A survey of Mackey and Green 2-functors

Ivo Dell'Ambrogio (mostly) joint work with Paul Balmer

Chromatic Homotopy, K-Theory and Functors CIRM, Luminy, 23 January 2023

Idea: axiomatic representation theory of finite groups

- Classically, from the early 70's [Green, Dress, Lindner...]:
 Mackey functor := equivariant version of abelian group
 Green functor := equivariant version of a ring
 - GOAL: to axiomatically capture the many restriction, conjugation and induction (trace) maps arising from the representation theory of finite groups.
- Derived versions, e.g. spectral Mackey and Green functors [Barwick]:
 replace: abelian group, ring → spectrum, ring spectrum
- OUR GOAL: categorify, but remain algebraic using 2-categories: replace: abelian group, ring → additive category, monoidal additive category
 - Our theory should receive examples from all "derived" / "higher" theories, but should also remain purely algebraic and with lighter axioms.

Our axiomatization:

 gpd_f : the 2-category of finite groupoids, faithful functors, natural isomorphisms ADD: the 2-category of additive categories, additive functors, natural transf.

Definition [Balmer-D. 2020]

A Mackey 2-functor is a 2-functor

$$\mathcal{M} \colon gpd_f^{op} \longrightarrow ADD$$

satisfying the following four axioms.

Additivity axiom

$$\mathcal{M}(\mathit{G}_1 \sqcup \mathit{G}_2) \overset{\sim}{ o} \mathcal{M}(\mathit{G}_1) \oplus \mathcal{M}(\mathit{G}_2) \quad \text{and} \quad \mathcal{M}(\emptyset) \overset{\sim}{ o} 0.$$

 \leadsto by decomposing groupoids into groups $G \simeq \sqcup_n G_n$, we can reduce the *structure* of the Mackey 2-functor $\mathcal M$ to the data associated to: finite groups, injective group homomorphisms, and their conjugation relations.

A very nice induction

2 Induction axiom: For every faithful morphism $i: H \to G$, the 'restriction' functor $\mathcal{M}(i) = i^*$ has a left adjoint i_{ℓ} and a right adjoint i_{r} :

Note: the adjoints are not really part of the structure.

3 Ambidexterity axiom: For every faithful i, there is an isomorphism $i_{\ell} \cong i_{r}$.

The above are easy to check in examples, but we get more:

Rectification theorem

Under the four axioms, there exist for all i unique isomorphisms $\theta_i \colon i_\ell \cong i_r$ fully compatible with given left and right adjunctions. Thus $\leadsto i_* := : i_\ell \cong i_r$.

Base-Change axiom = canonical Mackey formulas

1 Base-Change axiom: each iso-comma square γ in gpd_f , via \mathcal{M} and the left/right adjunctions, defines two mates γ_{ℓ} and $(\gamma^{-1})_r$:

We require both to be invertible: $j^*i_\ell \cong q_\ell p^*$ and $j^*i_r \cong q_r p^*$.

Convenient fact: via the rectification θ 's, the two mates are mutual inverses!

Motivating example: for i, j two subgroup inclusions $K, L \leq G$

$$(i/f) \simeq \coprod_{[g] \in L \setminus G/K} L \cap {}^{g}K$$

get a Mackey decomposition

Reduction to finite groups

By Additivity, a Mackey 2-functor $\mathcal M$ can be reduced to what it does to groups:

• The **restriction**, **induction** and **conjugation** functors $(H \leq G, g \in G)$:

$$\mathcal{M}(G)$$
Ind \bigwedge Res
 $\mathcal{M}(H) \xrightarrow{Conj_g} \mathcal{M}({}^gH)$

- The adjunctions $Ind \dashv Res \dashv Ind$
- Conjugation natural isos between composites, e.g.

$$conj_g$$
: $Conj_g \circ Res_H^G \cong Res_{\mathfrak{s}_H}^G$

• Many relations, e.g. a canonical **Mackey formula** (for $K, L \leq G$):

$$Res_L^G \circ Ind_K^G \cong \bigoplus_{[g] \in L \setminus G/K} Ind_{L \cap s_K}^L \circ Conj_g \circ Res_{L^g \cap K}^K$$
.

Further abstraction

There are useful (straightforward) variants, as 2-functors

$$\mathcal{M} \colon \mathbb{G}^{op} \longrightarrow \mathbb{A}$$

satisfying the same axioms, where

- the source G is some more general "extensive" (2,1)-category
- the target ▲ is some more general "additive" 2-categoy
- we require inductions i_* for i's in some suitable class $\mathbb{J} \subseteq \mathbb{G}$.

Examples:

- For Mackey 2-functors for a fixed group G_0 , use $\mathbb{G} = \mathbb{J} = gpd_f/G_0 \simeq G_0$ -set.
- \mathbb{A} could be any suitable 2-category of categories which are: abelian / exact / linear over a base ring k / triangulated . . . or we could take: $\mathbb{A} =$ additive derivators / stable derivators . . .

Some examples of Mackey 2-functors

Each of the following families of categories $\mathcal{M}(G)$ defines a Mackey 2-functor:

- From (linear) representation theory:
 - $\mathcal{M}(G) = Mod(kG)$ linear representations over k
 - $\mathcal{M}(G) = D(kG)$ the derived category
 - $\mathcal{M}(G) = Stab(kG)$ stable module category
- From (formal) representation theory:
 - $\mathcal{M}(G) = Mack_k(G)$ or $CoMack_k(G)$ ordinary (cohom.) Mackey functors!
- From topology:
 - $\mathcal{M}(G) = Ho(\mathcal{S}p^G)$ the homotopy category of genuine G-spectra
- From noncommutative topology:
 - $\mathcal{M}(G) = KK^G$ the equivariant Kasparov category of $G\text{-}C^*$ -algebras
- From geometry: Fix X a locally ringed space with a G_0 -action. For $G \le G_0$, set $\mathcal{M}(G) = Sh(X/\!\!/ G)$ G-equivariant \mathcal{O}_X -modules.

These are all tensor categories, in fact they are "symmetric Green 2-functors"!

Green 2-functors

Definition [D. 2022]

A **Green 2-functor** is a Mackey 2-functor $\mathcal M$ equipped with a lifting

to pseudo-monoids in ADD [or any "additive symmetric monoidal 2-category" \mathbb{A}], satisfying:

Operation formulas: the horizontal canonical mates are invertible for all *i*:

$$\begin{array}{lll} X \otimes i_r(Y) \xrightarrow{Rproj} i_r(X \otimes i^*Y) & & i_r(Y) \otimes X \xrightarrow{Rproj} i_r(i^*Y \otimes X) \\ \cong & \uparrow \theta & & \theta \uparrow \cong & & \theta \uparrow \cong \\ X \otimes i_\ell(Y) \xleftarrow{Lproj} i_\ell(X \otimes i^*Y) & & i_\ell(Y) \otimes X \xleftarrow{Lproj} i_\ell(i^*Y \otimes X) \end{array}$$

For **braided** or **symmetric** Green 2-functors: replace

PsMon → BrPsMon or SymPsMon

Remarks:

- ullet The two squares are 'commutative', that is: the canonical Ambidexterity isomorphism heta identifies left and right projection maps as mutual inverses.
- The Projection formulas hold if and only if the external products

$$\mathcal{M}(\textit{G}_{1})\times\mathcal{M}(\textit{G}_{2}) \overset{\overline{\otimes}}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathcal{M}(\textit{G}_{1}\times\textit{G}_{2})$$

associated with the given internal ones \otimes "preserve inductions" in both variables separately. (Actually: this only works for $\mathbb G$ Cartesian!)

- When reduced to finite groups, a Green 2-functor amounts to:
 - ightharpoonup each $\mathcal{M}(G)$ being (braided, symmetric) monoidal additive category,
 - restriction and conjugation being strong (braided) monoidal functors,
 - ► The conjugation natural isos are monoidal natural transformations,

satisfying coherent projection formulas (and their left-right reverse):

$$Ind_{H}^{G}(Res_{H}^{G}(X) \otimes_{H} Y) \cong X \otimes_{G} Ind_{H}^{G}(Y)$$

Applications: produce ordinary Mackey and Green functors

A Mackey or Green 2-functor ${\mathcal M}$ can be 'decategorified' in at least two ways:

K-decategorification – [Dress 1973] [Balmer–D. 2020]

If $\mathcal M$ is essentially small, the composite $K_0^{add}\circ \mathcal M$ is an ordinary Mackey functor. Variants: If $\mathcal M$ takes the appropriate values, we can use K_0^{triang} , K_0^{ex} , $K_*^{Quillen}$, ...

 \bullet If ${\cal M}$ is a Green 2-functor, its K-decategorifications are clearly Green functors.

Hom-decategorification – [Balmer–D. 2022] [D. 2022]

Given two objects $X,Y\in\mathcal{M}(G_0)$, there is an ordinary G_0 -Mackey functor M with

$$G_0 \geq G \longmapsto M(G) := \operatorname{\mathsf{Hom}}_{\mathcal{M}(G)}(\operatorname{\mathsf{Res}}_G^{G_0}X, \operatorname{\mathsf{Res}}_G^{G_0}Y).$$

If ${\mathcal M}$ is Green 2-functor, X a comonoid, Y a monoid, then M is a Green functor.

- Can obtain many variants, as well as modules over Green functors, etc.
- All classical Green functors arise as K- or Hom-decat. of Green 2-functors!

Applications: monadicity and p-local descent

Separable monadicity – [BD 2020, D 2022]

For an idempotent-complete Mackey 2-functor $\mathcal M$ and any faithful $i\colon H\rightarrowtail G$, the composite

$$\operatorname{Id}_{\mathcal{M}(H)} \to i^* i_\ell \cong i^* i_r \to \operatorname{Id}_{\mathcal{M}(H)}$$

is the identity. In particular, there are canonical equivalences:

$$\mathsf{Comod}_{\mathcal{M}(G)}(i^*i_\ell) \simeq \mathcal{M}(H) \simeq \mathsf{Mod}_{\mathcal{M}(G)}(i^*i_r).$$

If \mathcal{M} is a Green 2-functor, $A(i) := i_*(1)$ is a symmetric Frobenius object and the latter are monoidal equivalences of $\mathcal{M}(H)$ with co/modules over A(i).

What about the other unit-counit composite?

Definition

The Mackey 2-functor ${\mathcal M}$ is **cohomological** if the composite

$$\operatorname{\mathsf{Id}}_{\mathcal{M}(G)} o i_r i^* \cong i_\ell i^* o \operatorname{\mathsf{Id}}_{\mathcal{M}(G)}$$

is multiplication by [G:H] for every subgroup inclusion $i:H \rightarrow G$.

Applications: monadicity and p-local descent

Examples: D(kG), Stab(kG), $D(ShX/\!\!/G)$ are cohomological, but not SH(G)!

p-Local descent – [BD 2022]

If \mathcal{M} is cohomological, $\mathbb{Z}_{(p)}$ -linear (p a prime number) and idempotent complete, and $i \colon S \rightarrowtail G$ is a p-Sylow subgroup, then:

$$\mathsf{Comod}_{\mathcal{M}(S)}(i^*i_r) \simeq \mathcal{M}(G) \simeq \mathsf{Mod}_{\mathcal{M}(S)}(i^*i_\ell).$$

p-Local descent – [Maillard 2022]

More precisely: a Mackey 2-functor as above is a 2-sheaf for the p-local (or 'sipp') topology on gpd. In particular, there exists a canonical equivalence

$$\mathcal{M}(G) \simeq \lim_{P \in \mathcal{O}_p(G)} \mathcal{M}(P)$$

with the (pseudo-)limit taken in ADD over the orbit category of p-subgroups of G. Also, any \mathcal{M} admits a 2-sheafification $\mathcal{M} \to \mathcal{M}^{p\text{-loc}}$.

Applications: Green equivalences and correspondences

Notation:

- $\mathcal{M}(G; P) := \{M \mid M \text{ is a retract of } \mathsf{Ind}(N) \text{ for some } N \in \mathcal{M}(P)\} \overset{\mathsf{tull}}{\subset} \mathcal{M}(G),$ the full subcategory of **P-objects**, for $P \leq G$ a subgroup.
- $\mathcal{M}(G; \mathbb{X})$ defined similarly for a set \mathbb{X} of subgroups of G.

The Green equivalence - [BD 2021]

 \mathcal{M} any Mackey 2-functor for G, and $P \leq H \leq G$ subgroups with $H \supseteq N_G(P)$. Then induction yields an equivalence of idempotent-completed additive quotients:

$$\left(\frac{\mathcal{M}(H;P)}{\mathcal{M}(H;\mathbb{X})}\right)^{\natural} \xrightarrow{\quad \text{Ind} \quad } \left(\frac{\mathcal{M}(G;P)}{\mathcal{M}(G;\mathbb{X})}\right)^{\natural}$$

where $\mathbb{X} = \{P \cap {}^{g}P \mid g \in G \setminus H\}.$

- The idempotent completion is not needed in examples (for different reasons).
- If \mathcal{M} is Krull-Schmidt, get the **Green correspondence**, a bijection of iso-classes: indecs of $\mathcal{M}(H)$ with vertex $P \leftrightarrow$ indecs of $\mathcal{M}(G)$ with vertex P.

There is much more, but enough for today ...

Thank you for your attention!

References:

- Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. EMS Monographs in Mathematics. Zürich (2020)
- Paul Balmer and Ivo Dell'Ambrogio. Green equivalences in equivariant mathematics. Math. Ann. (2021)
- Jun Maillard. A categorification of the Cartan-Eilenberg formula. Adv. Math. (2022).
- Ivo Dell'Ambrogio. Green 2-functors. Trans. Amer. Math. Soc. (2022)
- Paul Balmer and Ivo Dell'Ambrogio. Cohomological Mackey 2-functors. J. Inst. Math. Jussieu (2022)