Random triangulations and bijective paths to Liouville quantum gravity

Nina Holden

ETH Zürich

Based on works with Marie Albenque, Olivier Bernardi, and Xin Sun.

June 22, 2021

Two random surfaces

random planar map (RPM)

Liouville quantum gravity (LQG)

Main result (informal): RPM converge to LQG in the scaling limit
Bijections between planar maps and lattice paths essential in proofs
Right figure by Miller and Sheffield

Random planar maps (RPM)

- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A triangulation of a disk is a planar map where all the faces have three edges, except one distinguished face (the exterior face) with arbitrary degree and simple boundary.
- Given $n, m \in \mathbb{N}$ let M be a uniformly chosen triangulation of a disk with n interior vertices and m boundary vertices.

Uniformly sampled triangulations

Triangulation

Triangulation of disk

Simulations by Bettinelli

Planar maps

Gaussian free field (GFF)

- The free boundary Gaussian free field h in \mathbb{D} is the Gaussian random field with mean zero and covariance

$$
\operatorname{Cov}(h(z), h(w))=G(z, w)
$$

where $G: \mathbb{D} \times \mathbb{D} \rightarrow[0, \infty)$ is the Neumann Green's function

$$
G(z, w)=\log |z-w|^{-1}+\log |1-z \bar{w}|^{-1} .
$$

- h not well defined as a function since $G(z, z)=\infty$.
- h well-defined as a random generalized function (distribution).
- $\int_{\mathbb{D}} h f d^{2} z$ is well-defined for f a smooth test function.

Discrete GFF

Liouville quantum gravity (LQG)

- If $h: \mathbb{D} \rightarrow \mathbb{R}$ is smooth and $\gamma \in(0,2)$, then the following defines a measure μ and a distance function (metric) D on \mathbb{D} :

$$
\mu(U)=\int_{U} e^{\gamma h(z)} d^{2} z, \quad D\left(z_{1}, z_{2}\right)=\inf _{P: z_{1} \rightarrow z_{2}} \int_{P} e^{\frac{\gamma h(z)}{2}} d z
$$

where $U \subset \mathbb{D}$ and $z_{1}, z_{2} \in \mathbb{D}$.

- γ-Liouville quantum gravity (LQG): h is the Gaussian free field.
- The definition of an LQG surface does not make literal sense since h is a distribution and not a function.
- Measure μ and distance function (metric) D defined by considering regularization h_{ϵ} of $h .^{1}$

$$
\mu(U)=\lim _{\epsilon \rightarrow 0} \epsilon^{\frac{\gamma^{2}}{2}} \int_{U} e^{\gamma h_{\epsilon}(z)} d^{2} z, \quad D\left(z_{1}, z_{2}\right)=\lim _{\epsilon \rightarrow 0} c_{\epsilon} \inf _{P: z_{1} \rightarrow z_{2}} \int_{P} e^{\frac{\gamma h_{\epsilon}(z)}{d(\gamma)}} d z
$$

- LQG for $\gamma=\sqrt{8 / 3}$: Brownian map; scaling limit of uniform maps.
- Key takeaway: LQG defines random measure \& distance function.

[^0]
Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?
(i) Metric space structure (Gromov-Hausdorff topology)

- Le Gall'11, Miermont'11, several others
(ii) Statistical physics decorations (variants of mating-of-trees topology)
- Duplantier-Miller-Sheffield'14, Sheffield'11, several others
(iii) Conformal structure (weak topology for measures on \mathbb{C})
- H.-Sun'19

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?
(i) Metric space structure (Gromov-Hausdorff topology)

- Le Gall'11, Miermont'11, several others
(ii) Statistical physics decorations (variants of mating-of-trees topology)
- Duplantier-Miller-Sheffield'14, Sheffield'11, several others
(iii) Conformal structure (weak topology for measures on \mathbb{C})
- H.-Sun'19

Convergence in (i) and (ii) established via bijections to lattice paths:
(i) metric bijections
(ii) mating-of-tree bijections

Bijections between planar maps and lattice paths

- Two families: (i) metric bijections and (ii) mating-of-trees bijections
- Examples (i): Cori-Vauquelin'81, Schaeffer'98, Bouttier-Di

Francesco-Guitter'04, Poulalhon-Schaeffer'06, etc.

- Examples (ii): Mullin'67, Bernardi'08, Li-Sun-Watson'17, Bernardi'07/Ber.-H.-Sun'19, Kenyon-Miller-Sheffield-Wilson'15, etc.
- Both families of bij. involve lattice paths encoding pair of trees.
- Continuum analogue of bijections:
(i) Brownian map (Marckert-Mokkadem'06, Le Gall'07'11, Miermont'11)
(ii) LQG as mating of trees (Duplantier-Miller-Sheffield'14).
- (ii) for decorated planar maps, i.e., with statistical physics model. Therefore also for non-uniform planar maps.
- The lattice path encodes important information: (i) metric properties; (ii) observables of the map with a statistical physics model.

contour function

Scaling limits of planar maps via metric bijections

Cori-Vauquelin-Schaeffer (CVS) bijection

Quadrangulation

Well-labeled tree

Well-labeled tree: tree with positive labels such that root has label 1 ; adjacent labels differ by $0, \pm 1$.

Key property: Graph distance to root $=$ label

Figure due to Olivier Bernardi

Gromov-Hausdorff topology

Natural topology on compact metric spaces.
Hausdorff distance for $E_{1}, E_{2} \subset W$ and (W, D) a metric space

$$
\mathbf{d}_{D}^{\mathrm{H}}\left(E_{1}, E_{2}\right):=\max \left\{\sup _{x \in E_{1}} \inf _{y \in E_{2}} D(x, y), \sup _{y \in E_{2}} \inf _{x \in E_{1}} D(x, y)\right\} .
$$

Gromov-Hausdorff distance between $\mathfrak{X}^{1}=\left(X^{1}, d^{1}\right)$ and $\mathfrak{X}^{2}=\left(X^{2}, d^{2}\right)$

$$
\mathbf{d}^{\mathrm{GH}}\left(\mathfrak{X}^{1}, \mathfrak{X}^{2}\right)=\inf _{(W, D), \iota^{1}, \iota^{2}} \mathbf{d}_{D}^{\mathrm{H}}\left(\iota^{1}\left(X^{1}\right), \iota^{2}\left(X^{2}\right)\right),
$$

where the infimum is over all compact metric spaces (W, D) and isometric embeddings $\iota^{1}: X^{1} \rightarrow W$ and $\iota^{2}: X^{2} \rightarrow W$.

Gromov-Hausdorff

Natural topology on compact metric measure spaces.
Prokhorov distance for Borel measures μ^{1}, μ^{2} on (W, D) :

$$
\begin{aligned}
& \mathbf{d}_{D}^{\mathrm{P}}\left(\mu^{1}, \mu^{2}\right)=\inf \left\{\epsilon>0: \mu^{1}(A) \leq \mu^{2}\left(A^{\epsilon}\right)+\epsilon\right. \\
& \left.\quad \text { and } \mu^{2}(A) \leq \mu^{1}\left(A^{\epsilon}\right)+\epsilon \text { for all closed sets } A \subset W\right\}
\end{aligned}
$$

where A^{ϵ} is the set of elements of W at distance less than ϵ from A, i.e. $A^{\epsilon}=\{x \in W$ such that $\exists a \in A, D(a, x)<\epsilon\}$.

Gromov-Hausdorff-Prokhorov distance between $\mathfrak{X}^{1}=\left(X^{1}, d^{1}, \mu^{1}\right)$ and $\mathfrak{X}^{2}=\left(X^{2}, d^{2}, \mu^{2}\right)$:

$$
\mathbf{d}^{\mathrm{GHP}}\left(\mathfrak{X}^{1}, \mathfrak{X}^{2}\right)=\inf _{(W, D), \iota^{1}, \iota^{2}} \mathbf{d}_{D}^{\mathrm{H}}\left(\iota^{1}\left(X^{1}\right), \iota^{2}\left(X^{2}\right)\right)+\mathbf{d}_{D}^{\mathrm{P}}\left(\left(\iota^{1}\right)_{*} \mu^{1},\left(\iota^{2}\right)_{*} \mu^{2}\right)
$$

where the infimum is over all compact metric spaces (W, D) and isometric embeddings $\iota^{1}: X^{1} \rightarrow W$ and $\iota^{2}: X^{2} \rightarrow W$.

Random quadrangulation \Rightarrow Brownian map

M_{n} is a quadrangulation, M is the Brownian map ($\sqrt{8 / 3}-\mathrm{LQG}$)
Theorem 1 (Le Gall'11, Miermont'11)
$M_{n} \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.

Random triangulation of a disk \Rightarrow Brownian disk

M_{n} is a triangulated disk, M is the Brownian disk $(\sqrt{8 / 3}-\mathrm{LQG})$

Theorem 2 (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.

Related works: Le Gall'11, Miermont'11, Bettinelli-Miermont'15, Poulalhon-Schaeffer'06, Addario-Berry-Albenque'13, Addario-B. -Wen'15

Random triangulation of a disk \Rightarrow Brownian disk

M_{n} is a triangulated disk, M is the Brownian disk $(\sqrt{8 / 3}-\mathrm{LQG})$

Theorem 2 (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.

Blossoming forest

Related works: Le Gall'11, Miermont'11, Bettinelli-Miermont'15, Poulalhon-Schaeffer'06, Addario-Berry-Albenque'13, Addario-B. $\overline{\underline{\Sigma}}$ Wen' 15

Random triangulation of a disk \Rightarrow Brownian disk

M_{n} is a triangulated disk, M is the Brownian disk $(\sqrt{8 / 3}-\mathrm{LQG})$

Theorem 2 (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.

Related works: Le Gall'11, Miermont'11, Bettinelli-Miermont'15, Poulalhon-Schaeffer'06, Addario-Berry-Albenque'13, Addario-B. -Wen'15

Random triangulation of a disk \Rightarrow Brownian disk

M_{n} is a triangulated disk, M is the Brownian disk $(\sqrt{8 / 3}-\mathrm{LQG})$

Theorem 2 (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.

simple (type III)

loopless (type II)

Related works: Le Gall'11, Miermont'11, Bettinelli-Miermont'15, Poulalhon-Schaeffer'06, Addario-Berry-Albenque'13, Addario-B. $\overline{\underline{\Sigma}}$ Wen' 15

Scaling limits of planar maps via mating-of-trees bijections

Mullin bijection

planar map and spanning tree

planar map, spanning tree and their duals

lattice path encoding trees

Lattice path \Rightarrow 2D Brownian motion, which encodes an LQG surface.
Non-uniform map: Law of map reweighted by number of spanning trees.

Percolated triangulations and Kreweras walks

babcbbabccacc
Bernardi'07

Bernardi-H.-Sun'18

Scaling limit of percolated triangulations

- Let M be uniform triangulation with n interior (resp. \sqrt{n} boundary) vertices; let P be uniform coloring of the interior vertices.

Scaling limit of percolated triangulations

- Let M be uniform triangulation with n interior (resp. \sqrt{n} boundary) vertices; let P be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in \mathbb{D}; loop variant of Schramm-Loewner evolution

Scaling limit of percolated triangulations

- Let M be uniform triangulation with n interior (resp. \sqrt{n} boundary) vertices; let P be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in \mathbb{D}; loop variant of Schramm-Loewner evolution
- Bernardi-H.-Sun'18: There exists an embedding of P into \mathbb{D} such that a number of interesting observables of (M, P) converge jointly in law when $n \rightarrow \infty$. The scaling limit can be described in terms of CLE on an independent $\sqrt{8 / 3}-\mathrm{LQG}$ surface.

Scaling limit of percolated triangulations

- Let M be uniform triangulation with n interior (resp. \sqrt{n} boundary) vertices; let P be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in \mathbb{D}; loop variant of Schramm-Loewner evolution
- Bernardi-H.-Sun'18: There exists an embedding of P into \mathbb{D} such that a number of interesting observables of (M, P) converge jointly in law when $n \rightarrow \infty$. The scaling limit can be described in terms of CLE on an independent $\sqrt{8 / 3-L Q G ~ s u r f a c e . ~}$
- Counting measure on vertices rescaled by $n^{-1} \Rightarrow$ LQG area measure
- Percolation cycles \Rightarrow CLE loops
- Crossing events converge
- Counting measure on pivotals rescaled by $n^{-1 / 4} \Rightarrow$ CLE touching meas.
- Percolation exploration tree \Rightarrow CLE exploration tree

Scaling limit of percolated triangulations

- Let M be uniform triangulation with n interior (resp. \sqrt{n} boundary) vertices; let P be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in \mathbb{D}; loop variant of Schramm-Loewner evolution
- Bernardi-H.-Sun'18: There exists an embedding of P into \mathbb{D} such that a number of interesting observables of (M, P) converge jointly in law when $n \rightarrow \infty$. The scaling limit can be described in terms of CLE on an independent $\sqrt{8 / 3}-\mathrm{LQG}$ surface.

crossing event

Scaling limit via Kreweras walks

babcbbabccacc

Scaling limit via Kreweras walks

\Downarrow

Scaling limit via Kreweras walks

\Downarrow

Scaling limit via Kreweras walks

\Downarrow

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

babcbbabccacc

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

b

- - = old head
new head

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

b

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

$b a$

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

b

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

b

$b a b c$

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

b

- =- old head
new head

babcb

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

$b a b c b b$

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

babcbba

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

babcbbab

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

babcbbabc

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

b

babcbbabcc

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

- =- old head new head

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

b

babcbbabccac

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

a

- =- old head
new head

babcbbabccacc

Bijection between percolated maps and walks

Bernardi'07, Bernardi-H.-Sun'17: Bijection between
(1) site-percolated rooted triangulation (M, P) of a disk with $n+1$ edges
(2) cone excursion W length n, steps $a=(1,0), b=(0,1), c=(-1,-1)$

babcbbabccacc

Infinite-volume bijection

I. Kortchemski

- Infinite-volume bijection:
- Percolated uniform infinite planar triangulation (UIPT)
- walk with i.i.d. increments a, b, c.
- Allows to relate properties of the UIPT and LQG:
- random walk on the UIPT (Gwynne-Hutchcroft'18, Gwynne-Miller'17)
- dimension of γ-LQG (Ding-Gwynne'18, Gwynne-H.-Sun'17)

Thanks!

[^0]: ${ }^{1}$ Metric construction: Gwynne-Miller'19, Ding-Dubedat-Dunlap-Falconet'19, Dubedat-Falconet-Gwynne-Pfeffer-Sun'19. Hausdorff dim. (\mathbb{D}, D) denoted by $d(\gamma)$.

