
Computing integral bases of algebraic function
fields

Simon Abelard

LIX, École Polytechnique
Institut Polytechnique de Paris

March 5, 2020

Simon Abelard Integral bases March 5, 2020 1 / 15



Algebraic function fields, integral bases

Algebraic function fields
Consider a plane curve C over perfect field K of equation f (x , y) = 0.
View f ∈ K [x ][y ], monic of degree n, squarefree.
Function field K (C) = Frac (K [x , y ]/〈f (x , y)〉).

Integral elements
A function g ∈ K (C) is integral (over K [x ]) if there is a monic
polynomial µ ∈ K [x ][y ] such that µ(g(x , y)) = 0.

Example: 1, y , . . . , yn−1 are integral elements.
When f irreducible, integral elements form a K [x ]-module of rank n.
A K [x ]-basis of this module is an integral basis.
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Motivations

Originally: symbolic integration (Trager, 1984).
Precomputing integral closures in Hess’ algorithm for
Riemann–Roch spaces (2001).
(Geometric error-correcting codes, and arithmetic in Jacobians)
Reduction of function fields (van Hoeij–Novocin, 2005).

The following equations

f (x , y) = y 4 + (−4x2 + 2x + 2)y 3 + (8x4 − 7x3 − 2x2 − 2x + 1)y 2

+ (−12x6 + 9x5 + 4x4 + x3 − 2x2)y + 9x8 − 9x7 + 3x6 − 6x5 + 4x4

and h(u, v) = 3v 2 + 4u3 + 24u + 1 define isomorphic function fields.

Simon Abelard Integral bases March 5, 2020 3 / 15



Motivations

Originally: symbolic integration (Trager, 1984).
Precomputing integral closures in Hess’ algorithm for
Riemann–Roch spaces (2001).
(Geometric error-correcting codes, and arithmetic in Jacobians)
Reduction of function fields (van Hoeij–Novocin, 2005).

The following equations

f (x , y) = y 4 + (−4x2 + 2x + 2)y 3 + (8x4 − 7x3 − 2x2 − 2x + 1)y 2

+ (−12x6 + 9x5 + 4x4 + x3 − 2x2)y + 9x8 − 9x7 + 3x6 − 6x5 + 4x4

and h(u, v) = 3v 2 + 4u3 + 24u + 1 define isomorphic function fields.

Simon Abelard Integral bases March 5, 2020 3 / 15



Algorithms for integral bases

Algorithms updating a candidate basis until a criterion is met:
Trager’s algorithm (1984), criterion from commutative algebra.
(A function field analogue of the Round 2 algorithm)
Van Hoeij’s algorithm (1995) using Puiseux series for integrality.

In both families, updating the candidate relies on linear algebra.

Montes’ algorithm: devised for number fields, very different approach.

Many algorithms but very few complexity bounds in literature.
Algorithms are compared through runtimes over ad hoc examples.
No consensus, no guiding rules on which algorithm to use.
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A few projects

Exploit significant contributions of computer algebra since the 90’s:
Puiseux series (characteristic ≥ n).
(Poteaux, Rybowicz, Weimann)
Structured linear algebra.
(Dumas, Giorgi, Jeannerod, Neiger, Schost, Villard and many more)

Give more precise bounds in particular cases:
case of few singularities?
case of low multiplicities?

Provide criteria to choose which algorithm based on input features.
First step: complexity analysis.
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Contributions

Complexity bounds
Denote δ = deg Disc(f ). So far (work in progress!):

Trager’s algorithm needs O(nω+3δ) field operations.
Van Hoeij’s algorithm needs Õ (nω+2δ + n5 + n2dx ) field ops,
⊕ factorization of Disc(f ), time O(δ1.5 log q + δ log2 q) over Fq.
Böhm et al. in Õ (n3δ + n5 + n2dx ),
and one factorization of degree δ ? (speculative)

Particular cases: adapt strategy in case of few singularities.
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Overview of van Hoeij’s algorithm
There is an integral basis of the form

(
1, Q1(x ,y)

∆1(x) , . . . ,
Qn−1(x ,y)
∆n−1(x)

)
where:

the Qi ’s are in K [x , y ] monic in y and of degree i in y
the ∆i ’s are square factors of Disc(f ) = Resy

(
f , ∂f

∂y

)

Principle of van Hoeij’s algorithm
Incrementally build an integral basis (1, b1, . . . , bn−1)
For each irreducible φ such that φ2|Disc(f )
While d ≤ n − 1
Set bd = ybd−1 (first guess for bd)
Are there a0, . . . , ad−1 in K [x ] with yd +

∑d−1
i=0 ai (x)bi (x ,y)
φ(x) integral?

If so, this becomes our new bd and we repeat
If not, increment d (i.e. we did not find a better bd)
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Puiseux series and integrality
Puiseux series and valuation
Puiseux expansions of f at x = α: ρi(x) = ∑

j≥0 ρi ,j(x − α)j/τ .
The n expansions ρi satisfy f (x , y) = ∏n

i=1(y − ρi(x)).
Define valuations: for b ∈ K (x)[y ] vi(b) = val(b(x , ρi(x))).
(val gives the smallest exponent with non-zero coefficient.)

Theorem: b is (locally) integral iff for any 1 ≤ i ≤ n, vi(b) ≥ 0.

Back to van Hoeij’s algorithm
View a0, . . . , ad−1 as unknowns, pick α a root of φ.
Valuative conditions:

∀j , vj

(
yd +∑d−1

i=0 aibi

x − α

)
≥ 0,

Give a linear system of ≤ n2 equations in d variables, solve it in K (α).
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An example: f (x , y) = y 2 − x 3 over Q.
Only singularity is (0, 0) and Disc(f ) = −4x3 so φ(x) = x .
Puiseux expansions at 0 : ρ1 = x3/2 and ρ2 = −x3/2.

Step 1: d = 1, first guess b1 = y
Is there a0 ∈ Q such that b = y−a0

x is integral?
We have b(x , ρ1) = x1/2 − a0/x and b(x , ρ2) = −x1/2 − a0/x .
Both have positive valuation iff a0 = 0 so we update b1 = y/x .

Step 2: d = 1, first guess b1 = y/x
Repeat: is there a0 ∈ Q such that b = y/x−a0

x is integral?
We have b(x , ρ1) = x−1/2 − a0/x and b(x , ρ1) = −x−1/2 − a0/x .
The valuation of both is at best −1/2 < 0, we cannot divide further.

Conclusion: (1, y/x) is an integral basis.
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Complexity analysis
For simplicity, K = Fq has characteristic > n.
Notation dx = degx f and δ = deg Disc(f ) ≤ 2ndx .
Complexity in base field operations.

Input size: f consists of O(ndx ) field elements.
Output size: O(n2δ) field elements.
(n basis elements, y -degree ≤ n, x -degree ≤ δ ≤ 2ndx ).

Factoring discriminant: Õ(δ1.5 log q + δ log2 q) bit operations.
Computing Puiseux expansions at all singularities: Õ(n2dx + n5).
(Poteaux-Weimann, Kung-Traub)
One iteration for a factor φ: Õ(nω+1 deg φ).
Final CRT: Õ(n2δ).
Overall: Õ

(
nω+2δ + n2dx + n5) field operations

Plus one factorization of a degree-δ polynomial.
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Improving the case of low multiplicities:

For simplicity, assume only singularity is (0, 0).
Integral basis elements are 1, b1 = Q1(x ,y)

xe1 , . . . , bn−1 = Qn−1(x ,y)
xen−1 .

The ei ’s are necessarily non-decreasing (if bk is integral, so is ybk).

Idea: compute a bi without knowing all the previous bj ’s.
For i > j if ei = ej then for j ≤ k ≤ i , bk = y k−jbj .
Use dichotomy to locate indices j such that ej > ej−1.
Example: for nodal curves, just find the first ei equal to 1.
Drawback: not knowing all the previous bj ’s increase the cost.
Advantage: in the extreme case where multiplicities are constant,
Saves a factor Õ(n) on the number of systems to solve.
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Case of few singularities, high multiplicities

For simplicity, assume only singularity is (0, 0).
Integral basis elements are 1, b1 = Q1(x ,y)

xe1 , . . . , bn−1 = Qn−1(x ,y)
xen−1 .

Idea: Instead of iteratively dividing by x , find ek using binary search.
Drawback: Less systems to solve, but each system is much bigger.
No improvement over the general bound even if only one singularity.
Possible improvement in terms run time remains to be checked.
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Further improvement

Böhm et al. (2015) split using branches instead of points.
i.e. factor f (x , y) in K [[x ]] [y ].

Drawback: work in K [[x ]] [y ]/〈f (x , y)〉 instead.
Advantage: f irreducible so Puiseux series are conjugate.
Compute numerators from products of Puiseux series truncation.
A HNF is computed to fall back to triangular form(

1, Q1(x , y)
d1(x) , . . . ,

Qn−1(x , y)
dn−1(x)

)
,

where the Qi ’s are polynomials.
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Comparisons and prospective

Recall δ = deg Disc(f ). So far we have:
Trager in O(nω+3δ). (but quite pessimistic estimate)
Van Hoeij in Õ (nω+2δ + n5 + n2dx ),
and one factorization of degree δ.
Böhm et al. in Õ (n3δ + n5 + n2dx ),
and one factorization of degree δ ? (speculative)

Future work
Push complexity analysis further.
Investigate particular cases, provide guidelines.
Experiments: run-times do not match theory.
(Puiseux series may become the bottleneck in practice.)
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Thank you !
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