Random triangulations and bijective paths to Liouville quantum gravity

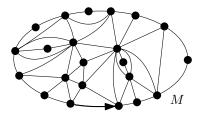
Nina Holden

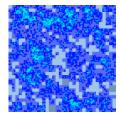
ETH Zürich

Based on works with Marie Albenque, Olivier Bernardi, and Xin Sun.

June 22, 2021

Two random surfaces





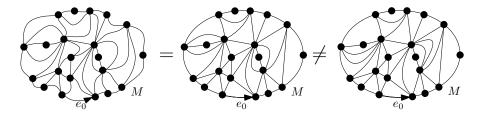
random planar map (RPM) Liouville quantum gravity (LQG)

Main result (informal): RPM converge to LQG in the scaling limit

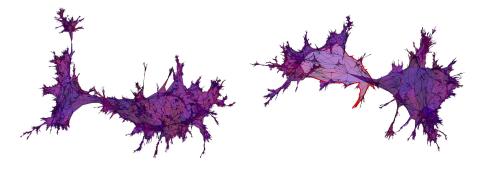
Bijections between planar maps and lattice paths essential in proofs

Right figure by Miller and Sheffield

- A **planar map** *M* is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A triangulation of a disk is a planar map where all the faces have three edges, except one distinguished face (the exterior face) with arbitrary degree and simple boundary.
- Given $n, m \in \mathbb{N}$ let M be a **uniformly** chosen triangulation of a disk with n interior vertices and m boundary vertices.



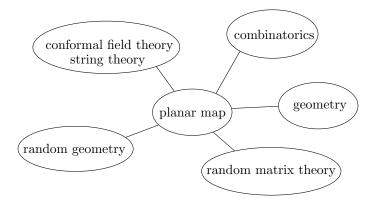
Uniformly sampled triangulations



Triangulation

Triangulation of disk

Simulations by Bettinelli



A D N A B N A B N A B N

Gaussian free field (GFF)

• The free boundary Gaussian free field *h* in D is the Gaussian random field with mean zero and covariance

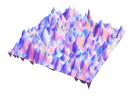
$$\operatorname{Cov}(h(z), h(w)) = G(z, w),$$

where $G:\mathbb{D} imes\mathbb{D} o [0,\infty)$ is the Neumann Green's function

$$G(z,w) = \log |z-w|^{-1} + \log |1-z\overline{w}|^{-1}$$

Discrete GFF

- *h* not well defined as a function since $G(z, z) = \infty$.
- *h* well-defined as a random generalized function (distribution).
 - $\int_{\mathbb{D}} hf d^2 z$ is well-defined for f a smooth test function.



Liouville quantum gravity (LQG)

If h : D → R is smooth and γ ∈ (0,2), then the following defines a measure μ and a distance function (metric) D on D:

$$\mu(U) = \int_U e^{\gamma h(z)} d^2 z, \qquad D(z_1, z_2) = \inf_{P: z_1 \to z_2} \int_P e^{\frac{\gamma h(z)}{2}} dz.$$

where $U \subset \mathbb{D}$ and $z_1, z_2 \in \mathbb{D}$.

- γ -Liouville quantum gravity (LQG): *h* is the **Gaussian free field**.
- The definition of an LQG surface does not make literal sense since *h* is a distribution and not a function.
- Measure μ and distance function (metric) D defined by considering regularization h_{ϵ} of h.¹

$$\mu(U) = \lim_{\epsilon \to 0} \epsilon^{\frac{\gamma^2}{2}} \int_U e^{\gamma h_\epsilon(z)} d^2 z, \qquad D(z_1, z_2) = \lim_{\epsilon \to 0} c_\epsilon \inf_{P: z_1 \to z_2} \int_P e^{\frac{\gamma h_\epsilon(z)}{d(\gamma)}} dz.$$

• LQG for $\gamma = \sqrt{8/3}$: Brownian map; scaling limit of **uniform** maps.

• Key takeaway: LQG defines random measure & distance function.

¹Metric construction: Gwynne-Miller'19, Ding-Dubedat-Dunlap-Falconet'19, Dubedat-Falconet-Gwynne-Pfeffer-Sun'19. Hausdorff dim. (\mathbb{D}, D) denoted by $d(\gamma)$

Holden (ETH Zürich)

June 22, 2021 7 / 23

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?

- (i) Metric space structure (Gromov-Hausdorff topology)
 - Le Gall'11, Miermont'11, several others
- (ii) Statistical physics decorations (variants of mating-of-trees topology)
 - Duplantier-Miller-Sheffield'14, Sheffield'11, several others
- (iii) Conformal structure (weak topology for measures on \mathbb{C})
 - H.-Sun'19

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?

- (i) Metric space structure (Gromov-Hausdorff topology)
 - Le Gall'11, Miermont'11, several others
- (ii) Statistical physics decorations (variants of mating-of-trees topology)
 - Duplantier-Miller-Sheffield'14, Sheffield'11, several others
- (iii) Conformal structure (weak topology for measures on \mathbb{C})
 - H.-Sun'19

Convergence in (i) and (ii) established via $bijections \ to \ lattice \ paths:$

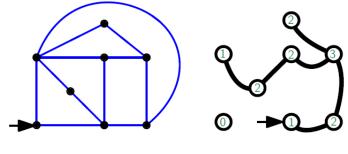
- (i) metric bijections
- (ii) mating-of-tree bijections

Bijections between planar maps and lattice paths

- Two families: (i) metric bijections and (ii) mating-of-trees bijections
- Examples (i): Cori–Vauquelin'81, Schaeffer'98, Bouttier-Di Francesco-Guitter'04, Poulalhon-Schaeffer'06, etc.
- Examples (ii): Mullin'67, Bernardi'08, Li-Sun-Watson'17, Bernardi'07/Ber.-H.-Sun'19, Kenyon-Miller-Sheffield-Wilson'15, etc.
- Both families of bij. involve lattice paths encoding pair of trees.
- Continuum analogue of bijections:
 - (i) Brownian map (Marckert-Mokkadem'06, Le Gall'07'11, Miermont'11)
 - (ii) LQG as mating of trees (Duplantier-Miller-Sheffield'14).
- (ii) for **decorated** planar maps, i.e., with statistical physics model. Therefore also for **non-uniform** planar maps.
- The lattice path encodes important information: (i) metric properties; (ii) observables of the map with a statistical physics model.

Scaling limits of planar maps via metric bijections

Cori-Vauquelin-Schaeffer (CVS) bijection



Quadrangulation

Well-labeled tree

Well-labeled tree: tree with positive labels such that root has label 1; adjacent labels differ by $0,\pm 1.$

Key property: Graph distance to root = label

```
Figure due to Olivier Bernardi
```

Natural topology on compact **metric spaces**.

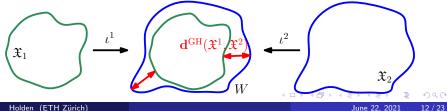
Hausdorff distance for $E_1, E_2 \subset W$ and (W, D) a metric space

$$\mathbf{d}_D^\mathsf{H}(E_1, E_2) := \max\{\sup_{x \in E_1} \inf_{y \in E_2} D(x, y), \sup_{y \in E_2} \inf_{x \in E_1} D(x, y)\}.$$

Gromov-Hausdorff distance between $\mathfrak{X}^1 = (X^1, d^1)$ and $\mathfrak{X}^2 = (X^2, d^2)$

$$\mathbf{d}^{\mathsf{GH}}\left(\mathfrak{X}^{1},\mathfrak{X}^{2}\right) = \inf_{(W,D),\iota^{1},\iota^{2}} \mathbf{d}_{D}^{\mathsf{H}}\left(\iota^{1}(X^{1}),\iota^{2}(X^{2})\right),$$

where the infimum is over all compact metric spaces (W, D) and isometric embeddings $\iota^1 : X^1 \to W$ and $\iota^2 : X^2 \to W$.



Gromov-Hausdorff-Prokhorov topology

Natural topology on compact metric measure spaces.

Prokhorov distance for Borel measures μ^1, μ^2 on (W, D):

$$\begin{split} \mathbf{d}_{D}^{\mathsf{P}}(\mu^{1},\mu^{2}) &= \inf\{\epsilon > 0 \, : \, \mu^{1}(\mathcal{A}) \leq \mu^{2}(\mathcal{A}^{\epsilon}) + \epsilon \\ & \text{and } \mu^{2}(\mathcal{A}) \leq \mu^{1}(\mathcal{A}^{\epsilon}) + \epsilon \text{ for all closed sets } \mathcal{A} \subset \mathcal{W} \}, \end{split}$$

where A^{ϵ} is the set of elements of W at distance less than ϵ from A, i.e. $A^{\epsilon} = \{x \in W \text{ such that } \exists a \in A, D(a, x) < \epsilon\}.$

Gromov-Hausdorff-Prokhorov distance between $\mathfrak{X}^1 = (X^1, d^1, \mu^1)$ and $\mathfrak{X}^2 = (X^2, d^2, \mu^2)$:

$$\mathbf{d}^{\mathsf{GHP}}\left(\mathfrak{X}^{1},\mathfrak{X}^{2}\right) = \inf_{(W,D),\iota^{1},\iota^{2}} \mathbf{d}_{D}^{\mathsf{H}}\left(\iota^{1}(X^{1}),\iota^{2}(X^{2})\right) + \mathbf{d}_{D}^{\mathsf{P}}\left((\iota^{1})_{*}\mu^{1},(\iota^{2})_{*}\mu^{2}\right),$$

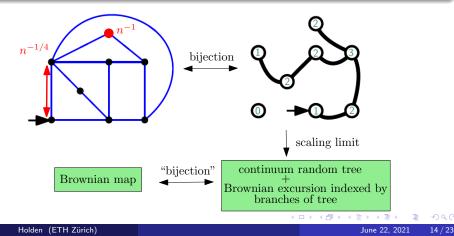
where the infimum is over all compact metric spaces (W, D) and isometric embeddings $\iota^1 : X^1 \to W$ and $\iota^2 : X^2 \to W$.

Random quadrangulation \Rightarrow Brownian map

 M_n is a quadrangulation, M is the Brownian map ($\sqrt{8/3}$ -LQG)

Theorem 1 (Le Gall'11, Miermont'11)

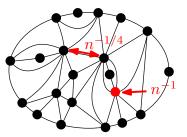
 $M_n \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.



 M_n is a triangulated disk, M is the Brownian disk ($\sqrt{8/3}$ -LQG)

Theorem 2 (Albenque-H.-Sun'19)

 $M_n \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.



Related works: Le Gall'11, Miermont'11, Bettinelli–Miermont'15, Poulalhon–Schaeffer'06, Addario-Berry–Albenque'13, Addario-B.=Wen'15,

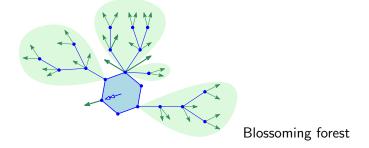
June 22, 2021

15 / 23

 M_n is a triangulated disk, M is the Brownian disk ($\sqrt{8/3}$ -LQG)

Theorem 2 (Albenque-H.-Sun'19)

 $M_n \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.



Related works: Le Gall'11, Miermont'11, Bettinelli–Miermont'15, Poulalhon–Schaeffer'06, Addario-Berry–Albenque'13, Addario-B.–Wen'15,

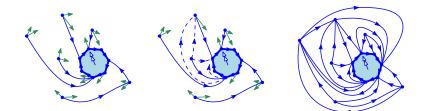
June 22, 2021

15 / 23

 M_n is a triangulated disk, M is the Brownian disk ($\sqrt{8/3}$ -LQG)

Theorem 2 (Albenque-H.-Sun'19)

 $M_n \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.



Related works: Le Gall'11, Miermont'11, Bettinelli–Miermont'15, Poulalhon–Schaeffer'06, Addario-Berry–Albenque'13, Addario-B.–Wen'15,

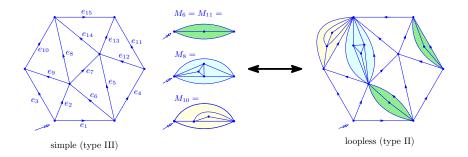
Holden (ETH Zürich)

June 22, 2021 15 / 23

 M_n is a triangulated disk, M is the Brownian disk ($\sqrt{8/3}$ -LQG)

Theorem 2 (Albenque-H.-Sun'19)

 $M_n \Rightarrow M$ for the Gromov-Hausdorff-Prokhorov topology.



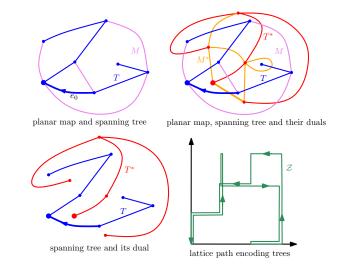
Related works: Le Gall'11, Miermont'11, Bettinelli–Miermont'15, Poulalhon–Schaeffer'06, Addario-Berry–Albenque'13, Addario-B.–Wen'15,

June 22, 2021

15 / 23

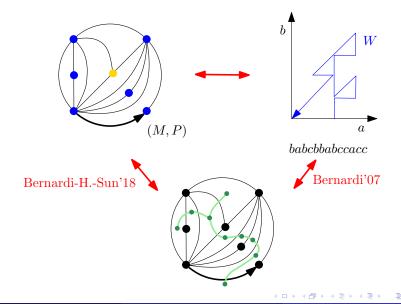
Scaling limits of planar maps via mating-of-trees bijections

Mullin bijection

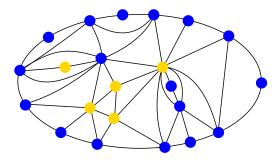


Lattice path \Rightarrow 2D Brownian motion, which encodes an LQG surface. **Non-uniform map**: Law of map reweighted by number of spanning trees.

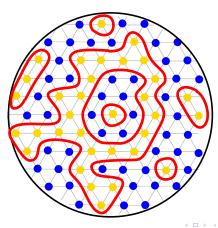
Percolated triangulations and Kreweras walks



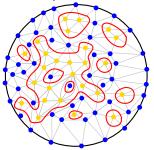
• Let *M* be uniform triangulation with *n* interior (resp. \sqrt{n} boundary) vertices; let *P* be uniform coloring of the interior vertices.



- Let *M* be uniform triangulation with *n* interior (resp. \sqrt{n} boundary) vertices; let *P* be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in D; loop variant of Schramm-Loewner evolution



- Let *M* be uniform triangulation with *n* interior (resp. \sqrt{n} boundary) vertices; let *P* be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in D; loop variant of Schramm-Loewner evolution
- Bernardi-H.-Sun'18: There exists an embedding of P into \mathbb{D} such that a number of interesting observables of (M, P) converge jointly in law when $n \to \infty$. The scaling limit can be described in terms of CLE on an independent $\sqrt{8/3}$ -LQG surface.

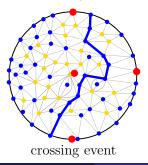


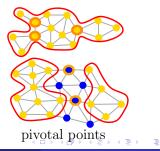
 \Rightarrow LQG and CLE

- Let *M* be uniform triangulation with *n* interior (resp. \sqrt{n} boundary) vertices; let *P* be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in D; loop variant of Schramm-Loewner evolution
- Bernardi-H.-Sun'18: There exists an embedding of P into \mathbb{D} such that a number of interesting observables of (M, P) converge jointly in law when $n \to \infty$. The scaling limit can be described in terms of CLE on an independent $\sqrt{8/3}$ -LQG surface.
 - Counting measure on vertices rescaled by $n^{-1} \Rightarrow LQG$ area measure
 - Percolation cycles \Rightarrow CLE loops
 - Crossing events converge
 - Counting measure on pivotals rescaled by $n^{-1/4} \Rightarrow \text{CLE}$ touching meas.
 - Percolation exploration tree \Rightarrow CLE exploration tree

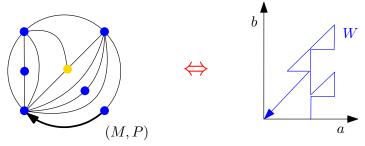
イロト イヨト イヨト

- Let *M* be uniform triangulation with *n* interior (resp. \sqrt{n} boundary) vertices; let *P* be uniform coloring of the interior vertices.
- Conformal loop ensemble (CLE): conformally invariant collection of non-crossing loops in D; loop variant of Schramm-Loewner evolution
- Bernardi-H.-Sun'18: There exists an embedding of P into \mathbb{D} such that a number of interesting observables of (M, P) converge jointly in law when $n \to \infty$. The scaling limit can be described in terms of CLE on an independent $\sqrt{8/3}$ -LQG surface.

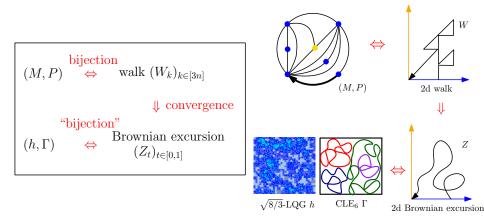


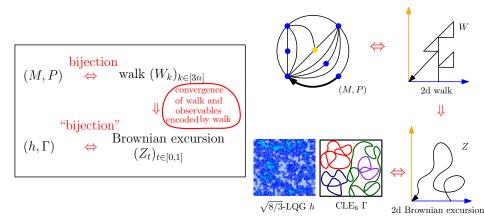


Scaling limit via Kreweras walks



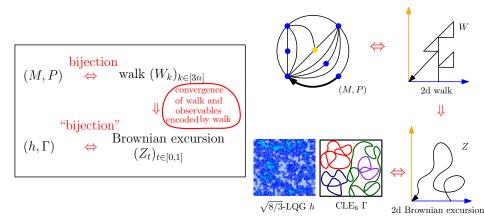
babcbbabccacc





→ ∃ →

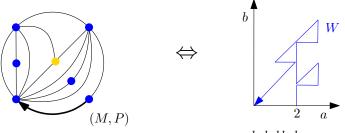
Image: Image:



→ ∃ →

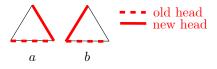
Image: Image:

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

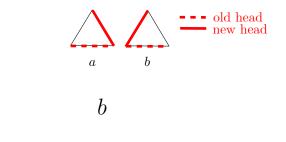


babcbbabccacc

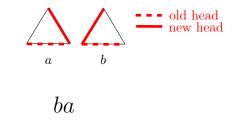
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



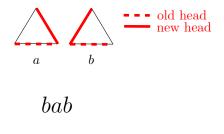
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



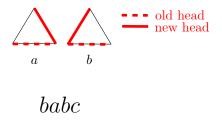
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



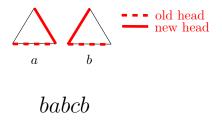
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



Bernardi'07, Bernardi-H.-Sun'17: Bijection between

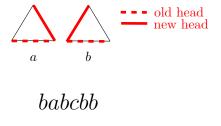


Bernardi'07, Bernardi-H.-Sun'17: Bijection between

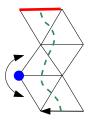


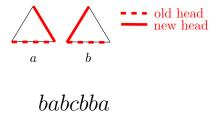
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



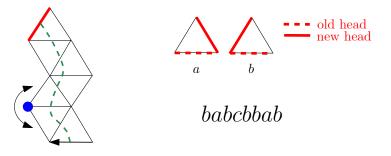


Bernardi'07, Bernardi-H.-Sun'17: Bijection between

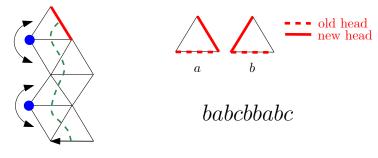




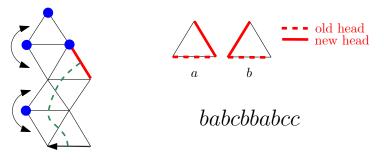
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



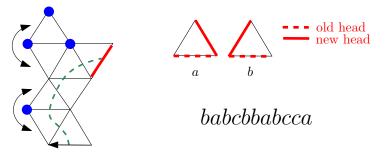
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



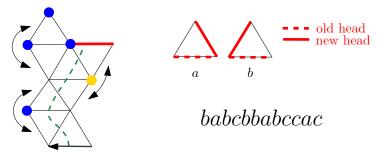
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



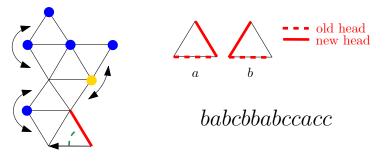
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



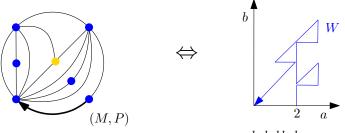
Bernardi'07, Bernardi-H.-Sun'17: Bijection between



Bernardi'07, Bernardi-H.-Sun'17: Bijection between

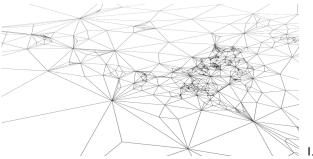


Bernardi'07, Bernardi-H.-Sun'17: Bijection between



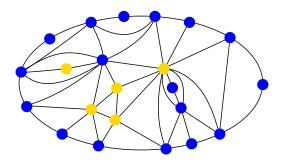
babcbbabccacc

Infinite-volume bijection



I. Kortchemski

- Infinite-volume bijection:
 - Percolated uniform infinite planar triangulation (UIPT)
 - walk with i.i.d. increments a, b, c.
- Allows to relate properties of the UIPT and LQG:
 - random walk on the UIPT (Gwynne-Hutchcroft'18, Gwynne-Miller'17)
 - dimension of γ -LQG (Ding-Gwynne'18, Gwynne-H.-Sun'17)



Thanks!

・ロト ・日下・ ・ ヨト・

æ

Holden (ETH Zürich)