Adjoining roots to ring spectra and algebraic K-theory

Haldun Özgür Bayındır Joint with Christian Ausoni and Tasos Moulinos

City, University of London

January 24, 2023

Overview

- Main goal: Algebraic K-theory of ring spectra.
- Motivation for algebraic K-theory of ring spectra (Morava E-theories E_{n}) through manifold topology.
- A new construction for adjoining roots to ring spectra.
- A new definition of logarithmic THH: root adjunction is logarithmic THH étale.
- Root adjunction results in a splitting at the level of K-theory
- We compute $V(1)_{*} \mathrm{~K}\left(k o_{p}\right)$
- A simplified computation of $T(2)_{*} \mathrm{~K}\left(k u_{p}\right)$
- We obtain $T(2) * \mathrm{~K}(k u / p)$

Motivation for K-theory of ring spectra

- For a topological space U,

$$
A(U):=K\left(\Sigma_{+}^{\infty} \Omega U\right)
$$

- Let M be a closed differentiable manifold.

Theorem (Waldhausen)
There is an equivalence

$$
A(M) \simeq \Sigma_{+}^{\infty} M \oplus W^{D i f f}(M)
$$

of spectra.

- $W h^{\text {diff }}(M)$ is the smooth Whitehead spectrum of M. Contains information on pseudo-isotopy space, h-cobordism space and diffeomorphism space of M.
- $A(M)$ is a module over $A(*)=K(\mathbb{S})$.
- Goal: Understand $K(\mathbb{S})$.

Ausoni-Rognes, Waldhausen program for $K(\mathbb{S})$

- Let L_{n} denote localization with the Johnson-Wilson spectrum $E(n)$.
Conjecture

$$
K\left(\mathbb{S}_{(p)}\right) \xrightarrow{\simeq} \operatorname{holim} K\left(L_{n} \mathbb{S}\right)
$$

Conjecture

$$
K\left(L_{K(n)} \mathbb{S}\right) \rightarrow K\left(E_{n}\right)^{h G_{n}}
$$

is an isomorphism in sufficiently large dimensions (after smashing with a chromatic type $n+1$ finite spectrum).

Computations of Ausoni and Rognes

- $E_{1}=K U_{p}, \pi_{*} k u_{p} \cong \mathbb{Z}_{p}\left[u_{2}\right],\left|u_{2}\right|=2$.

$$
k u_{p} \simeq \bigoplus_{0 \leq i<p-1} \Sigma^{2 i} \ell_{p}
$$

- ℓ is the Adams summand, $\pi_{*} \ell_{p} \cong \mathbb{Z}_{p}\left[v_{1}\right],\left|v_{1}\right|=2 p-2$. Indeed,

$$
\pi_{*} k u_{p} \cong \pi_{*}\left(\ell_{p}\right)\left(\sqrt[p-1]{v_{1}}\right):=\pi_{*}\left(\ell_{p}\right)[z] /\left(z^{p-1}-v_{1}\right)
$$

- Ausoni and Rognes compute $V(1)_{*} K\left(\ell_{p}\right)$ for $p \geq 5$.

Theorem (Ausoni)

$$
T(2)_{*} K\left(k u_{p}\right) \cong\left(T(2)_{*} K\left(\ell_{p}\right)\right)\left(\sqrt[p-1]{-v_{2}}\right)
$$

- KU - Classifies virtual complex vector bundles.
- Motivation for Ausoni's computation of $V(1)_{*} K\left(k u_{p}\right)$:
(Baas-Dundas-Richter-Rognes) $\mathrm{K}(k u)$ classifies virtual complex 2-vector bundles.
- KO classifies virtual real vector bundles and $\mathrm{K}(\mathrm{ko})$ classifies virtual real 2-vector bundles.
We compute $T(2)_{*} \mathrm{~K}(k o)$

Adjoining a root to an E_{2}-algebra

- $m>0$
- $k>0$ be even
- X be an E_{2}-ring spectrum with even homotopy, let $x \in \pi_{m k} X$.
- Let $\mathbb{S}\left[\sigma_{k}\right]$ denote the free E_{1}-algebra over \mathbb{S}^{k}.
- Lurie: $\mathbb{S}\left[\sigma_{k}\right]$ is an E_{2}-algebra, $\mathbb{S}\left[\sigma_{2}\right] \simeq \Sigma_{+}^{\infty} \Omega S^{3}$.
- Lurie, Hahn-Wilson: There is an E_{2}-map $\mathbb{S}\left[\sigma_{m k}\right] \rightarrow X$ carrying $\sigma_{m k}$ to x in homotopy.
- There is an E_{2}-map $\mathbb{S}\left[\sigma_{m k}\right] \rightarrow \mathbb{S}\left[\sigma_{k}\right]$ carrying $\sigma_{m k}$ to σ_{k}^{m} in homotopy.

Definition (Ausoni-B.-Moulinos)

$$
X(\sqrt[m]{x}):=X \wedge_{\mathbb{S}\left[\sigma_{m k}\right]} \mathbb{S}\left[\sigma_{k}\right]
$$

- $X(\sqrt[m]{x})$ is an X-algebra
- Künneth spectral sequence: $\pi_{*} X(\sqrt[m]{x}) \cong \pi_{*}(X)(\sqrt[m]{x})$

Examples

Theorem (Ausoni-B.-Moulinos)
There is an equivalence of E_{1}-ring spectra:

$$
E_{n} \simeq \mathbb{S}_{W\left(\mathbb{F}_{p^{n}}\right)} \wedge_{\mathbb{S}_{p}} L_{K(n)} B P\langle n\rangle\left(\sqrt[p^{n}-1]{V_{n}}\right)
$$

For $n=1$,

$$
k u_{p} \simeq \ell_{p}\left(\sqrt[p-1]{v_{1}}\right) .
$$

Graded ring structures

- The ring:

$$
R(\sqrt[m]{r}):=R[z] /\left(z^{m}-r\right)
$$

comes equipped with an R-module basis $\left\{1, z, \ldots, z^{m-1}\right\}$ compatible with the multiplicative structure.

- We say $R(\sqrt[m]{r})$ is a \mathbb{Z} / m-graded ring.
- Similarly, $X(\sqrt[m]{x})$ is a \mathbb{Z} / m-graded ring spectrum.

\mathbb{Z} / m-Graded ring spectra

- Y is a \mathbb{Z} / m-graded ring spectrum if

$$
Y=\bigoplus_{[i] \in \mathbb{Z} / m} Y_{i}
$$

and the multiplication map on Y

$$
Y \wedge Y \rightarrow Y
$$

splits into

$$
Y_{[i]} \wedge Y_{[j]} \rightarrow Y_{[i+j]}
$$

and the unit factors as $\mathbb{S} \rightarrow Y_{0} \rightarrow Y$.

- The symmetric monoidal ∞-category of $\mathbb{Z} /$ m-graded spectra is given by

$$
\left[(\mathbb{Z} / m)^{d s}, \mathcal{S}_{p}\right]_{\text {Day }} .
$$

A \mathbb{Z} / m-graded E_{n}-ring spectrum is an E_{n}-algebra in $\left[(\mathbb{Z} / m)^{d s}, \mathcal{S} p\right]_{\text {Day }}$.

Morava E-theories are $p^{n}-1$-graded ring spectra

- Lurie: $\mathbb{S}\left[\sigma_{k}\right] \simeq \bigoplus_{i \geq 0} \Sigma^{i k} \mathbb{S}$ is a graded E_{2}-algebra.
- $X(\sqrt[m]{x}):=X \wedge_{\mathbb{S}\left[\sigma_{m k}\right]} \mathbb{S}\left[\sigma_{k}\right]$ is a \mathbb{Z} / m-graded $E_{1} X$-algebra with

$$
X(\sqrt[m]{x})_{i} \simeq \Sigma^{i k} X
$$

Theorem
Morava E-theory spectrum E_{n} is a $\mathbb{Z} /\left(p^{n}-1\right)$-graded E_{1} $E(n)$-algebra with

$$
\left(E_{n}\right)_{i} \simeq \Sigma^{2 i} \mathbb{S}_{W\left(\mathbb{F}_{p^{n}}\right)} \wedge_{\mathbb{S}_{p}} L_{K(n)}(B P\langle n\rangle) ;
$$

$k u_{p}$ is a $\mathbb{Z} /(p-1)$-graded ℓ-algebra with

$$
k u_{i} \simeq \Sigma^{2 i} \ell_{p}
$$

- Improves the classical result:

$$
k u_{p} \simeq \bigoplus_{0 \leq i<p-1} \Sigma^{2 i} \ell_{p}
$$

Graded ring spectra and THH

- $Y=\bigoplus_{i \in \mathbb{Z} / m} Y_{i}$ be a \mathbb{Z} / m-graded ring spectrum
- (Antieau-Mathew-Morrow-Nikolaus) $\mathrm{THH}(Y)$ is a \mathbb{Z} / m-graded S^{1}-spectrum in a canonical way, i.e. there is a canonical S^{1}-splitting

$$
\mathrm{THH}(Y)=\bigoplus_{i \in \mathbb{Z} / m} \mathrm{THH}(Y)_{i}
$$

THH and adjoining roots

- X a p-local E_{2}-ring spectrum with even homotopy
- $x \in \pi_{m k} X$.
- $\operatorname{THH}(X(\sqrt[m]{x}))$ is a \mathbb{Z} / m-graded S^{1}-spectrum:

$$
\operatorname{THH}(X(\sqrt[m]{x})) \simeq \bigoplus_{i \in \mathbb{Z} / m} \operatorname{THH}(X(\sqrt[m]{x}))_{i}
$$

Theorem (Ausoni-B.-Moulinos)

If $p \nmid m$, then the map

$$
\mathrm{THH}(X) \xrightarrow{\simeq} \mathrm{THH}(X(\sqrt[m]{x}))_{0}
$$

is an equivalence. In particular,

$$
\operatorname{THH}(X) \rightarrow \operatorname{THH}(X(\sqrt[m]{x}))
$$

is the inclusion of a wedge summand.

- We identify the other summands using log THH.

logarithmic THH and adjoining roots

- $m>0, k>0$ even, X - p-local E_{2}-ring spectrum with even homotopy, $x \in \pi_{k m} X$.
- A new definition of logarithmic THH (denoted by $\mathrm{THH}(-\mid-)$). Idea, include $d \log x$ as $\frac{d x}{x}$ in differential forms.
Definition (Ausoni-B.-Moulinos)
Logarithmic THH of X relative to x is

$$
\operatorname{THH}(X \mid x):=\operatorname{THH}(X) \wedge_{\operatorname{THH}\left(\mathbb{S}\left[\sigma_{m k}\right]\right)} \operatorname{THH}\left(\mathbb{S}\left[\sigma_{m k}^{ \pm}\right]\right)_{\geq 0}
$$

where $(-)_{\geq 0}$ is the connective cover in the grading direction.

- (Devalapurkar-Moulinos): This is equivalent to the Rognes' definition of log THH.

Theorem (Ausoni-B.-Moulinos)
If $p \nmid m$, adjoining a root is logarithmic THH étale, i.e.
$\operatorname{THH}(X(\sqrt[m]{x}) \mid \sqrt[m]{x}) \simeq X(\sqrt[m]{x}) \wedge x \operatorname{THH}(X \mid x) \simeq \bigoplus_{0 \leq i<m} \Sigma^{i k} \operatorname{THH}(X \mid x)$

logarithmic THH and adjoining roots

- $m>0, k>0$ even, X - p-local E_{2}-ring spectrum with even homotopy, $x \in \pi_{k m} X$.

Theorem (Ausoni-B.-Moulinos)
If $p \nmid m$, then
$\operatorname{THH}(X(\sqrt[m]{x})) \simeq \operatorname{THH}(X) \oplus\left(\bigoplus_{0<i<m} \Sigma^{i k} \operatorname{THH}(X \mid x)\right)$.

Algebraic K-theory

- $m>0,|x|>0$ even

Theorem (Ausoni, B., Moulinos)
If X is p-local and $p \nmid m$, then

$$
K(X(\sqrt[m]{x})) \simeq K(X) \oplus M
$$

for some spectrum M.
Theorem (Ausoni, B., Moulinos)
There is a $T(n+1)$-equivalence of spectra

$$
K\left(E_{n}\right) \simeq K\left(\mathbb{S}_{W\left(\mathbb{F}_{p^{n}}\right)} \wedge_{\mathbb{S}_{p}} B P\langle n\rangle_{p}\right) \oplus N
$$

for some spectrum N.

2-Vector bundles

- Motivation for Ausoni's computation of $V(1)_{*} K\left(k u_{p}\right)$:
(Baas-Dundas-Richter-Rognes) $\mathrm{K}(k u)$ classifies virtual complex 2-vector bundles.
- KO classifies virtual real vector bundles and $\mathrm{K}(\mathrm{ko})$ classifies virtual real 2-vector bundles.
- (Ausoni, B., Moulinos) For $p>3$, there is an equivalence of E_{1}-ring spectra:

$$
k u_{p} \simeq k o_{p}(\sqrt[2]{\alpha})
$$

and therefore, $\mathrm{K}\left(k u_{p}\right) \simeq \mathrm{K}\left(k o_{p}\right) \oplus M$.

- We obtain a complete description of $V(1)_{*} K\left(k o_{p}\right)$ and:

Theorem (Ausoni, B., Moulinos)
There is an isomorphism

$$
T(2)_{*} \mathrm{~K}(k o) \cong\left(T(2)_{*} \mathrm{~K}(\ell)\right)\left(\frac{p-1}{2} \sqrt{-v_{2}}\right)
$$

Adams' splitting result for $K(k u)$

- $Y=k u_{p} \simeq \ell\left(\sqrt[p-1]{V_{1}}\right)$.
- Fiber sequence:

$$
\mathrm{TC}\left(k u_{p}\right) \rightarrow \prod_{i \in \mathbb{Z} /(p-1)} \mathrm{THH}\left(k u_{p}\right)_{i}^{h S^{1}} \xrightarrow{\varphi_{p}^{h s^{1}}-c a n} \prod_{i \in \mathbb{Z} /(p-1)}\left(\mathrm{THH}\left(k u_{p}\right)_{i}^{t C_{p}}\right)^{h S^{1}}
$$

$-\varphi_{p}: \mathrm{THH}\left(k u_{p}\right)_{i} \rightarrow \mathrm{THH}\left(k u_{p}\right)_{p i}^{t C_{p}}$

- $p=1$ in $\mathbb{Z} /(p-1)$ so we have

$$
\varphi_{p}: \mathrm{THH}\left(k u_{p}\right)_{i} \rightarrow \mathrm{THH}\left(k u_{p}\right)_{i}^{t C_{p}}
$$

- The fiber sequence above splits providing a splitting

$$
\mathrm{TC}\left(k u_{p}\right) \simeq \prod_{i \in \mathbb{Z} /(p-1)} \mathrm{TC}\left(k u_{p}\right)_{i}
$$

Simplified computation of the algebraic K-theory of $k u$

- Simplifying the proof of Ausoni's theorem:

$$
T(2)_{*} \mathrm{~K}\left(k u_{p}\right) \cong T(2)_{*} \mathrm{~K}\left(\ell_{p}\right)[b] /\left(b^{p-1}+v_{2}\right)
$$

- Ausoni: There is a map $K(\mathbb{Z}, 2) \simeq B U(1) \rightarrow G L_{1}(k u)$ providing a class $b \in T(2)_{2 p+2} \mathrm{TC}\left(k u_{p}\right)$ satisfying $b\left(b^{p-1}+v_{2}\right)=0$. Indeed, $b \in T(2)_{2 p+2} T C\left(k u_{p}\right)_{1}$.
- $k u_{p} \simeq \ell_{p}\left(\sqrt[p-1]{v_{1}}\right)$ is a $\mathbb{Z} /(p-1)$-graded E_{∞}-ring spectrum.
- $\mathrm{TC}\left(k u_{p}\right)$ is a $\mathbb{Z} /(p-1)$-graded E_{∞}-ring spectrum:

$$
\mathrm{TC}\left(k u_{p}\right) \simeq \bigoplus_{i \in \mathbb{Z} /(p-1)} \mathrm{TC}\left(k u_{p}\right)_{i}
$$

- Using logarithmic THH computations of Rognes, Sagave and Schlichtkrull: $b \in T(2)_{*} T C\left(k u_{p}\right)$ is a unit, therefore, $b^{p-1}=-v_{2}$.
- The following facts complete the proof:

1) $\mathrm{TC}\left(k u_{p}\right)_{0} \simeq \mathrm{TC}\left(\ell_{p}\right)$,
2) $b \in T(2)_{*} T C\left(k u_{p}\right)_{1}$ satisfy $b^{p-1}=-v_{2}$ and
3) $T(2)_{*} T C\left(k u_{p}\right)$ is a $\mathbb{Z} /(p-1)$-graded commutative ring.

Algebraic K-theory of two-periodic Morava K-theory

- $V(1)_{*} \mathrm{~K}(k(1))$ is known due to Ausoni-Rognes.
- We compute $T(2)_{*} \mathrm{~K}(k u / p), k u / p$ is the two-periodic Morava K-theory of height 1 .

Theorem (B.)

Let $b^{p-1}=-v_{2}$, there is an isomorphism:

$$
T(2)_{*} \mathrm{~K}(k u / p) \cong T(2)_{*} \mathrm{~K}(k(1)) \otimes_{\mathbb{F}_{p}\left[v_{2}\right]} \mathbb{F}_{p}[b] .
$$

- We construct $k u / p$ as an $E_{1} k u_{p}$-algebra in $\mathbb{Z} /(p-1)$-graded spectra. Therefore, $\mathrm{TC}(k u / p)$ is a module over $\mathrm{TC}\left(k u_{p}\right)$ in $\mathbb{Z} /(p-1)$-graded spectra.
- As $\mathbb{Z} /(p-1)$-graded E_{1}-rings: $k u / p \simeq k(1)\left(\sqrt[p-1]{v_{1}}\right)$.
- Result follows by the following facts:

1) $\mathrm{TC}(k u / p)_{0} \simeq \mathrm{TC}(k(1))$
2) There is a unit $b \in T(2)_{*} T C\left(k u_{p}\right)_{1}$ with $b^{p-1}=-v_{2}$
