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Two random surfaces

M

random planar map (RPM) Liouville quantum gravity (LQG)

Main result (informal): RPM converge to LQG in the scaling limit

.... Bijections between planar maps and lattice paths essential in proofs

Right figure by Miller and Sheffield
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Random planar maps (RPM)

A planar map M is a finite connected graph drawn in the sphere,
viewed up to continuous deformations.

A triangulation of a disk is a planar map where all the faces have
three edges, except one distinguished face (the exterior face) with
arbitrary degree and simple boundary.

Given n,m ∈ N let M be a uniformly chosen triangulation of a disk
with n interior vertices and m boundary vertices.

=

M
e0

M
e0

M
e0

6=
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Uniformly sampled triangulations

Triangulation Triangulation of disk

Simulations by Bettinelli
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Planar maps

planar map

combinatorics
conformal field theory

string theory

random geometry

geometry

random matrix theory
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Gaussian free field (GFF)

The free boundary Gaussian free field h in D is the Gaussian random
field with mean zero and covariance

Cov(h(z), h(w)) = G (z ,w),

where G : D× D→ [0,∞) is the Neumann Green’s function

G (z ,w) = log |z − w |−1 + log |1− zw |−1.

h not well defined as a function since G (z , z) =∞.
h well-defined as a random generalized function (distribution).∫

D hf d2z is well-defined for f a smooth test function.

Discrete GFF
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Liouville quantum gravity (LQG)

If h : D→ R is smooth and γ ∈ (0, 2), then the following defines a
measure µ and a distance function (metric) D on D:

µ(U) =

∫
U
eγh(z)d2z , D(z1, z2) = inf

P:z1→z2

∫
P
e

γh(z)
2 dz .

where U ⊂ D and z1, z2 ∈ D.

γ-Liouville quantum gravity (LQG): h is the Gaussian free field.

The definition of an LQG surface does not make literal sense since h
is a distribution and not a function.

Measure µ and distance function (metric) D defined by
considering regularization hε of h.1

µ(U) = lim
ε→0

ε
γ2

2

∫
U
eγhε(z)d2z , D(z1, z2) = lim

ε→0
cε inf

P:z1→z2

∫
P
e

γhε(z)
d(γ) dz .

LQG for γ =
√

8/3: Brownian map; scaling limit of uniform maps.

Key takeaway: LQG defines random measure & distance function.

.
1Metric construction: Gwynne-Miller’19, Ding-Dubedat-Dunlap-Falconet’19,

Dubedat-Falconet-Gwynne-Pfeffer-Sun’19. Hausdorff dim. (D,D) denoted by d(γ).
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Random planar maps converge to LQG

Two models for random surfaces:

Random planar maps (RPM)

Liouville quantum gravity (LQG)

.
What does it mean for a RPM to converge?
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Random planar maps converge to LQG

Two models for random surfaces:

Random planar maps (RPM)

Liouville quantum gravity (LQG)

.
What does it mean for a RPM to converge?

(i) Metric space structure (Gromov-Hausdorff topology)

Le Gall’11, Miermont’11, several others

(ii) Statistical physics decorations (variants of mating-of-trees topology)

Duplantier-Miller-Sheffield’14, Sheffield’11, several others

(iii) Conformal structure (weak topology for measures on C)

H.-Sun’19
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Two models for random surfaces:

Random planar maps (RPM)

Liouville quantum gravity (LQG)

.
What does it mean for a RPM to converge?

(i) Metric space structure (Gromov-Hausdorff topology)

Le Gall’11, Miermont’11, several others

(ii) Statistical physics decorations (variants of mating-of-trees topology)

Duplantier-Miller-Sheffield’14, Sheffield’11, several others

(iii) Conformal structure (weak topology for measures on C)

H.-Sun’19

Convergence in (i) and (ii) established via bijections to lattice paths:

(i) metric bijections

(ii) mating-of-tree bijections
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Bijections between planar maps and lattice paths

Two families: (i) metric bijections and (ii) mating-of-trees bijections
Examples (i): Cori–Vauquelin’81, Schaeffer’98, Bouttier-Di
Francesco-Guitter’04, Poulalhon-Schaeffer’06, etc.
Examples (ii): Mullin’67, Bernardi’08, Li-Sun-Watson’17,
Bernardi’07/Ber.-H.-Sun’19, Kenyon-Miller-Sheffield-Wilson’15, etc.
Both families of bij. involve lattice paths encoding pair of trees.
Continuum analogue of bijections:

(i) Brownian map (Marckert–Mokkadem’06, Le Gall’07’11, Miermont’11)
(ii) LQG as mating of trees (Duplantier-Miller-Sheffield’14).

(ii) for decorated planar maps, i.e., with statistical physics model.
Therefore also for non-uniform planar maps.
The lattice path encodes important information: (i) metric properties;
(ii) observables of the map with a statistical physics model.

tree

bijection

contour function
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Scaling limits of planar maps via metric bijections
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Cori-Vauquelin-Schaeffer (CVS) bijection

Quadrangulation Well-labeled tree
.
Well-labeled tree: tree with positive labels such that root has label 1;
adjacent labels differ by 0,±1.
.
Key property: Graph distance to root = label
.
Figure due to Olivier Bernardi
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Gromov-Hausdorff topology

Natural topology on compact metric spaces.
.
Hausdorff distance for E1,E2 ⊂W and (W ,D) a metric space

dH
D(E1,E2) := max{ sup

x∈E1

inf
y∈E2

D(x , y), sup
y∈E2

inf
x∈E1

D(x , y)}.

Gromov-Hausdorff distance between X1 = (X 1, d1) and X2 = (X 2, d2)

dGH
(
X1,X2

)
= inf

(W ,D),ι1,ι2
dH
D

(
ι1(X 1), ι2(X 2)

)
,

where the infimum is over all compact metric spaces (W ,D) and isometric
embeddings ι1 : X 1 →W and ι2 : X 2 →W .

X1

X2

ι1 ι2

W

dGH(X1,X2)
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Gromov-Hausdorff-Prokhorov topology

Natural topology on compact metric measure spaces.
.
Prokhorov distance for Borel measures µ1, µ2 on (W ,D):

dP
D(µ1, µ2) = inf{ε > 0 : µ1(A) ≤ µ2(Aε) + ε

and µ2(A) ≤ µ1(Aε) + ε for all closed sets A ⊂W },

where Aε is the set of elements of W at distance less than ε from A, i.e.
Aε = {x ∈W such that ∃a ∈ A, D(a, x) < ε}.
.
Gromov-Hausdorff-Prokhorov distance between X1 = (X 1, d1, µ1) and
X2 = (X 2, d2, µ2):

dGHP
(
X1,X2

)
= inf

(W ,D),ι1,ι2
dH
D

(
ι1(X 1), ι2(X 2)

)
+dP

D((ι1)∗µ
1, (ι2)∗µ

2),

where the infimum is over all compact metric spaces (W ,D) and isometric
embeddings ι1 : X 1 →W and ι2 : X 2 →W .
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Random quadrangulation ⇒ Brownian map

Mn is a quadrangulation, M is the Brownian map (
√

8/3-LQG)

Theorem 1 (Le Gall’11, Miermont’11)

Mn ⇒ M for the Gromov-Hausdorff-Prokhorov topology.

n−1/4

n−1

bijection

continuum random tree

Brownian excursion indexed by
branches of tree

+
“bijection”

Brownian map

scaling limit
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Random triangulation of a disk ⇒ Brownian disk

Mn is a triangulated disk, M is the Brownian disk (
√

8/3-LQG)

Theorem 2 (Albenque-H.-Sun’19)

Mn ⇒ M for the Gromov-Hausdorff-Prokhorov topology.

n−1/4

n−1

Related works: Le Gall’11, Miermont’11, Bettinelli–Miermont’15,
Poulalhon–Schaeffer’06, Addario-Berry–Albenque’13, Addario-B.–Wen’15
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√

8/3-LQG)

Theorem 2 (Albenque-H.-Sun’19)

Mn ⇒ M for the Gromov-Hausdorff-Prokhorov topology.

Blossoming forest

Related works: Le Gall’11, Miermont’11, Bettinelli–Miermont’15,
Poulalhon–Schaeffer’06, Addario-Berry–Albenque’13, Addario-B.–Wen’15
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Random triangulation of a disk ⇒ Brownian disk

Mn is a triangulated disk, M is the Brownian disk (
√

8/3-LQG)

Theorem 2 (Albenque-H.-Sun’19)

Mn ⇒ M for the Gromov-Hausdorff-Prokhorov topology.

e1

e2
e3

e4

e5

e6

e7

e8

e9

e10
e11

e12

e13
e14

e15 M6 = M11 =

M8 =

M10 =

simple (type III) loopless (type II)

Related works: Le Gall’11, Miermont’11, Bettinelli–Miermont’15,
Poulalhon–Schaeffer’06, Addario-Berry–Albenque’13, Addario-B.–Wen’15
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Scaling limits of planar maps via mating-of-trees bijections
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Mullin bijection

M

T

M∗
M

T ∗

T

e0

ZT ∗

T

planar map and spanning tree planar map, spanning tree and their duals

spanning tree and its dual
lattice path encoding trees

Lattice path ⇒ 2D Brownian motion, which encodes an LQG surface.

Non-uniform map: Law of map reweighted by number of spanning trees.
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Percolated triangulations and Kreweras walks

a

b

babcbbabccacc

W

(M,P )

Bernardi’07Bernardi-H.-Sun’18
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Scaling limit of percolated triangulations

Let M be uniform triangulation with n interior (resp.
√
n boundary)

vertices; let P be uniform coloring of the interior vertices.
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Scaling limit of percolated triangulations

Let M be uniform triangulation with n interior (resp.
√
n boundary)

vertices; let P be uniform coloring of the interior vertices.

Conformal loop ensemble (CLE): conformally invariant collection of
non-crossing loops in D; loop variant of Schramm-Loewner evolution
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Scaling limit of percolated triangulations

Let M be uniform triangulation with n interior (resp.
√
n boundary)

vertices; let P be uniform coloring of the interior vertices.

Conformal loop ensemble (CLE): conformally invariant collection of
non-crossing loops in D; loop variant of Schramm-Loewner evolution

Bernardi-H.-Sun’18: There exists an embedding of P into D such that
a number of interesting observables of (M,P) converge jointly in law
when n→∞. The scaling limit can be described in terms of CLE on
an independent

√
8/3-LQG surface.

⇒ LQG and CLE
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Scaling limit of percolated triangulations

Let M be uniform triangulation with n interior (resp.
√
n boundary)

vertices; let P be uniform coloring of the interior vertices.

Conformal loop ensemble (CLE): conformally invariant collection of
non-crossing loops in D; loop variant of Schramm-Loewner evolution

Bernardi-H.-Sun’18: There exists an embedding of P into D such that
a number of interesting observables of (M,P) converge jointly in law
when n→∞. The scaling limit can be described in terms of CLE on
an independent

√
8/3-LQG surface.

Counting measure on vertices rescaled by n−1 ⇒ LQG area measure
Percolation cycles ⇒ CLE loops
Crossing events converge
Counting measure on pivotals rescaled by n−1/4 ⇒ CLE touching meas.
Percolation exploration tree ⇒ CLE exploration tree
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Scaling limit of percolated triangulations

Let M be uniform triangulation with n interior (resp.
√
n boundary)

vertices; let P be uniform coloring of the interior vertices.
Conformal loop ensemble (CLE): conformally invariant collection of
non-crossing loops in D; loop variant of Schramm-Loewner evolution
Bernardi-H.-Sun’18: There exists an embedding of P into D such that
a number of interesting observables of (M,P) converge jointly in law
when n→∞. The scaling limit can be described in terms of CLE on
an independent

√
8/3-LQG surface.

crossing event pivotal points
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Scaling limit via Kreweras walks

a

b

babcbbabccacc

W

(M,P )

I⇔
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Scaling limit via Kreweras walks

I⇔
W

(M,P )

Z

I⇔

(M,P )

(h,Γ)

| ⇔

| ⇔

walk (Wk)k∈[3n]

Brownian excursion
(Zt)t∈[0,1]

⇓

bijection

“bijection”

convergence

√
8/3-LQG h CLE6 Γ

2d walk

2d Brownian excursion

⇓
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Scaling limit via Kreweras walks

I⇔
W

(M,P )

Z
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(M,P )

(h,Γ)

| ⇔

| ⇔

walk (Wk)k∈[3n]

Brownian excursion
(Zt)t∈[0,1]

⇓

bijection

“bijection”

convergence

√
8/3-LQG h CLE6 Γ

2d walk

2d Brownian excursion

of walk and
observables

encodedby walk
⇓
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W
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Bijection between percolated maps and walks

Bernardi’07, Bernardi-H.-Sun’17: Bijection between

(1) site-percolated rooted triangulation (M,P) of a disk with n + 1 edges

(2) cone excursion W length n, steps a = (1, 0), b = (0, 1), c = (−1,−1)

a

b

babcbbabccacc

2

1 ⇔
W

(M,P )
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Holden (ETH Zürich) June 22, 2021 21 / 23



Bijection between percolated maps and walks

Bernardi’07, Bernardi-H.-Sun’17: Bijection between

(1) site-percolated rooted triangulation (M,P) of a disk with n + 1 edges

(2) cone excursion W length n, steps a = (1, 0), b = (0, 1), c = (−1,−1)

a b

old head
new head

babcbbabc
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Infinite-volume bijection

I. Kortchemski

Infinite-volume bijection:

Percolated uniform infinite planar triangulation (UIPT)
walk with i.i.d. increments a, b, c .

Allows to relate properties of the UIPT and LQG:

random walk on the UIPT (Gwynne-Hutchcroft’18, Gwynne-Miller’17)
dimension of γ-LQG (Ding-Gwynne’18, Gwynne-H.-Sun’17)
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.

Thanks!
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