## Bijections between

## walks inside a triangular domain

 and Motzkin paths of bounded amplitude
## Irène Marcovici

Joint work with Julien Courtiel and Andrew Elvey Price

Institut Élie Cartan de Lorraine, Université de Lorraine, Nancy, France
Lattice Paths, Combinatorics and Interactions Thursday 24 June, 2021

Forward triangular path: path confined within a triangular lattice $\mathcal{T}_{L}$ of size $L$, where the only allowed steps are in direction $s_{1}, s_{2}, s_{3}$.


Triangular lattice of size $L=3$

Forward triangular path: path confined within a triangular lattice $\mathcal{T}_{L}$ of size $L$, where the only allowed steps are in direction $s_{1}, s_{2}, s_{3}$.


Triangular lattice of size $L=3$


Example of forward path of length 4 starting from $\mathcal{O}$

Motzkin path: path made of steps $\nearrow, \rightarrow$ and $\searrow$, starting from height 0 , ending at height 0 , and never going below the horiz. axis.


Example of Motzkin path of length 4, with maximal height equal to 1

## Equinumeracy



Forward triangular paths of length 4, on $\mathcal{T}_{3}$, starting from $\mathcal{O}$

## Equinumeracy



Forward triangular paths of length 4, on $\mathcal{T}_{3}$, starting from $\mathcal{O}$

Motzkin paths of length 4, with maximal height $\leq 1$

## Mortimer and Prellberg - EJC 2015

Observation: there are as many:

- forward triangular paths on $\mathcal{T}_{2 L+1}$ of length $n$ starting from $\mathcal{O}$
- Motzkin paths of length $n$ with height bounded by $L$

Proof: genetaring functions, kernel method
Open problem: find a bijective proof!

## Triangular paths

- A forward step is a step in direction $s_{1}, s_{2}$, or $s_{3}$.



## Triangular paths

- A forward step is a step in direction $s_{1}, s_{2}$, or $s_{3}$.
- A backward step is a step in direction $\overline{s_{1}}, \overline{s_{2}}$, or $\overline{s_{3}}$.


For $W \in\{F, B\}^{n}$, a path of direction vector $W$ is a path of length $n$ such that step $i$ is forward if $W_{i}=F$ and backward if $W_{i}=B$.

## Triangular paths

- A forward step is a step in direction $s_{1}, s_{2}$, or $s_{3}$.
- A backward step is a step in direction $\overline{s_{1}}, \overline{s_{2}}$, or $\overline{s_{3}}$.


For $W \in\{F, B\}^{n}$, a path of direction vector $W$ is a path of length $n$ such that step $i$ is forward if $W_{i}=F$ and backward if $W_{i}=B$.

## Proposition

For any $W, W^{\prime} \in\{F, B\}^{n}$, and any $z \in \mathcal{T}_{L}$, there are as many paths of direction vector $W$ starting from $z$ and confined in $\mathcal{T}_{L}$ as paths of direction vector $W^{\prime}$ starting from $z$ and confined in $\mathcal{T}_{L}$.

## Bijective proof

We define reversible operations that can be applied to any triangular path $\left(\omega_{1}, \ldots, \omega_{n}\right)$ of $\mathcal{T}_{L}$ and s.t. the image is still in $\mathcal{T}_{L}$.

- A swap flip modifies two consecutive steps $\left(\omega_{i}, \omega_{i+1}\right)$ according to:
- $\left(s_{j}, \overline{s_{k}}\right) \longleftrightarrow\left(\overline{s_{k}}, s_{j}\right)$

$$
\text { if }\left(\omega_{i}, \omega_{i+1}\right)=\left(s_{j}, \bar{s}_{k}\right) \text { or }\left(\omega_{i}, \omega_{i+1}\right)=\left(\bar{s}_{k}, s_{j}\right), \text { with } j \neq k
$$

- $\left(s_{k}, \overline{s_{k}}\right) \longleftrightarrow\left(\overline{s_{k-1}}, s_{k-1}\right)$

$$
\text { if }\left(\omega_{i}, \omega_{i+1}\right)=\left(s_{k}, \bar{s}_{k}\right) \text { or }\left(\omega_{i}, \omega_{i+1}\right)=\left(\overline{s_{k-1}}, s_{k-1}\right) \text { for some } k
$$

This induces a flip $(F, B) \longleftrightarrow(B, F)$ in the direction vector.

## Bijective proof

We define reversible operations that can be applied to any triangular path $\left(\omega_{1}, \ldots, \omega_{n}\right)$ of $\mathcal{T}_{L}$ and s.t. the image is still in $\mathcal{T}_{L}$.

- A swap flip modifies two consecutive steps $\left(\omega_{i}, \omega_{i+1}\right)$ according to:
- $\left(s_{j}, \overline{s_{k}}\right) \longleftrightarrow\left(\overline{s_{k}}, s_{j}\right)$

$$
\text { if }\left(\omega_{i}, \omega_{i+1}\right)=\left(s_{j}, \bar{s}_{k}\right) \text { or }\left(\omega_{i}, \omega_{i+1}\right)=\left(\bar{s}_{k}, s_{j}\right), \text { with } j \neq k
$$

- $\left(s_{k}, \overline{s_{k}}\right) \longleftrightarrow\left(\overline{s_{k-1}}, s_{k-1}\right)$

$$
\text { if }\left(\omega_{i}, \omega_{i+1}\right)=\left(s_{k}, \overline{s_{k}}\right) \text { or }\left(\omega_{i}, \omega_{i+1}\right)=\left(\overline{s_{k-1}}, s_{k-1}\right) \text { for some } k
$$

This induces a flip $(F, B) \longleftrightarrow(B, F)$ in the direction vector.

- A last-step flip changes the direction of the last step $\omega_{n}$ according to:

$$
s_{i} \longleftrightarrow \overline{s_{i-1}}
$$

## Bijective proof



## Bijective proof

Another more symetric way to see the bijection, using only swap flips: we represent the "folding of the path" on a diamond lattice (with step $\nearrow$ when direction $F$ and $\searrow$ for $B$ ).

Example of the path $s_{1} \overline{s_{3}} \overline{s_{1}}$.


## Motzkin meanders

A Motzkin meander is a suffix of a Motzkin path: it can start at any height and ends at height 0 .

Notations:

- $f_{n}(z)=\mathrm{nb}$. of forward paths of length $n$ starting from $z$ and confined in $\mathcal{T}_{2 L+1}$
- $m_{n}(\ell)=\mathrm{nb}$. of Motzkin meanders of length $n$ starting from height $\ell$ and of maximal height $\leq L$


## Motzkin meanders

A Motzkin meander is a suffix of a Motzkin path: it can start at any height and ends at height 0 .

Notations:

- $f_{n}(z)=n b$. of forward paths of length $n$ starting from $z$ and confined in $\mathcal{T}_{2 L+1}$
- $m_{n}(\ell)=\mathrm{nb}$. of Motzkin meanders of length $n$ starting from height $\ell$ and of maximal height $\leq L$


## Proposition

For any $\ell \in\{0, \ldots, L\}$,

$$
f_{n}\left(\mathcal{O}+\ell s_{1}\right)=\sum_{i=0}^{\ell} m_{n}(i)
$$

For $\ell=0$, this gives: $f_{n}(\mathcal{O})=m_{n}(0)$.

forward paths of length 3 starting from $\mathcal{O}+s_{1}$ and confined in $\mathcal{T}_{3}$


Motzkin meanders of length $n$ starting from height 0 or 1 and of max. height $\leq 1$

- Motzkin meanders:

$$
\begin{aligned}
& m_{n}(\ell)=m_{n-1}(\ell-1)+m_{n-1}(\ell)+m_{n-1}(\ell+1), \quad \ell \in\{1, \ldots, L-1\} \\
& m_{n}(0)=m_{n-1}(0)+m_{n-1}(1) \\
& m_{n}(L)=m_{n-1}(L-1)+m_{n-1}(L)
\end{aligned}
$$

- Motzkin meanders:

$$
\begin{aligned}
& m_{n}(\ell)=m_{n-1}(\ell-1)+m_{n-1}(\ell)+m_{n-1}(\ell+1), \quad \ell \in\{1, \ldots, L-1\} \\
& m_{n}(0)=m_{n-1}(0)+m_{n-1}(1) \\
& m_{n}(L)=m_{n-1}(L-1)+m_{n-1}(L)
\end{aligned}
$$

- Forward paths:


$$
\begin{aligned}
& \mathbf{O}_{n}=\mathbf{O}_{n-1}+\mathbf{\square}_{n-1} \\
& \mathbf{O}_{n}=\bullet_{n-1}+\square_{n-1}
\end{aligned}
$$

$$
f_{n}\left(\mathcal{O}+\ell s_{1}\right)-f_{n}\left(\mathcal{O}+(\ell-1) s_{1}\right)=f_{n-1}\left(\mathcal{O}+(\ell+1) s_{1}\right)-f_{n-1}\left(\mathcal{O}+(\ell-2) s_{1}\right)
$$

Extension to inner points of the triangle: to each point $z \in \mathcal{T}_{2 L+1}$, we can associate coeff. $p_{1}(z), \ldots, p_{L}(z)$ s.t.:

$$
\forall n \geq 0, \quad f_{n}(z)=\sum_{i=0}^{L} p_{i}(z) m_{n}(i)
$$

Extension to inner points of the triangle: to each point $z \in \mathcal{T}_{2 L+1}$, we can associate coeff. $p_{1}(z), \ldots, p_{L}(z)$ s.t.:

$$
\forall n \geq 0, \quad f_{n}(z)=\sum_{i=0}^{L} p_{i}(z) m_{n}(i) .
$$

For $z=i e_{1}+j e_{2}+k e_{3}$,
$\frac{\left(1-x^{i+1}\right)\left(1-x^{j+1}\right)\left(1-x^{k+1}\right)}{(1-x)^{2}}$
$=p_{0}(z)+p_{1}(z) x+\cdots+p_{L}(z) x^{H}+\cdots+p_{2 L+1}(z) x^{2 L+1}$


Extension to inner points of the triangle: to each point $z \in \mathcal{T}_{2 L+1}$, we can associate coeff. $p_{1}(z), \ldots, p_{L}(z)$ s.t.:

$$
\forall n \geq 0, \quad f_{n}(z)=\sum_{i=0}^{L} p_{i}(z) m_{n}(i) .
$$

For $z=i e_{1}+j e_{2}+k e_{3}$,

$$
\begin{aligned}
& \frac{\left(1-x^{i+1}\right)\left(1-x^{j+1}\right)\left(1-x^{k+1}\right)}{(1-x)^{2}} \\
& =p_{0}(z)+p_{1}(z) x+\cdots+p_{L}(z) x^{H}+\cdots+p_{2 L+1}(z) x^{2 L+1}
\end{aligned}
$$



$$
\begin{aligned}
p_{i}\left(z+s_{1}\right)+p_{i}\left(z+s_{2}\right)+p_{i}\left(z+s_{3}\right) & =p_{i-1}(z)+p_{i}(z)+p_{i+1}(z) \\
p_{0}\left(z+s_{1}\right)+p_{0}\left(z+s_{2}\right)+p_{0}\left(z+s_{3}\right) & =p_{0}(z)+p_{1}(z) \\
p_{L}\left(z+s_{1}\right)+p_{L}\left(z+s_{2}\right)+p_{L}\left(z+s_{3}\right) & =p_{L}(z)+p_{L-1}(z)
\end{aligned}
$$

## Profile of the triangle



For $z=e_{1}+e_{2}+3 e_{3}$, we have $\left(p_{0}(z), p_{1}(z), p_{2}(z)\right)=(1,2,1)$ and:

$$
f_{n}(z)=m_{n}(0)+2 m_{n}(1)+m_{n}(2)
$$

## Notion of scaffolding



日

## Complete scaffolding



## Complete scaffolding



Given a scaffolding, we have a bijection between:

- forward triangular paths on $\mathcal{T}_{2 L+1}$ of length $n$ starting from $\mathcal{O}$
- Motzkin paths of length $n$ with height bounded by $L$


## Further results

- There exists a canonical way to construct a scaffolding.


## Further results

- There exists a canonical way to construct a scaffolding.
- The same results hold for a triangular lattice of size $2 L$, with Motzkin paths of max. height $L$, where horiz. steps are forbidden at height $L$.


## Further results

- There exists a canonical way to construct a scaffolding.
- The same results hold for a triangular lattice of size $2 L$, with Motzkin paths of max. height $L$, where horiz. steps are forbidden at height $L$.
- Extension to dim. 3, with Motzkin paths replaced by paths on a "waffle".


There are as many:

- pyramid paths starting at $\mathcal{O}$
- waffle walks starting at $(0,0)$ and ending on the $x$-axis.

