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INTRODUCTION.

We are trying to extract asymptotics from counting sequences.

We consider three different types of behaviour:
(i) Simple power law, an ∼ C · µn · ng,
(ii) Power law plus logarithms, an ∼ C · µn · ng · (log n)β,
(iii) Stretched exponential, an ∼ C · µn · µnσ

1 · ng, 0 < σ < 1.

We will call µ the growth constant, usually the reciprocal of the
radius of convergence, and g the exponent. (Of course β and σ
are also exponents.)

We study these using variants of two methods:
(i) The behaviour of the ratios rn = an/an−1,
(ii) The solution of a family of D-finite ODEs, constructed from
the known coefficients.
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SERIES ANALYSIS 101.

Given f (z) =
∑

cnzn, the Cauchy-Hadamard theorem tells us
that the growth constant is given by

µ = lim sup
n→∞

|cn|1/n.

Alternatively, the ratio test tells us that

µ = lim
n→∞

∣∣∣∣ cn

cn−1

∣∣∣∣ .
If f (z) ∼ C · Γ(γ) · (1− µ · z)−γ , then cn ∼ C · µn · nγ−1.

|cn|1/n ∼ C1/n · µ
(

1 +
(γ − 1) log n

n
+ O

(
log2 n

n2

))
.
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RATIO METHOD.

rn = cn
cn−1

= µ
(

1 + γ−1
n + o(1

n)
)
.

Test series f (z) = exp (−z) · (1− π · z)2/3.
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RATIO METHOD REFINEMENT.

ln = n · rn − (n− 1) · rn−1 = 1
zc

(
1 + o(1

n)
)
.

If o(1
n) = O( 1

n2 ), l2n =
n2·ln−(n−1)2·ln−1

2n−1 = 1
zc

(
1 + o( 1

n2 )
)
.
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ESTIMATING THE EXPONENT.

Estimating µ = 3.14159, we can estimate exponent
γ − 1 = gn =

(
rn
µ − 1

)
· n, and we can eliminate O(1/n) term

similarly.

Extracting asymptotics from series coefficients. Tony Guttmann



MIN2Col

TRIANGULAR POLYOMINOES.

µ = 3.0359688(3); logarithmic singularity.
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TRIANGULAR POLYOMINOES II.
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ESTIMATING THE EXPONENT.

Estimating µ = 3.035968, we can estimate exponent
γ − 1 = gn =

(
rn
µ − 1

)
· n, and we can eliminate O(1/n) term

similarly.
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EXTRACTING THE ASYMPTOTICS II.

An alternative method is the method of differential approximants.
Fit available coefficients to many ODEs, using most/all
coefficients. E.g.

Q2(z)F′′(z) + Q1(z)F′(z) + F(z) = P(z),

where Qk(z) and P(z) are polynomials. Vary their degree until all
known coefficients are used.
Asymptotics can be extracted from the ODEs. For a power-law,
this usually gives better precision than the ratio method.
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EXTENDING THE KNOWN SEQUENCES approximately.

The differential approximants reproduce all known coefficients,
and approximate all subsequent coefficients.

We average over dozens of DAs and calculate the mean and s.d.
of many subsequent coefficients.

We accept the coefficients as long as the s.d. is ≤ 10−6 the value
of the coefficient. (So we’ll have typically 6 sig. digits).

In this way, we will typically gain an extra 50-1000 coefficients
estimated with sufficient accuracy to use the ratio method.

Example: 3-stack-sortable permutations (Defant, Elvey Price and
G.). Defant found 174 coefficients. We used these to predict the
next 327 coefficients. Elvey Price subsequently wrote an
improved algorithm, generating 1000 terms. All our predicted
terms were accurate to 29 significant digits. (EJC 28(2) #P2.49).
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STRETCHED-EXPONENTIAL ASYMPTOTICS.

Many problems have more complex asymptotics.

bn ∼ B · µn · exp(−c · nσ) · nγ−1, c > 0, 0 < σ < 1. (1)

Or f (x) = (1− µ · x)α
(

1
µ · x

log
1

1− µ · x

)β
. (2)

For (1), rn = µ

(
1 +

σ logµ1

n1−σ +
γ − 1

n
+ O(

1
n2−2σ )

)
.

For (2), rn = µ

(
1− α+ 1

n
+

β

n log n
+

c1

n log2 n
+ · · ·

)
,
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L-CONVEX POLYGONS.

An L-convex polyomino is one in which any two cells may be
joined by an L-shaped path.

Introduced by Castiglione et al. in 2007.

The perimeter generating function coefficients satisfy
cn+2 = 4cn+1 − 2cn, so the ogf is algebraic.

The area generating function is unknown.

From their appearance, they can be considered as the gluing
together of two stack polyominoes. The area of stack
polyominoes grows as

an ∼
exp(2π

√
n/3)

8 · 33/4 · n5/4

Extracting asymptotics from series coefficients. Tony Guttmann
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L-CONVEX CONTINUED.

Plot ratios against 1/n and 1/
√

n. Suggests µ
√

n
1 behaviour.

From (1), (rn − 1) ∼ const. · nσ−1, so log-log plot should have
gradient σ − 1.
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L-CONVEX CONTINUED.

Recall (rn − 1) ∼ log µ1
2
√

n ,

So 2
√

n · (rn − 1) ∼ logµ1,
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L-CONVEX CONTINUED.

Plot implies logµ1 ≈ 4.62. Linear interpolation gives 4.624.

Recall stack polyoms. grow as exp(2π
√

n/3), so guess these
grow as exp(π

√
αn).

So π
√
α ≈ 4.624, implies α ≈ 2.1664. Guess α = 13/6.

So we have

ln ∼ C ·
exp(π

√
13n/6)

ng .

To estimate g, set m = n2, so

lm ∼ C ·
exp(nπ

√
13/6)

n2g .

This is of the form Cµnng, so we can use the usual ratio method.

In this way, we find g ≈ −1.5, so ln ∼ C · exp(π
√

13n/6)
n3/2 .
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L-CONVEX CONTINUED.

To estimate C, we divide the known coefficients by exp(π
√

13n/6)
n3/2

and extrapolate the sequence (Bulirsch-Stoer).

In this way one finds C ≈ 0.0239385108214.

Try and identify this with PSLQ(0.0239385108214,
√

2, 1) and
one finds C = 13

√
2/768.

So we conjecture

ln ∼ 13
exp(π

√
13n/6)

3 · 215/2n3/2

Work done with Vaclav Kotesovec, reported in OEIS A126764.
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2, 1) and
one finds C = 13

√
2/768.

So we conjecture

ln ∼ 13
exp(π

√
13n/6)

3 · 215/2n3/2

Work done with Vaclav Kotesovec, reported in OEIS A126764.

Extracting asymptotics from series coefficients. Tony Guttmann
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COUNTING EULERIAN ORIENTATIONS: LOGARITHMS.

An Eulerian orientation is an oriented Eulerian map in which
each vertex has equal in-degree and out-degree. In joint work
with Andrew Elvey Price we generated 100 terms.

Using series extension: 1000 further terms.

Using the ratio method, we found a confluent logarithm.

E(x) ∼ const.(1− µz)/ log(1− µz).

We estimated µ ≈ 12.56637, which I recognised as 4π.

Subsequent discussion with MBM led to the identification of this
with a previously solved problem, and she and Andrew EP
completed the proof of this.

Extracting asymptotics from series coefficients. Tony Guttmann
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C’est tout. Merci

Extracting asymptotics from series coefficients. Tony Guttmann


