, then they will be able to implement quantum error correction and fault
tolerance techniques, which will allow them to perform arbitrary long computations. The main
condition is that the noise level is below some constant threshold, which is around 0.1 − 1%, and
that they can control a large number of qubits without increasing the noise level.

A number of challenges faces us:

• large entangled states are fragile: a single qubit decohering or leaking out kills the whole
superposition. For instance, if you start with a cat state

1√
2
∣0⟩∣Alive⟩ + 1√

2
∣1⟩∣Dead⟩

and lose the first qubit (i.e. partial trace), then the remaining state is

1
2
∣Alive⟩⟨Alive∣ + 1

2
∣Dead⟩⟨Dead∣,

which corresponds to a classical mixture of Alive and dead.

2

• applying noisy gates just increases the total noise: errors pile up. A similar problem was
present in the 50’s for classical computing and Von Neumann developed a theory of fault-
tolerant computation (that very much inspired the quantum version!). Fortunately, transis-
tors quickly became so good that this theory became essentially pointless.

• as already mentioned, the possible errors seem to form a continuum in the quantum case.
How do you deal with that?

• the no-cloning theorem says that an operation that does ∣ψ⟩ → ∣ψ⟩∣ψ⟩ is not unitary and
therefore forbidden. How do you protect quantum information without the ability to copy
it, as you would do in the classical case (using the repetition code, say)?

• it is not possible to simply measure the output state to determine what it is since measuring
the state will disturb it, and collapse it on a basis element.

1.2 Classical error correction and fault-tolerance

Before discussing quantum error correction, let’s discuss classical error correction first. A natural
classical noise model is the binary symmetric channel, corresponding to a channel from Alice to Bob
(or Alice at time t = 0 to Alice at time t = 1) where each bit is independently flipped with probability
p ∈ [0, 1]. The simplest solution to protect information is to add redundancy, for instance by
repeating any single bit three times and decoding1 by taking a majority vote:

• encoding: 0 → 000 =∶ 0̄, 1 → 111 =∶ 1̄. Here, 0̄ and 1̄ form a basis for the logical bit, while 000
and 111 refer to physical bits.

• channel: each bit is flipped independently with probability p,

• decoding: majority vote: {000, 100, 010, 001} → 0̄,{111, 011, 101, 110} → 1̄.

This scheme produces the correct result if the channel flipped 0 or 1 bit (and detects that an error
occurred if 1 or 2 errors occurred). The error probability drops from p for the physical bit to
1− (1− p)3 − 3p(1− p)2 = 1− 3p2 + 2p3 for the logical bit. This reduces the error rate provided that
p < 1

2 . If p = 1
2 , then the channel cannot transmit any information, and if p > 1

2 , one should simply
flip the bit to recover the case p < 1

2 .
This coding strategy protects against bit flips, but is quite inefficient. Much better schemes

exist, but this is a good starting point to discuss quantum coding.

Classical fault-tolerance theorem. In the scheme above, we assumed that the encoding and
decoding could be implemented perfectly. In other words, that they are noiseless. While this is
a reasonable assumption today, it wasn’t the case in the early days of computing with vacuum
tubes, which were faulty. Skeptics back then would argue that any sufficiently long computation
was doomed to fail since errors would necessarily occur in encoding/decoding circuits. John von
Neumann proved that this reasoning was actually incorrect.

1The word “decoding” can refer to 2 different operations. The true definition refers the map that is the inverse of the
encoding operation: it maps an encoded logical state to an unencoded physical state. However, it is very usual to use
the word “decoding” to also include the error correction procedure. In that case, it refers both to the action of trying to
correct the error that occurred and in a second time, to return the unencoded state.

3

He showed that if logic gates (AND, OR, NOT) fail with some independent probability ε, then provided that
ε is small enough, it is possible to build a reliable circuit for any Boolean function f . Moreover, the circuit
is only reasonably larger than the circuit for f built of perfect gates.
One question though: what happens if the final gate is faulty with probability ε? It seems that
you can never get a correct answer with probability greater than 1− ε! A solution is to encode the
final result into a long string or to repeat the computation several times and take a majority vote
(assumed to be error-free, because simple to implement).
To prove the threshold theorem, one can use the 3-bit repetition code recursively, where each
physical bit is actually replaced by the logical bit of another layer of repetition code. Even if each
operation is noisy, there exists a threshold below which each level of encoding leads to a decrease
of the logical error rate.
It turns out that the classical fault-tolerance theorem ended up being useless when vacuum tubes
were replaced by transistors because the error rate for logic gates became ridiculously small (much
smaller than the inverse of the number of gates in any useful computation).
The same thing might occur one day with quantum computing and topological quantum comput-
ing might be an idea to get there, but we are currently very, very far from that situation. And it is
therefore crucial to develop a theory of quantum error correction and quantum fault-tolerance.

1.3 A first example: Shor’s code

We want to generalize the 3-bit repetition code to the quantum setting. The goal is as follows:
Alice has a qubit in a pure state ∣ψ⟩ = α∣0⟩ + β∣1⟩ and wants to send it to Bob (or to keep it in a noisy
memory for some time). Here, we suppose that Alice doesn’t know α and β. If she knows the
qubit exactly, she could just send the description to Bob by classical means who would reconstruct
it. But this wouldn’t be efficiently when sending n-qubit states (since you get 2n amplitudes...)
and in practical situations, Alice doesn’t know the values of α and β.

For concreteness, let us first consider a restricted noise model similar to the binary symmetric
channel where a qubit is flipped independently with probability p. In other words, with prob-
ability 1 − p, then channel acts as the identity, and with probability p, it applies a bit-flip error
represented by X = σX = (0 1

1 0). This quantum channel is called the bit-flip channel and is described
by the admissible operation

Ebit(ρ) = (1− p)ρ + pXρX.

First, the no-cloning theorem prevents us to apply the map ∣ψ⟩ → ∣ψ⟩∣ψ⟩∣ψ⟩ since it is not uni-
tary. A better approach is to perform the following encoding

∣ψ⟩ = α∣0⟩ + β∣1⟩ ↦ α∣000⟩ + β∣111⟩ =∶ α∣0̄⟩ + β∣1̄⟩ = ∣ψ̄⟩.

This encoding can be realized with a simple qubit with 2 CNOT gates.

4

The 3-qubit state after encoding is described by a density matrix (a pure state in fact) on (C2)⊗3

and the quantum channel is described by the admissible operation:

E⊗3
bit(ρ) =(1− p)2ρ + p(1− p)2(X1ρX1 +X2ρX2 +X3ρX3)

+ p2(1− p)(X1X2ρX1X2 +X1X3ρX1X3 +X2X3ρX2X3) + p3X1X2X3ρX1X2X3.

How should we decode the state and perform the correction?? Measuring the whole state in
the computational basis is a bad idea since one will get a basis state and the information about ∣ψ⟩
will be destroyed. Rather, we want to copy what we did in the classical case to notice that an error
had occurred: for this, we compare the values of the 3 bits pairwise, i.e., we measure parities. If
they all agree, then we conclude that no error occurred. If some values disagree, we perform a
correction.

Let us consider what this circuit does on an example, for instance if the second qubit was
flipped (the error is X2):

(α∣010⟩ + β∣101⟩)∣00⟩ = α∣010⟩∣00⟩ + β∣101⟩∣00⟩
↦ α∣010⟩∣10⟩ + β∣101⟩∣10⟩
= (α∣010⟩ + β∣101⟩)∣10⟩.

Measuring the last two qubits yields the outcome 10 with certainty. This output string is called
the syndrome and it tells us that a bit-flip occurred on the second qubit (qubit 10 in binary). Bob
can therefore correct the error by applying X = σX to qubit 2:

α∣010⟩ + β∣101⟩ ↦ α∣000⟩ + β∣111⟩ = ∣ψ⟩.

Finally, he can apply the inverse of the encoding circuit to recover the initial qubit

α∣000⟩ + β∣111⟩ ↦ α∣0⟩ + β∣1⟩.

This procedure works if at most one bit flip occurs:

• classical states ∣000⟩, ∣111⟩ Ð→ syndrome 00,

• classical states ∣100⟩, ∣011⟩ Ð→ syndrome 01,

• classical states ∣010⟩, ∣101⟩ Ð→ syndrome 10,

5

• classical states ∣001⟩, ∣110⟩ Ð→ syndrome 11.

We will see later that measuring the syndrome is equivalent to measuring the value of the
observables Z1Z2 and Z2Z3, which check the parity of the first and second qubits, and of the
second and third qubits. (With the convention above, it is really the observables 1

2(1+ Z2Z3) and
1
2(1+ Z1Z3).)

The overall circuit, including encoding on Alice’s side and syndrome measurement, error cor-
rection and decoding on Bob’s side is summarized here:

Similarly as in the classical case, the error probability goes from p for unencoded physical
qubits to 3p2 − 2p3 for the encoded logical qubit. Here, we have assumed that all the gates inside
Alice and Bob’s labs are perfect.

Going beyond bit-flips.
Of course, we’ve already seen that qubits are prone to more general errors than simply bit-

flips. Another very natural error is the phase-flip, corresponding to an application of the matrix
Z = σZ = (1 0

0 −1). It should be clear that our 3-qubit code does not protect against this type of errors.
For instance, a phase-flip on any of the three physical qubits (i.e. Z1, Z2 or Z3) yields

α∣000⟩ + β∣111⟩ ↦ α∣000⟩ − β∣111⟩.

As before, if we suppose that the probability for an individual phase-flip is 0 < p < 1
2 , then the

probability that the logical qubit is corrupted (corresponding to one or three corrupted physical
qubits) is

3p(1− p)2 + p3 > p.

If we simply wanted to protect against phase-flip errors only, then the following encoding
would work:

α∣0⟩ + β∣1⟩ ↦ α∣+++⟩ + β∣ − −−⟩.

To do that it, one can simply perform the same encoding circuit as before, followed by a Hadamard
transformation on the output qubits. This is because H∣0⟩ = ∣+⟩ and H∣1⟩ = ∣−⟩. Then, exactly the
same analysis as before goes through, and you get a coding scheme that can correctly deal with 0
or 1 phase-fip error . . . but unfortunately not with a single bit-flip error.

Is there a way to protect against both bit-flip and phase-flip errors at the same time? Not with a
3-qubit code. But one can with a simple 9-qubit code: Shor’s code. The idea relies on concatenation:

6

one first applies the code that protects against phase-flips then one encodes the resulting logical
qubits with the code that protects against bit-flips. The encoding of a single-qubit α∣0⟩ + β∣1⟩ is
given by

α∣0⟩ + β∣1⟩ ↦ α∣+++⟩ + β∣ − −−⟩ (first level of encoding)

= α
1

2
√

2
(∣0⟩ + ∣1⟩)⊗3 + β

1
2
√

2
(∣0⟩ − ∣1⟩)⊗3

↦ α
1

2
√

2
(∣000⟩ + ∣111⟩)⊗3 + β

1
2
√

2
(∣000⟩ − ∣111⟩)⊗3 (second level of encoding)

The logical qubits consist of 9 physical qubits:

∣0̄⟩ = (1√
2
(∣000⟩ + ∣111⟩))

⊗3

∣1̄⟩ = (1√
2
(∣000⟩ − ∣111⟩))

⊗3

The encoding circuit is obtained by concatenating the two encoding circuits of the two 3-qubit
codes.

To decode, Bob applies successively the decoding procedures of the two 3-qubit codes:

(i) he first considers the three blocks of three qubits and each such block is an encoding of one
of the 3 qubits of the state α∣+⟩⊗3 + β∣−⟩⊗3. He then corrects bit flips as before, and obtains 3
qubits (keeping only the first one in each block). Provided that at most one bit-flip occurred
in each block, then the 6 other qubits are all in the state ∣0⟩ and can be discarded.

(ii) Bob now has the same three qubits as he would when encoding with the code that protects
against at most a single phase-flip. He can decode it as before, and provided there is at most
a single phase-flip, he recovers the correct state α∣0⟩ + β∣1⟩.

Overall, the qubit is recovered if there was at most a single bit-flip or a single phase-flip.

7

Theorem 2. The 9-qubit Shor code protects against any of the four Pauli errors 1, X, Y = iZX, Z occurring
on a single qubit.

Example 3. Suppose the error XZ occurs on qubit 6. The encoded state becomes

α

2
√

2
(∣000⟩ + ∣111⟩)(∣001⟩−∣110⟩)(∣000⟩ + ∣111⟩) +

β

2
√

2
(∣000⟩ − ∣111⟩)(∣001⟩+∣110⟩)(∣000⟩ − ∣111⟩)

The syndrome measurement for the code protecting against bit-flips yields 00, 11 and 00 for the 3 blocks of
3 qubits. Bob infers that there is no bit-flip error in the first block, a bit-flip on the third qubit of the second
block and no bit-flip error in the third block. Applying the correction X6 yields

α

2
√

2
(∣000⟩ + ∣111⟩)(∣000⟩−∣111⟩)(∣000⟩ + ∣111⟩) +

β

2
√

2
(∣000⟩ − ∣111⟩)(∣000⟩+∣111⟩)(∣000⟩ − ∣111⟩)

Finishing the decoding of the first code (by applying the inverse of the encoding circuit) gives

α

2
√

2
(∣0⟩ + ∣1⟩)(∣0⟩−∣1⟩)(∣0⟩ + ∣1⟩) +

β

2
√

2
(∣0⟩ − ∣1⟩)(∣0⟩+∣1⟩)(∣0⟩ − ∣1⟩) = α∣+−+⟩ + β∣−+−⟩.

Measuring the syndrome of the code protecting against phase-flips gives 10 indicating that a phase-flip
occurred on the second qubit. Correcting for it by applying a Z correction and inverting the encoding
circuit finally yields α∣0⟩ + β∣1⟩, as expected.

As before, we can understand the measurement of the syndrome as measuring some observ-
ables:

• one can detect a single bit flip in each subblock of size 3 as before, by measuring the Pauli
operators Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9

• in order to detect phase errors, we proceed similarly by testing the parities of successive
subblocks. Now the equivalent of Z1 is X applied to the first logical qubit, which is simply
X1X2X3. In other words, one simply measures the operators X1X2X3X4X5X6 and X4X5X6X7X8X9.
If they both give +1, then there wasn’t a phase error, otherwise one can deduce where the
phase-flip occurred as before.

We will now see that the 9-qubit Shor code can in fact correct arbitrary errors occurring on a
single qubit.

1.4 Correcting arbitrary single-qubit errors

So far, we have seen how to protect against any of the Pauli errors occurring on a single qubit. But
why would an error be a Pauli error?

Theorem 4. If a quantum code protects against an arbitrary Pauli error, then it protects against an arbi-
trary error. The same statement holds for multiple-qubit errors.

Proof. Let’s establish this result for single-qubit errors. The very short answer is that the Pauli
matrices form a basis of all possible 2 × 2 complex matrix. Indeed, let A be an arbitrary complex
2× 2 matrix. There exist a, b, c, d ∈C such that

A = a1+ bX + cY + dZ.

8

Forgetting about the unitarity of A for a moment, and assuming that A is applied to the jth qubit
of some n-qubit state ∣ψ⟩ belonging to some quantum code, one obtains

Aj∣ψ⟩ = a∣ψ⟩ + bXj∣ψ⟩ + cYj∣ψ⟩ + dZj∣ψ⟩.

By assumption, the code can correct arbitrary Pauli errors on qubit j, which means that measuring
the syndrome will result in

a∣ψ⟩∣′′1′′ syndrome⟩ + bXj∣ψ⟩∣′′X′′ syndrome⟩ + cYj∣ψ⟩∣′′Y′′ syndrome⟩ + dZj∣ψ⟩∣′′Z′′ syndrome⟩.

Applying the appropriate correction gives:

∣ψ⟩ (a∣′′1′′ syndrome⟩ + b∣′′X′′ syndrome⟩ + c∣′′Y′′ syndrome⟩ + d∣′′Z′′ syndrome⟩) ,

which means that the state ∣ψ⟩ is recovered.
Note that we assumed here that everything was occurring in superposition, but this is not

necessary. If one simply measures the syndrome, it will collapse the state onto of of the four
possibilities, and one can then decode as before. The crucial point is that the measurement of the
syndrome projects the error (that belongs to some continuum of errors) onto one of 4 possible
errors, which we know how to correct.

So far, we have only considered the effect of an operator A on the state. What we are really
interested in is the effect of an admissible operation (or channel) on qubit j. Such an admissible
operation can always be written as

Φj(∣ψ⟩⟨ψ∣) =
N
∑
k=1

Ak
j ∣ψ⟩⟨ψ∣Ak†

j ,

for some collection of matrices {A1
j , . . . , AN

j } satisfying

N
∑
k=1

Ak†
j Ak

j = 1

and with a decomposition of the form

Ak
j = ak1+ bkX + ckY + dkZ.

We obtain

Φj(∣ψ⟩⟨ψ∣) = ∑
a,a′

aa′Ea∣ψ⟩⟨ψ∣E†
a′ ⊗ ∣sa⟩⟨sa′ ∣

where a, a′ are complex coefficients, Ea, Ea′ are Pauli errors and sa, sa′ are the corresponding syn-
dromes. Measuring the syndrome register in a classical basis (i.e. measuring the syndrome) re-
moves the non diagonal terms of the form ∣sa⟩⟨sa′ ∣ for sa ≠ sa′ . The resulting state has the form

∑
a
∣a∣2Ea∣ψ⟩⟨ψ∣E†

a ⊗ ∣sa⟩⟨sa∣.

9

This means that measuring the syndrome has projected the error onto one of the four Pauli errors.
This state is in fact given by

N
∑
k=1

(∣ak∣2∣ψ⟩⟨ψ∣ ⊗ ∣s1⟩⟨s1∣ + ∣bk∣2X∣ψ⟩⟨ψ∣X⊗ ∣sX⟩⟨sX ∣ + ∣ck∣2Y∣ψ⟩⟨ψ∣Y⊗ ∣sY⟩⟨sY ∣

+∣dk∣2Z∣ψ⟩⟨ψ∣Z⊗ ∣sZ⟩⟨sZ∣) .

And one can correct the Pauli errors by assumption, yielding

∣ψ⟩⟨ψ∣ ⊗
N
∑
k=1

(∣ak∣2∣s1⟩⟨s1∣ + ∣bk∣2∣sX⟩⟨sX ∣ + ∣ck∣2∣sY⟩⟨sY ∣ + ∣dk∣2∣sZ⟩⟨sZ∣) ,

and discarding the syndrome gives the initial state ∣ψ⟩⟨ψ∣.

The proof can be generalized in a straightforward manner to deal with mutliple-qubit errors.
Again, the main idea behind this fact is that measuring the syndrome projects an a priori arbitrary
error onto a Pauli error.

The important consequence is that one can restrict the analysis of quantum error correcting
codes to Pauli errors.

What we want to do when devising a QECC is to identify a subset E of Pauli operators

E ⊆ {Ea} ≡ {1, X, Y, Z}⊗n

that are the errors that we wish to be able to correct. Then, the idea is to perform a collective
measurement (to measure the syndrome) and try to determine which Ea occurred and reverse it
by applying E†

a .
A typical choice for the set E is the set of all Pauli errors of weight up to t. If we can correct any

such error, then we say that the code can correct t errors. In particular, it is sufficient to correct X
and Z errors of weight up to t.

2 Lecture 2

2.1 Stabilizer codes

To go further than the 9-qubit code of Shor, and develop a general formalism it is useful to take
inspiration from classical coding theory. This formalism – stabilizer codes – was developed by
Daniel Gottesman in his PhD thesis in the late 90s.

Let us recall first what the Pauli and Clifford groups are. The single-qubit Pauli group P1 is
the group ⟨i1, X, Z⟩ generated by the Pauli matrices. Its n-qubit generalisation is the n-fold tensor
product of P1, that is Pn = P⊗n

1 :

Pn = ⟨E1 ⊗ E2 ⊗ . . .⊗ En ∶ Ei ∈ P1⟩,

and has cardinality 4n+1. An important property of Pauli operators is that any two of them either
commute or anticommute.

10

Theorem 5. Let P, Q ∈ Pn. Then either PQ = QP or PQ = −QP.

Proof. For single-qubit matrices, we have

[X, X] = [Y, Y] = [Z, Z] = 0, {X, Y} = {X, Z} = {Y, Z} = 0.

Let us write the Pauli operators as products of n single-qubit matrices: P = P1 . . . Pn and Q =
q1 . . . Qn. Then P and Q commute if and only if they anticommute in an even number of positions.
Otherwise, they anticommute.

The Clifford group Cn is the automorphism group of the Pauli group:

Cn = {U ∈ U(C2n
) ∶ UPnU† = Pn}.

In words, any Pauli operator P is mapped to a Pauli operator via conjugation by a Clifford unitary.

Theorem 6. The Clifford group Cn is generated by H, P and CNOT:

H = 1√
2
[1 1
1 −1

] , P = [1 0
0 i] , CNOT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

A quantum codeQ of parameters [[n, k, d]] is a linear subspace of (C2)⊗n of dimension 2k, and
minimum distance d. The stabilizer construction is very much inspired by the classical construction
of linear codes, and there are two main ways to define a stabilizer code:

(i) via its encoding circuit: this is Clifford unitary U ∈ U(C2n) applied on ∣ψ⟩ ⊗ ∣0⟩n−k where ∣ψ⟩ ∈
(C2)⊗k is a logical state of k qubits and ∣0⟩n−k is an (n − k)-qubit ancilla. This gives

Q = {U(∣ψ⟩ ⊗ ∣0⟩n−k) ∶ ∣ψ⟩ ∈ (C2)⊗k}.

We denote by ∣ψ⟩ = U(∣ψ⟩ ⊗ ∣0⟩n−k) the encoded version of ∣ψ⟩.

(ii) via its stabilizer, i.e. a group S = ⟨g1, . . . , gn−k⟩ generated by a set of n − k Pauli operators that
commute and that don’t contain −1. The code is then defined as the elements of the Hilbert
space that are stabilized by S :

Q = {∣ψ⟩ ∈ (C2)⊗n ∶ gi∣ψ⟩ = ∣ψ⟩,∀i ∈ [n − k]}.

In other words, the code is defined as the +1 eigenspace of the generators. This space is
well defined since the commutation condition ensures that the generators are all codiago-
nalizable. Moreover, since each generator is a Pauli operator, it has eigenvalues equal to
±1.

In order to make reliable computations with a noisy quantum computer, the idea is to encode
information with a quantum error correcting code and then perform the computation on the en-
coded state. We need a way to act on such states. This is done via logical operators.

11

Definition 7 (Normalizer). The normalizer of S in the Pauli group Pn is

N(S) = {g ∈ Pn ∶ gS = Sg}.

Definition 8 (Logical operator). A logical operator of the stabilizer code with stabilizer S is a Pauli
operator that leaves the code globally invariant, but that acts nontrivially on codewords. It is given by the
set N(S) ∖ S , and corresponds to a Pauli operator that commutes with all the generators of S , but that
doesn’t belong to S.

A logical operator will map a word in the quantum code to an orthogonal codeword.
The fact that the encoding circuit of a stabilizer code is a Clifford operation is particularly

useful because it implies that logical Pauli errors correspond to Pauli physical errors.

Example 9 (Logical Z operator). Let us suppose that ∣ψ⟩ is the encoded version of ∣ψ⟩, that is ∣ψ⟩ =
U(∣ψ⟩∣0⟩n−k), where U is the Clifford encoding operation. The logical Pauli Z1 operator, denoted Z1 maps
the encoding of ∣ψ⟩ to the encoding of Z1∣ψ⟩, i.e. ∣ψ⟩ to

U(Z1∣ψ⟩∣0⟩n−k) = UZ1U†∣ψ⟩,

which implies that Z1 = UZ1U†, which is a Pauli matrix since U belongs to the Clifford group.

Translating from the encoding circuit to the stabilizer formalism: it is easy to infer the set of
generators of the code if we know the encoding circuit. For this, one simply notes that the initial
state before the encoding circuit is ∣ψ⟩∣0⟩n−k, where ∣ψ⟩ is an arbitrary k-qubit state. All such states
are stabilized by n− k (independent) generators: Zk+1, . . . , Zn since the state ∣0⟩ is defined as the +1
eigenstate of the Z Pauli operator. We obtain a description of the n − k generators of the stabilizer
group:

UZk+1U†, . . . , UZnU†,

and it is straightforward to check that they commute pairwise:

(UZiU†) ⋅ (UZjU†) = UZiZjU† = UZjZiU† = (UZjU†) ⋅ (UZiU†).

Example 10. Both the 3-qubit code and Shor’s 9-qubit code are stabilizer codes. We have already seen their
encoding circuit, which is a Clifford circuit. Moreover, we have seen that the stabilizer of the 3-qubit code is
⟨Z1Z2, Z2Z3⟩ and that the stabilizer of Shor’s 9-qubit code is

⟨Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9⟩.

It is straightforward to check that these groups are Abelian. As expected, these stabilizers admit respectively
2 = 3 − 1 (three physical qubits and one logical qubit) and 8 = 9 − 1 (9 physical qubits for a single logical
qubit) elements.

The Pauli operators Z1 and X1X2X3 are logical operators Z̄ for the 3-qubit code and Z̄ for Shor’s 9-qubit
code, respectively:

3-qubit code ∶ Z1∣1̄⟩ = −∣1̄⟩
Shor’s code ∶ X1X2X3∣1̄⟩ = −∣1̄⟩.

12

The stabilizer description is particularly useful to correct the errors. The idea is to measure the
syndrome, that is to measure the eigenvalues of the stabilizer generators for the quantum state.

Definition 11 (Syndrome). The syndrome associated with error E ∈ Pn is the (n − k)-bitstring s⃗ =
(s1, . . . , sn−k) defined by

si = { 0 if [E, gi] = 0,
1 if {E, gi} = 0.

If si = 1, meaning that the error anticommutes with a stabilizer, then E∣ψ⟩ is a −1 eigenvalue of
gi (if ∣ψ⟩ is a valid codeword):

giE∣ψ⟩ = −Egi∣ψ⟩ = −E∣ψ⟩.

In particular, the syndrome doesn’t depend on the specific codeword, only on the Pauli error.
Note that it is easy to devise a quantum circuit to measure any Pauli operator (and in partic-

ular, any generator of the stabilizer group). The following picture for instance depicts a circuit to
measure P1P2P3 with Pauli operator Pi acting on qubit i:

The eigenvalues of any Pauli measurement P are 1 and −1, and the projector on the eigenspaces
are P± = 1

2(1± P).
An alternative solution to measure the syndrome is to undo the encoding circuit, via U†, and

measure the ancilla qubits in the computational basis, but this leaves the quantum state unpro-
tected and might therefore not be the preferred solution in practice. In fact, in the context of
quantum fault-tolerance, one must find a way to fight errors that occur during the syndrome mea-
surement.

Definition 12 (Minimum distance). The minimum distance of a stabilizer code with stabilizer S is the
minimum weight of a nontrivial logical operator:

dmin(Q) = min{∣E∣ ∶ [E, gi] = 0∀i, E ∉ ⟨g1, . . . , gn−k⟩}
= min{∣E∣ ∶ E ∈ N(S) ∖ S}.

Example 13. We have seen in the previous example that Z1 and X1X2X3 are logical errors for both the
3-qubit code and Shor’s 9-qubit code, respectively. This implies that their respective minimum distances are
upper bounded by 1 and 3. Since the 9-qubit code can correct any single-qubit error, its minimum distance
is at least 3, which means that it is exactly 3.

13

2.2 CSS codes

The CSS codes (for the name of their inventors, Calderbank, Shor, Steane) form an interesting
subclass of all stabilizer codes where the generators of the stabilizer group are either products of
Pauli-X or products of Pauli-Z. This is an appealing restriction because the commutativity con-
dition between the generators now needs to be checked only between X-type and Z-type genera-
tors, since both X-type generators and Z-type generators obviously commute among themselves.
In that case, both types of generators are described by binary words (with 1s at the coordinates
corresponding to an X or Z-type operator).

A general way of defining both classes of generators is by choosing special types of classical
codes. Let C be an [n, k] classical linear code with a n × k generator matrix G and an (n − k) × n
parity-check matrix H. This means

C = {Gy ∶ y ∈ Fk
2} = ker H.

Here we consider column vectors.
The dual code of C, denoted C⊥, is defined as

C⊥ = {y ∈ Zn
2 ∶ x ⋅ y = 0,∀x ∈ C}.

This is an [n, n − k] linear code. Moreover the generator and parity-check matrices of C and C⊥ are
swapped (up to transposition):

G⊥ = HT, H⊥ = GT.

We say that a code C is weakly self-dual if C ⊆ C⊥ and (strictly) self-dual if C = C⊥. A necessary and
sufficient condition for C to be weakly self-dual is that GTG = 0.

Definition 14. A CSS code CSS(C1,C2) is defined from two classical linear codes C1, C2 of parameters
[n, k1] and [n, k2], such that C2 ⊆ C1. The quantum code has parameters [[n, k1 − k2]] and is spanned by
the vectors

∣xj + C2⟩ ∶=
1

2k2/2
∑

y∈C2

∣xj + y⟩,

where the elements of {xj}j=1...2k1−k2 belong to the quotient C1/C2. In other words, they satisfy xi + xj ∉ C2,
for any pair xi ≠ xj.

Lemma 15. The code CSS(C1,C2) is a stabilizer code.

The proof will be treated in exercise.
In particular, if C is weakly self-dual with parameters [n, k], then CSS(C⊥,C) is a stabilizer code

with parameters

[[n, n − 2k]].

Codewords of the CSS code have the form ∣x+C2⟩ where x ∈ C1 and two codewords ∣x+C2⟩ and
∣x′ + C2⟩ differ if and only if x and x′ belong to different cosets of C2 in C1.

14

An example of CSS code is Steane’s 7-qubit code, where we take C2 = C⊥1 and C1 to be the [7, 4]
Hamming code with generator2 and parity-check matrices

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H =
⎡⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎦
.

One can construct general Hamming codes by taking all possible words (except the all-zero word)
for the columns of the parity-check matrix. These generalized codes have parameters [2m − 1, 2m −
m − 1, 3] and can tolerate one bit-flip since they all have distance 3. One can check that the dual of
the Hamming code is weakly self-dual, since (G⊥)TG⊥ = HHT = 0, and therefore CSS(C1,C⊥1) is a
valid CSS code encoding 4− 3 = 1 logical qubit.

Taking x0 = 0000000 and x1 = 1111111 as representatives of C1/C⊥1 , and enumerating the ele-
ments of C⊥1 = Im(H) as

C⊥1 = {0000000, 0001111, 0110011, 0111100, 1010101, 1011010, 1100110, 1101001},

we obtain the logical qubits as

∣0̄⟩ = 1
2
√

2
(∣0000000⟩ + ∣0001111⟩ + ∣0110011⟩ + ∣0111100⟩ + ∣1010101⟩

+ ∣1011010⟩ + ∣1100110⟩ + ∣1101001⟩,

∣1̄⟩ = 1
2
√

2
(∣1111111⟩ + ∣1110000⟩ + ∣1001100⟩ + ∣1000011⟩ + ∣0101010⟩

+ ∣0100101⟩ + ∣0011001⟩ + ∣00101101⟩.

This illustrates one of the main strengths of the stabilizer formalism: in general, the logical qubits
are given by very long expressions (a superposition over an exponential number of basis states),
and the generators of the stabilizer yield a much more efficient description of the code.

The generators of the stabilizer can be chosen to be the rows of H1 for X-type generators and
the rows of H⊥2 = H1 for Z-type generators:

X4X5X6X7,
X2X3X6X7,
X1X3X5X7,
Z4Z5Z6Z7,
Z2Z3Z6Z7,
Z1Z3Z5Z7.

Lemma 16. The minimum distance of a CSS code CSS(C1,C2) is min(d(C1), d(C⊥2)).

2Here, we take the convention that the image of G is the right image, i.e., Im(G) = {Gx ∶ x ∈ Z
4
2}.

15

This implies that Steane’s 7-qubit code is a [[7, 1, 3]] quantum code.
We prove the lemma by describing an explicit error correction strategy for a CSS code.

Error correction for a CSS code.

The general strategy is as usual: measure the syndrome and apply a correction. For CSS codes,
the syndrome is naturally divided into two parts: X-type errors are corrected with the syndrome
of the Z-type generators, and Z-type errors are corrected with the syndrome of the X-type gener-
ators. This suggests a two-part procedure:

• X-type errors: (i) compute the syndrome for code C1 (i.e. for generators of the form Z f for f
a row of H1): this is the reversible operation

∣y⟩∣0 . . . 0⟩ ↦ ∣y⟩∣s1(y)⟩,

with s1(y) = H1y, the syndrome of y with respect to code C1; (ii) measure the syndrome, and
(iii) correct for bit-flips by applying Pauli-X corrections;

• swapping between codes: apply a Hadamard transform to every qubit;

• Z-type errors: same procedure as before but for the code C⊥2 , i.e. generators of the form Xe

for e a row of H⊥2 ;

• returning to the initial code: apply again a Hadamard transform to every qubit.

Let us verify that this decoding procedure correctly recovers the codeword provided that the
weight of the error is less than t, where t is the maximum number such that both C1 and CT

2 can
tolerate t errors3.

Consider a Pauli error XvZw with bit strings v, w ∈ {0, 1}n applied to a codeword ∑j αj∣xj + C2⟩.
The state becomes

XvZw∑
j

αj∣xj + C2⟩ = ∑
j

αj(−1)v⋅wZw∣xj + v + C2⟩

where we used that XvZw = (−1)v⋅wZwXv.
The first step of the correction procedure corrects X-type errors by computing the syndrome

relative to C1. This will yield the syndrome of v for C1, and provided that ∣v∣ ≤ t, the procedure will
return v and apply the Pauli correction Xv, giving,

∑
j

αj(−1)v⋅wXvZw∣xj + v + C2⟩ = Zw∑
j

αj∣xj + C2⟩.

3The parameter t is related to the minimum distance via d = 2t + 1.

16

After the Hadamard transformation, the state becomes

H⊗nZw∑
j

αj∣xj + C2⟩ = XwH⊗n∑
j

αj∣xj + C2⟩ (since H⊗nZw = XwH⊗n)

= ∑
j

αjXwH⊗nXxj ∣C2⟩

= ∑
j

αjXwH⊗nXxj H⊗n∣C⊥2 ⟩ (proven in exercise)

= ∑
j

αjXwZxj ∣C⊥2 ⟩.

Using the same argument as before, one can compute the syndrome relative to C⊥2 and correct
the X-type error. This will work correctly provided that ∣w∣ ≤ t, where t is a lower bound on the
correction capacity of C⊥2 . Undoing the Hadamard transform then returns the original codeword.

2.3 An example: the toric code

At the end of the 90s, Alexei Kitaev showed that cellullations of surfaces (and of higher-dimensional
manifolds) gave a very general method to derive CSS codes, with parameters depending on the
properties of the surface. The most famous example is the toric code, which can be realized by
taking a square cellullation of a torus.

Consider an N ×N square grid on a torus, and put a qubit on each of the 2N2 edges. We define
a CSS code by choosing the following generators of weight 4:

• plaquette operators: for each plaquette p on the grid, define gX
p ∶= ⊗e∈∂p Xe, where e ∈ ∂p

means that edge e belongs to the boundary of plaquette p,

• vertex operators: for each vertex v in the grid, define gZ
v ∶= ⊗e∼v Ze, where i ∼ v means that

edge e is incident to vertex v.

Let us immediately verify that these generators commute: for this, it is enough to notice that a
vertex and a plaquette operator either do not overlap, or else overlap in exactly 2 positions.

There are N2 vertices on the grid and N2 plaquettes, so we have defined 2N2 generators. Note,
however, that these generators are not independent since the product of all vertex operators is the
identity, and the product of all plaquette operators is also the identity:

⊗
p

gX
p = 1, ⊗

v
gZ

v = 1.

There are the only nontrivial relations, meaning that there are 2N2 − 2 independent generators for
2N2 qubits, which yields 2 logical qubits.

From our earlier definition of CSS codes, we need two classical codes C1 and C2, with C2 ⊆ C1:

• the code C1 is the cycle code of the grid: the support of codewords corresponds to a cycle, i.e.,
its boundary is null;

• the code C2 is generated by words whose support is the boundary of a set of plaquettes.

17

Figure 1: Local structure of the toric code: qubits are placed on edges, vertex operators are the
product of X operators applied to the 4 neighboring qubits of a vertex, plaquette operators are the
product of Z operators applied to the 4 qubits on the boundary of a plaquette (By James Wootton,
https://commons.wikimedia.org/w/index.php?curid=11823316)

The inclusion C2 ⊂ C1 follows from the fact that the boundary of a boundary is always null:

∂∂ = 0.

This relation is at the heart of all topological/homological quantum error correcting code con-
structions.

In order to describe the logical qubits, we need to understand the equivalence classes of C1/C2,
that is, the cycles that are not a boundary. There are indeed two inequivalent families of such
cycles, corresponding to a loop around the torus. These cycles are homologically nontrivial meaning
that they cannot be deformed (by addition of boundary) to yield the null cycle. For this reason,
the toric code is an example of topological code: properties of the quantum code result from the
topology of the underlying manifold.

Figure 2: Local structure of the toric code: qubits are placed on edges, vertex operators are the
product of X operators applied to the 4 neighboring qubits of a vertex, plaquette operators are the
product of Z operators applied to the 4 qubits on the boundary of a plaquette (By James Wootton,
https://commons.wikimedia.org/w/index.php?curid=11823316)

In particular, since the minimum size of a nontrivial cycle is N, we deduce that the minimum

18

https://commons.wikimedia.org/w/index.php?curid=11823316
https://commons.wikimedia.org/w/index.php?curid=11823316

distance of the code is also N, and the parameters of the toric code read:

[[2N2, 2, N]].

Another particularly interesting feature of the toric code is that it is an example of low-density
parity-check (LDPC) code, meaning that each generator only involves a constant number of qubits
(4 for the toric code) and that each qubit is only involved in a constant number of generators (4
again for the toric code). This LDPC condition is particularly important when it comes to exper-
imental implementation since it is much easier to engineer local interactions involving a constant
number of qubits. In addition, the qubits that interact via the generators for the toric code are
spatially local: qubits only interact with their neighbors. In fact, the leading approaches to build a
quantum computer are based on the toric code (or its cousin the surface code).

Despite an intensive study of quantum LDPC codes, it turned out to be extremely difficult to
find better LDPC codes than the toric codes. For about 20 years, the best bound for the minimum
distance was n1/2 log1/4 n. In 2020, a series of papers showed that dmin = Θ(n/ log n) is achievable!

Decoding the toric code.

Let us first consider X-type errors. Their associated syndrome is obtained via the Z-type gen-
erators, corresponding to vertices. Let XE be an X-type error with support on the set E. Then the
syndrome of XE is given by the set of vertices in the boundary of E:

s(XE) = ∂E.

In order to decode, one must therefore find an error with the appropriate syndrome. A particularly
popular decoder is the algorithm minimum weight perfect matching. This is not optimal, however,
since the most probable error isn’t necessarily the error of minimum weight, but rather the error
whose equivalence class is the most probable. However, the minimum weight perfect matching
algorithm is efficient.

In order to address Z-type errors, it is convenient to exploit Poincaré duality: the dual of the
cellulation looks exactly like the initial cellulation, but with the roles of vertices and plaquettes
exchanged. In other words, one can correct Z-type errors with the same approach as explained for
the X-type errors, but working in the dual cellulation.

The threshold of the toric code is about 10 − 11% for the depolarizing channel, corresponding
to an error model where X, Y, Z errors occur independently with probability p/3 and not error
occurs with probability 1− p.

Beyond the toric code.

This approach isn’t limited to tessellations of the torus, but can be generalized in a straightfor-
ward way to cellullations of arbitrary closed manifolds in arbitrary dimensions. Even dimensions
are convenient to exploit the Poincaré duality, and this is why the 4-dimensional toric code is also
quite popular. One can also change the geometry and work with hyperbolic geometry rather than
Euclidean space.

19

	Lecture 1
	General motivation
	Classical error correction and fault-tolerance
	A first example: Shor's code
	Correcting arbitrary single-qubit errors

	Lecture 2
	Stabilizer codes
	CSS codes
	An example: the toric code

