Extracting asymptotics from series coefficients.

Tony Guttmann
School of Mathematics and Statistics
The University of Melbourne, Australia

Lattice Paths, Combinatorics and Interactions, June 2021

Introduction.

- We are trying to extract asymptotics from counting sequences.
- We consider three different types of behaviour:
(i) Simple power law, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g}$,
(ii) Power law plus logarithms, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g} \cdot(\log n)^{\beta}$, (iii) Stretched exponential, $a_{n} \sim C \cdot \mu^{n} \cdot \mu_{1}^{n^{\sigma}} \cdot n^{g}, \quad 0<\sigma<1$.
- We will call μ the growth constant, usually the reciprocal of the radius of convergence, and g the exponent. (Of course β and σ are also exponents.)
- We study these using variants of two methods:
(i) The behaviour of the ratios $r_{n}=a_{n} / a_{n-1}$,
(ii) The solution of a family of D -finite ODEs, constructed from the known coefficients.

Introduction.

- We are trying to extract asymptotics from counting sequences.
- We consider three different types of behaviour:
(i) Simple power law, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g}$,
(ii) Power law plus logarithms, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g} \cdot(\log n)^{\beta}$, (iii) Stretched exponential, $a_{n} \sim C \cdot \mu^{n} \cdot \mu_{1}^{n^{\sigma}} \cdot n^{g}, \quad 0<\sigma<1$.
- We will call μ the growth constant, usually the reciprocal of the radius of convergence, and g the exponent. (Of course β and σ are also exponents.)
- We study these using variants of two methods:
(i) The behaviour of the ratios $r_{n}=a_{n} / a_{n-1}$,
(ii) The solution of a family of D-finite ODEs, constructed from the known coefficients.

Introduction.

- We are trying to extract asymptotics from counting sequences.
- We consider three different types of behaviour:
(i) Simple power law, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g}$,
(ii) Power law plus logarithms, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g} \cdot(\log n)^{\beta}$,
(iii) Stretched exponential, $a_{n} \sim C \cdot \mu^{n} \cdot \mu_{1}^{n^{\sigma}} \cdot n^{g}, \quad 0<\sigma<1$.
- We will call μ the growth constant, usually the reciprocal of the radius of convergence, and g the exponent. (Of course β and σ are also exponents.)
- We study these using variants of two methods:
(i) The behaviour of the ratios $r_{n}=a_{n} / a_{n-1}$,
(ii) The solution of a family of D-finite ODEs, constructed from the known coefficients.

Introduction.

- We are trying to extract asymptotics from counting sequences.
- We consider three different types of behaviour:
(i) Simple power law, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g}$,
(ii) Power law plus logarithms, $a_{n} \sim C \cdot \mu^{n} \cdot n^{g} \cdot(\log n)^{\beta}$,
(iii) Stretched exponential, $a_{n} \sim C \cdot \mu^{n} \cdot \mu_{1}^{n^{\sigma}} \cdot n^{g}, 0<\sigma<1$.
- We will call μ the growth constant, usually the reciprocal of the radius of convergence, and g the exponent. (Of course β and σ are also exponents.)
- We study these using variants of two methods:
(i) The behaviour of the ratios $r_{n}=a_{n} / a_{n-1}$,
(ii) The solution of a family of D-finite ODEs, constructed from the known coefficients.

SERIES ANALYSIS 101.

- Given $f(z)=\sum c_{n} z^{n}$, the Cauchy-Hadamard theorem tells us that the growth constant is given by

$$
\mu=\lim \sup _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n}
$$

- Alternatively, the ratio test tells us that

$$
\mu=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n-1}}\right|
$$

$$
\text { If } f(z) \sim C \cdot \Gamma(\gamma) \cdot(1-\mu \cdot z)^{-\gamma}, \text { then } c_{n} \sim C \cdot \mu^{n} \cdot n^{\gamma-1} .
$$

SERIES ANALYSIS 101.

- Given $f(z)=\sum c_{n} z^{n}$, the Cauchy-Hadamard theorem tells us that the growth constant is given by

$$
\mu=\lim \sup _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n} .
$$

- Alternatively, the ratio test tells us that

$$
\mu=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n-1}}\right|
$$

$$
\text { If } f(z) \sim C \cdot \Gamma(\gamma) \cdot(1-\mu \cdot z)^{-\gamma}, \text { then } c_{n} \sim C \cdot \mu^{n} \cdot n^{\gamma-1} .
$$

$$
\left|c_{n}\right|^{1 / n} \sim C^{1 / n} \cdot \mu\left(1+\frac{(\gamma-1) \log n}{n}+O\left(\frac{\log ^{2} n}{n^{2}}\right)\right) .
$$

RATIO METHOD.

$$
\text { - } r_{n}=\frac{c_{n}}{c_{n-1}}=\mu\left(1+\frac{\gamma-1}{n}+\mathrm{o}\left(\frac{1}{n}\right)\right)
$$

$$
\text { Test series } f(z)=\exp (-z) \cdot(1
$$

RATIO METHOD.

$$
\text { - } r_{n}=\frac{c_{n}}{c_{n-1}}=\mu\left(1+\frac{\gamma-1}{n}+\mathrm{o}\left(\frac{1}{n}\right)\right) \text {. }
$$

- Test series $f(z)=\exp (-z) \cdot(1-\pi \cdot z)^{2 / 3}$.

RATIO METHOD REFINEMENT.

- $l_{n}=n \cdot r_{n}-(n-1) \cdot r_{n-1}=\frac{1}{z_{c}}\left(1+\mathrm{o}\left(\frac{1}{n}\right)\right)$.

RATIO METHOD REFINEMENT.

- $l_{n}=n \cdot r_{n}-(n-1) \cdot r_{n-1}=\frac{1}{z_{c}}\left(1+\mathrm{o}\left(\frac{1}{n}\right)\right)$.
- If $\mathrm{o}\left(\frac{1}{n}\right)=\mathrm{O}\left(\frac{1}{n^{2}}\right), l 2_{n}=\frac{n^{2} \cdot l_{n}-(n-1)^{2} \cdot l_{n-1}}{2 n-1}=\frac{1}{z_{c}}\left(1+\mathrm{o}\left(\frac{1}{n^{2}}\right)\right)$.

Estimating the exponent.

- Estimating $\mu=3.14159$, we can estimate exponent $\gamma-1=g_{n}=\left(\frac{r_{n}}{\mu}-1\right) \cdot n$, and we can eliminate $O(1 / n)$ term similarly.

TRIANGULAR POLYOMINOES.

- $\mu=3.0359688(3)$; logarithmic singularity.

TRIANGULAR POLYOMINOES II.

Estimating the exponent.

- Estimating $\mu=3.035968$, we can estimate exponent $\gamma-1=g_{n}=\left(\frac{r_{n}}{\mu}-1\right) \cdot n$, and we can eliminate $O(1 / n)$ term similarly.

Extracting the asymptotics II.

- An alternative method is the method of differential approximants.
- Fit available coefficients to many ODEs, using most/all coefficients. E.g.

$$
Q_{2}(z) F^{\prime \prime}(z)+Q_{1}(z) F^{\prime}(z)+F(z)=P(z)
$$

where $Q_{k}(z)$ and $P(z)$ are polynomials. Vary their degree until all known coefficients are used.

- Asymptotics can be extracted from the ODEs. For a power-law, this usually gives better precision than the ratio method.

Critical point and exponent estimates for self-avoiding polygons.			
L			

Extracting the asymptotics II.

- An alternative method is the method of differential approximants.
- Fit available coefficients to many ODEs, using most/all coefficients. E.g.

$$
Q_{2}(z) F^{\prime \prime}(z)+Q_{1}(z) F^{\prime}(z)+F(z)=P(z)
$$

where $Q_{k}(z)$ and $P(z)$ are polynomials. Vary their degree until all known coefficients are used.

- Asymptotics can be extracted from the ODEs. For a power-law, this usually gives better precision than the ratio method.

Critical point and exponent estimates for self-avoiding polygons.			
L			

EXTENDING THE KNOWN SEQUENCES approximately.

- The differential approximants reproduce all known coefficients, and approximate all subsequent coefficients.
- We average over dozens of DAs and calculate the mean and s.d. of many subsequent coefficients.
- We accent the coefficients as long as the s.d. is $\leq 10^{-6}$ the value of the coefficient. (So we'll have typically 6 sig. digits).
- In this way, we will typically gain an extra 50-1000 coefficients estimated with sufficient accuracy to use the ratio method.
- Example: 3-stack-sortable permutations (Defant, Elvey Price and G.). Defant found 174 coefficients. We used these to predict the next 327 coefficients. Elvey Price subsequently wrote an improved algorithm, generating 1000 terms. All our predicted terms were accurate to 29 significant digits. (EJC 28(2) \#P2.49).

EXTENDING THE KNOWN SEQUENCES approximately.

- The differential approximants reproduce all known coefficients, and approximate all subsequent coefficients.
- We average over dozens of DAs and calculate the mean and s.d. of many subsequent coefficients.
- We accept the coefficients as long as the s.d. is $\leq 10^{-6}$ the value of the coefficient. (So we'll have typically 6 sig. digits).
- In this way, we will tynically gain an extra 50-1000 coefficients estimated with sufficient accuracy to use the ratio method. - Example: 3-stack-sortable permutations (Defant, Elvey Price and G.). Defant found 174 coefficients. We used these to predict the next 327 coefficients. Elvey Price subsequently wrote an improved algorithm, generating 1000 terms. All our predicted terms were accurate to 29 significant digits. (EJC 28(2) \#P2.49).

EXTENDING THE KNOWN SEQUENCES approximately.

- The differential approximants reproduce all known coefficients, and approximate all subsequent coefficients.
- We average over dozens of DAs and calculate the mean and s.d. of many subsequent coefficients.
- We accept the coefficients as long as the s.d. is $\leq 10^{-6}$ the value of the coefficient. (So we'll have typically 6 sig. digits).
- In this way, we will typically gain an extra 50-1000 coefficients estimated with sufficient accuracy to use the ratio method.
- Example: 3-stack-sortable permutations (Defant, Elvey Price and G.). Defant found 174 coefficients. We used these to predict the next 327 coefficients. Elvey Price subsequently wrote an improved algorithm, generating 1000 terms. All our predicted terms were accurate to 29 significant digits. (EJC 28(2) \#P2.49)

EXTENDING THE KNOWN SEQUENCES approximately.

- The differential approximants reproduce all known coefficients, and approximate all subsequent coefficients.
- We average over dozens of DAs and calculate the mean and s.d. of many subsequent coefficients.
- We accept the coefficients as long as the s.d. is $\leq 10^{-6}$ the value of the coefficient. (So we'll have typically 6 sig. digits).
- In this way, we will typically gain an extra 50-1000 coefficients estimated with sufficient accuracy to use the ratio method.
- Example: 3-stack-sortable permutations (Defant, Elvey Price and G.). Defant found 174 coefficients. We used these to predict the next 327 coefficients. Elvey Price subsequently wrote an improved algorithm, generating 1000 terms. All our predicted terms were accurate to 29 significant digits. (EJC 28(2) \#P2.49).

StRETCHED-EXPONENTIAL ASYMPTOTICS.

- Many problems have more complex asymptotics.

StRETCHED-EXPONENTIAL ASYMPTOTICS.

- Many problems have more complex asymptotics.

$$
b_{n} \sim B \cdot \mu^{n} \cdot \exp \left(-c \cdot n^{\sigma}\right) \cdot n^{\gamma-1}, \quad c>0,0<\sigma<1 .(1)
$$

StRETCHED-EXPONENTIAL ASYMPTOTICS.

- Many problems have more complex asymptotics.

$$
b_{n} \sim B \cdot \mu^{n} \cdot \exp \left(-c \cdot n^{\sigma}\right) \cdot n^{\gamma-1}, \quad c>0,0<\sigma<1 .(1)
$$

$$
\begin{equation*}
\text { Or } f(x)=(1-\mu \cdot x)^{\alpha}\left(\frac{1}{\mu \cdot x} \log \frac{1}{1-\mu \cdot x}\right)^{\beta} \tag{2}
\end{equation*}
$$

StRETCHED-EXPONENTIAL ASYMPTOTICS.

- Many problems have more complex asymptotics.

$$
b_{n} \sim B \cdot \mu^{n} \cdot \exp \left(-c \cdot n^{\sigma}\right) \cdot n^{\gamma-1}, \quad c>0,0<\sigma<1 .(1)
$$

$$
\begin{equation*}
\text { Or } f(x)=(1-\mu \cdot x)^{\alpha}\left(\frac{1}{\mu \cdot x} \log \frac{1}{1-\mu \cdot x}\right)^{\beta} \tag{2}
\end{equation*}
$$

For (1), $r_{n}=\mu\left(1+\frac{\sigma \log \mu_{1}}{n^{1-\sigma}}+\frac{\gamma-1}{n}+\mathbf{O}\left(\frac{1}{n^{2-2 \sigma}}\right)\right)$.

STRETCHED-EXPONENTIAL ASYMPTOTICS.

- Many problems have more complex asymptotics.

$$
b_{n} \sim B \cdot \mu^{n} \cdot \exp \left(-c \cdot n^{\sigma}\right) \cdot n^{\gamma-1}, \quad c>0,0<\sigma<1 .(1)
$$

$$
\begin{equation*}
\text { Or } f(x)=(1-\mu \cdot x)^{\alpha}\left(\frac{1}{\mu \cdot x} \log \frac{1}{1-\mu \cdot x}\right)^{\beta} \tag{2}
\end{equation*}
$$

\bullet
For (1), $r_{n}=\mu\left(1+\frac{\sigma \log \mu_{1}}{n^{1-\sigma}}+\frac{\gamma-1}{n}+\mathrm{O}\left(\frac{1}{n^{2-2 \sigma}}\right)\right)$.

For (2), $r_{n}=\mu\left(1-\frac{\alpha+1}{n}+\frac{\beta}{n \log n}+\frac{c_{1}}{n \log ^{2} n}+\cdots\right)$,

L-CONVEX POLYGONS.

- An L-convex polyomino is one in which any two cells may be joined by an L-shaped path.
- Introduced by Castiglione et al. in 2007.
- The perimeter generating function coefficients satisfy $c_{n+2}=4 c_{n+1}-2 c_{n}$, so the ogf is algebraic.
- The area generating function is unknown.
- From their appearance, they can be considered as the gluing together of two stack polyominoes. The area of stack polyominoes grows as

L-CONVEX POLYGONS.

- An L-convex polyomino is one in which any two cells may be joined by an L-shaped path.
- Introduced by Castiglione et al. in 2007.
- The perimeter generating function coefficients satisfy $c_{n+2}=4 c_{n+1}-2 c_{n}$, so the ogf is algebraic.
- The area generating function is unknown.
- From their appearance, they can be considered as the gluing together of two stack polyominoes. The area of stack polyominoes grows as

L-CONVEX POLYGONS.

- An L-convex polyomino is one in which any two cells may be joined by an L-shaped path.
- Introduced by Castiglione et al. in 2007.
- The perimeter generating function coefficients satisfy $c_{n+2}=4 c_{n+1}-2 c_{n}$, so the ogf is algebraic.
- The area generating function is unknown.
- From their appearance, they can be considered as the gluing together of two stack polyominoes. The area of stack polyominoes grows as

L-CONVEX POLYGONS.

- An L-convex polyomino is one in which any two cells may be joined by an L-shaped path.
- Introduced by Castiglione et al. in 2007.
- The perimeter generating function coefficients satisfy $c_{n+2}=4 c_{n+1}-2 c_{n}$, so the ogf is algebraic.
- The area generating function is unknown.
- From their appearance, they can be considered as the gluing together of two stack polyominoes. The area of stack polyominoes grows as

L-CONVEX POLYGONS.

- An L-convex polyomino is one in which any two cells may be joined by an L-shaped path.
- Introduced by Castiglione et al. in 2007.
- The perimeter generating function coefficients satisfy $c_{n+2}=4 c_{n+1}-2 c_{n}$, so the ogf is algebraic.
- The area generating function is unknown.
- From their appearance, they can be considered as the gluing together of two stack polyominoes. The area of stack polyominoes grows as

$$
a_{n} \sim \frac{\exp (2 \pi \sqrt{n / 3})}{8 \cdot 3^{3 / 4} \cdot n^{5 / 4}}
$$

L-CONVEX CONTINUED.

- Plot ratios against $1 / n$ and $1 / \sqrt{n}$. Suggests $\mu_{1}^{\sqrt{n}}$ behaviour.
 gradient $\sigma-1$.

L-CONVEX CONTINUED.

- Plot ratios against $1 / n$ and $1 / \sqrt{n}$. Suggests $\mu_{1}^{\sqrt{n}}$ behaviour.
- From (1), $\left(r_{n}-1\right) \sim$ const. $\cdot n^{\sigma-1}$, so log-log plot should have gradient $\sigma-1$.

L-CONVEX CONTINUED.

- Recall $\left(r_{n}-1\right) \sim \frac{\log \mu_{1}}{2 \sqrt{n}}$, - So $2 \sqrt{n} \cdot\left(r_{n}-1\right) \sim \log \mu_{1}$

L-CONVEX CONTINUED.

- Recall $\left(r_{n}-1\right) \sim \frac{\log \mu_{1}}{2 \sqrt{n}}$,
- So $2 \sqrt{n} \cdot\left(r_{n}-1\right) \sim \log \mu_{1}$,

L-CONVEX CONTINUED.

- Plot implies $\log \mu_{1} \approx 4.62$. Linear interpolation gives 4.624.
- Recall stack polyoms. grow as $\exp (2 \pi \sqrt{ } n / 3)$, so guess these
grow as $\exp (\pi \sqrt{\alpha n})$.
- So $\pi \sqrt{\alpha} \approx 4.624$, implies $\alpha \approx 2.1664$. Guess $\alpha=13 / 6$.
- So we have

- To estimate g, set $m=n^{2}$, so

This is of the form $C \mu^{n} n^{g}$, so we can use the usual ratio method.

- In this way, we find $g \approx-1.5$, so $l_{n} \sim C \cdot \frac{\exp (\pi \sqrt{13 n / 6)}}{n^{3 / 2}}$.

L-CONVEX CONTINUED.

- Plot implies $\log \mu_{1} \approx 4.62$. Linear interpolation gives 4.624.
- Recall stack polyoms. grow as $\exp (2 \pi \sqrt{n / 3})$, so guess these grow as $\exp (\pi \sqrt{\alpha n})$.
- So $\pi \sqrt{\alpha} \approx 4.624$, implies $\alpha \approx 2.1664$. Guess $\alpha=13 / 6$.
- So we have

- To estimate g, set $m=n^{2}$, so

This is of the form $C \mu^{n} n^{g}$, so we can use the usual ratio method.

- In this way, we find $g \approx-1.5$, so $I_{n} \sim C \cdot \frac{\exp (\pi \sqrt{13 n / 6)}}{n^{1 / 2}}$

L-CONVEX CONTINUED.

- Plot implies $\log \mu_{1} \approx 4.62$. Linear interpolation gives 4.624.
- Recall stack polyoms. grow as $\exp (2 \pi \sqrt{n / 3})$, so guess these grow as $\exp (\pi \sqrt{\alpha n})$.
- So $\pi \sqrt{\alpha} \approx 4.624$, implies $\alpha \approx 2.1664$. Guess $\alpha=13 / 6$.
- So we have

- To estimate g, set $m=n^{2}$, so

This is of the form $C \mu^{n} n^{g}$, so we can use the usual ratio method.

L-CONVEX CONTINUED.

- Plot implies $\log \mu_{1} \approx 4.62$. Linear interpolation gives 4.624.
- Recall stack polyoms. grow as $\exp (2 \pi \sqrt{n / 3})$, so guess these grow as $\exp (\pi \sqrt{\alpha n})$.
- So $\pi \sqrt{\alpha} \approx 4.624$, implies $\alpha \approx 2.1664$. Guess $\alpha=13 / 6$.
- So we have

$$
l_{n} \sim C \cdot \frac{\exp (\pi \sqrt{13 n / 6})}{n^{g}}
$$

This is of the form $C \mu^{n} n^{g}$, so we can use the usual ratio method.

L-CONVEX CONTINUED.

- Plot implies $\log \mu_{1} \approx 4.62$. Linear interpolation gives 4.624.
- Recall stack polyoms. grow as $\exp (2 \pi \sqrt{n / 3})$, so guess these grow as $\exp (\pi \sqrt{\alpha n})$.
- So $\pi \sqrt{\alpha} \approx 4.624$, implies $\alpha \approx 2.1664$. Guess $\alpha=13 / 6$.
- So we have

$$
l_{n} \sim C \cdot \frac{\exp (\pi \sqrt{13 n / 6})}{n^{g}}
$$

- To estimate g, set $m=n^{2}$, so

$$
l_{m} \sim C \cdot \frac{\exp (n \pi \sqrt{13 / 6})}{n^{2 g}}
$$

This is of the form $C \mu^{n} n^{g}$, so we can use the usual ratio method.

L-CONVEX CONTINUED.

- Plot implies $\log \mu_{1} \approx 4.62$. Linear interpolation gives 4.624.
- Recall stack polyoms. grow as $\exp (2 \pi \sqrt{n / 3})$, so guess these grow as $\exp (\pi \sqrt{\alpha n})$.
- So $\pi \sqrt{\alpha} \approx 4.624$, implies $\alpha \approx 2.1664$. Guess $\alpha=13 / 6$.
- So we have

$$
l_{n} \sim C \cdot \frac{\exp (\pi \sqrt{13 n / 6})}{n^{g}}
$$

- To estimate g, set $m=n^{2}$, so

$$
l_{m} \sim C \cdot \frac{\exp (n \pi \sqrt{13 / 6})}{n^{2 g}}
$$

This is of the form $C \mu^{n} n^{g}$, so we can use the usual ratio method.

- In this way, we find $g \approx-1.5$, so $l_{n} \sim C \cdot \frac{\exp (\pi \sqrt{13 n / 6})}{n^{3 / 2}}$.

L-CONVEX CONTINUED.

- To estimate C, we divide the known coefficients by $\frac{\exp (\pi \sqrt{13 n / 6})}{n^{3 / 2}}$ and extrapolate the sequence (Bulirsch-Stoer).
- In this way one finds $C \approx 0.0239385108214$.
- Try and identify this with $\operatorname{PSLQ}(0.0239385108214, \sqrt{2}, 1)$ and one finds $C=13 \sqrt{2} / 768$.
- So we conjecture

- Work done with Vaclav Kotesovec, reported in OEIS A126764.

L-CONVEX CONTINUED.

- To estimate C, we divide the known coefficients by $\frac{\exp (\pi \sqrt{13 n / 6})}{n^{3 / 2}}$ and extrapolate the sequence (Bulirsch-Stoer).
- In this way one finds $C \approx 0.0239385108214$.
- Try and identify this with PSLQ $(0.0239385108214, \sqrt{2}, 1)$ and one finds $C=13 \sqrt{2} / 768$.
- So we conjecture

- Work done with Vaclav Kotesovec, reported in OEIS A126764.

L-CONVEX CONTINUED.

- To estimate C, we divide the known coefficients by $\frac{\exp (\pi \sqrt{13 n / 6})}{n^{3 / 2}}$ and extrapolate the sequence (Bulirsch-Stoer).
- In this way one finds $C \approx 0.0239385108214$.
- Try and identify this with $\operatorname{PSLQ}(0.0239385108214, \sqrt{2}, 1)$ and one finds $C=13 \sqrt{2} / 768$.
- So we conjecture
- Work done with Vaclav Kotesovec, reported in OEIS A126764.

L-CONVEX CONTINUED.

- To estimate C, we divide the known coefficients by $\frac{\exp (\pi \sqrt{13 n / 6})}{n^{3 / 2}}$ and extrapolate the sequence (Bulirsch-Stoer).
- In this way one finds $C \approx 0.0239385108214$.
- Try and identify this with $\operatorname{PSLQ}(0.0239385108214, \sqrt{2}, 1)$ and one finds $C=13 \sqrt{2} / 768$.
- So we conjecture

$$
l_{n} \sim 13 \frac{\exp (\pi \sqrt{13 n / 6})}{3 \cdot 2^{15 / 2} n^{3 / 2}}
$$

L-CONVEX CONTINUED.

- To estimate C, we divide the known coefficients by $\frac{\exp (\pi \sqrt{13 n / 6})}{n^{3 / 2}}$ and extrapolate the sequence (Bulirsch-Stoer).
- In this way one finds $C \approx 0.0239385108214$.
- Try and identify this with $\operatorname{PSLQ}(0.0239385108214, \sqrt{2}, 1)$ and one finds $C=13 \sqrt{2} / 768$.
- So we conjecture

$$
l_{n} \sim 13 \frac{\exp (\pi \sqrt{13 n / 6})}{3 \cdot 2^{15 / 2} n^{3 / 2}}
$$

- Work done with Vaclav Kotesovec, reported in OEIS A126764.

Counting Eulerian orientations: Logarithms.

- An Eulerian orientation is an oriented Eulerian map in which each vertex has equal in-degree and out-degree.
- Using series extension: 1000 further terms.
- Using the ratio method, we found a confluent logarithm.
- We estimated $\mu \approx 12.56637$, which I recognised as 4π
- Subsequent discussion with MBM led to the identification of this with a previously solved problem, and she and Andrew EP completed the proof of this.

Counting Eulerian orientations: Logarithms.

- An Eulerian orientation is an oriented Eulerian map in which each vertex has equal in-degree and out-degree. In joint work with Andrew Elvey Price we generated 100 terms.
- Using series extension: 1000 further terms.
- Using the ratio method, we found a confluent logarithm.
- We estimated $\mu \approx 12.56637$, which I recognised as 4π
- Subsequent discussion with MBM led to the identification of this with a previously solved problem, and she and Andrew EP completed the proof of this.

Counting Eulerian orientations: Logarithms.

- An Eulerian orientation is an oriented Eulerian map in which each vertex has equal in-degree and out-degree. In joint work with Andrew Elvey Price we generated 100 terms.
- Using series extension: 1000 further terms.
- Using the ratio method, we found a confluent logarithm.
- We estimated $\mu \approx 12.56637$, which I recognised as 4π
- Subsequent discussion with MBM led to the identification of this with a previously solved problem, and she and Andrew EP completed the proof of this.

Counting Eulerian orientations: Logarithms.

- An Eulerian orientation is an oriented Eulerian map in which each vertex has equal in-degree and out-degree. In joint work with Andrew Elvey Price we generated 100 terms.
- Using series extension: 1000 further terms.
- Using the ratio method, we found a confluent logarithm.

$$
E(x) \sim \text { const. }(1-\mu z) / \log (1-\mu z)
$$

- We estimated $\mu \approx 12.56637$, which I recognised as 4π.
- Subsequent discussion with MBM led to the identification of this with a previously solved problem, and she and Andrew EP completed the proof of this.

Counting Eulerian orientations: Logarithms.

- An Eulerian orientation is an oriented Eulerian map in which each vertex has equal in-degree and out-degree. In joint work with Andrew Elvey Price we generated 100 terms.
- Using series extension: 1000 further terms.
- Using the ratio method, we found a confluent logarithm.

$$
E(x) \sim \text { const. }(1-\mu z) / \log (1-\mu z)
$$

- We estimated $\mu \approx 12.56637$, which I recognised as 4π.
- Subsequent discussion with MBM led to the identification of this with a previously solved problem, and she and Andrew EP completed the proof of this.

Counting Eulerian orientations: Logarithms.

- An Eulerian orientation is an oriented Eulerian map in which each vertex has equal in-degree and out-degree. In joint work with Andrew Elvey Price we generated 100 terms.
- Using series extension: 1000 further terms.
- Using the ratio method, we found a confluent logarithm.

$$
E(x) \sim \text { const. }(1-\mu z) / \log (1-\mu z)
$$

- We estimated $\mu \approx 12.56637$, which I recognised as 4π.
- Subsequent discussion with MBM led to the identification of this with a previously solved problem, and she and Andrew EP completed the proof of this.

C'est tout. Merci

