Hodge filtration and birational geometry I

Mihnea Popa

Harvard University

CIRM, April 14, 2022

Mihnea Popa (Harvard University)

Hodge filtration and birational geometry I

CIRM, April 14, 2022 1

• Joint work with Mircea Mustață.

- Joint work with Mircea Mustață.
- Theme: (Hodge) D-modules can be brought into play when studying some of the most basic questions about closed subvarieties of smooth complex varieties.

- Joint work with Mircea Mustață.
- Theme: (Hodge) D-modules can be brought into play when studying some of the most basic questions about closed subvarieties of smooth complex varieties.
- Main tool: Hodge filtration on localizations, or more generally on local cohomology

Set-up: • $Z \subseteq X$ closed (reduced) subscheme, X smooth complex variety.

• Have local cohomology sheaves $\mathcal{H}_Z^q \mathcal{O}_X$ for $q \ge 0$; obtained by taking higher derived functors of $\mathcal{H}_Z^0 \mathcal{O}_X = \underline{\Gamma}_Z \mathcal{O}_X$ = subsheaf of local sections with support in Z. (Locally: if $I \subseteq R$, then $\mathcal{H}_I^0 R = \{r \in R \mid I^k \cdot r = 0 \text{ for some } k \ge 0\}$.)

Set-up: • $Z \subseteq X$ closed (reduced) subscheme, X smooth complex variety.

• Have local cohomology sheaves $\mathcal{H}_Z^q \mathcal{O}_X$ for $q \ge 0$; obtained by taking higher derived functors of $\mathcal{H}_Z^0 \mathcal{O}_X = \underline{\Gamma}_Z \mathcal{O}_X$ = subsheaf of local sections with support in Z. (Locally: if $I \subseteq R$, then $\mathcal{H}_I^0 R = \{r \in R \mid I^k \cdot r = 0 \text{ for some } k \ge 0\}$.)

• Equivalently, difference between \mathcal{O}_X and $\mathbf{R}_{j_*}\mathcal{O}_U$, with $j: U = X \setminus Z \hookrightarrow X$:

$$\blacktriangleright \ 0 \to 0 = \mathcal{H}^0_Z \mathcal{O}_X \to \mathcal{O}_X \to j_* \mathcal{O}_U \to \mathcal{H}^1_Z \mathcal{O}_X \to 0$$

$$R^{q-1}j_*\mathcal{O}_U \simeq \mathcal{H}^q_Z\mathcal{O}_X \quad \text{for } q \ge 2$$

Mihnea Popa (Harvard University)

Example: $Z = D = hypersurface \implies$ only $\mathcal{H}^1_D \mathcal{O}_X \neq 0$, and have a SES:

$$0 o \mathcal{O}_X o \mathcal{O}_X(*D) o \mathcal{H}^1_D \mathcal{O}_X o 0$$

where $\mathcal{O}_X(*D) = j_*\mathcal{O}_U$ = rational functions with poles along D, with $j: U \hookrightarrow X$, $U = X \smallsetminus D$.

• Locally, if $R = \mathcal{O}_X(V)$ and D = (f = 0), this is $H^1_{(f)}R = R_f/R$.

Example: $Z = D = hypersurface \implies$ only $\mathcal{H}^1_D \mathcal{O}_X \neq 0$, and have a SES:

$$0 o \mathcal{O}_X o \mathcal{O}_X(*D) o \mathcal{H}^1_D \mathcal{O}_X o 0$$

where $\mathcal{O}_X(*D) = j_*\mathcal{O}_U$ = rational functions with poles along D, with $j: U \hookrightarrow X$, $U = X \smallsetminus D$.

• Locally, if $R = \mathcal{O}_X(V)$ and D = (f = 0), this is $H^1_{(f)}R = R_f/R$.

• \mathcal{O}_X and $\mathcal{O}_X(*D)$ have natural \mathcal{D}_X -module structure: locally R and R_f , and differential operators act by the quotient rule; hence so does $\mathcal{H}^1_D \mathcal{O}_X$.

Mihnea Popa (Harvard University)

Local cohomology

• In general similar interpretation in terms of localization: say Z defined locally by $I = (f_1, \ldots, f_s) \subset R = \mathcal{O}_X(V)$. For $J \subset \{1, \ldots, s\}$ denote $f_J := \prod_{j \in J} f_j$.

Local cohomology

- In general similar interpretation in terms of localization: say Z defined locally by $I = (f_1, \ldots, f_s) \subset R = \mathcal{O}_X(V)$. For $J \subset \{1, \ldots, s\}$ denote $f_J := \prod_{j \in J} f_j$.
- \exists Čech-type complex (of \mathcal{D}_X -modules)

$$C^{ullet}: \quad 0 o C^0 o C^1 o \cdots o C^s o 0$$

with

$$C^{p} := \bigoplus_{|J|=p} R_{f_{J}},$$

such that $\mathcal{H}^q_Z \mathcal{O}_X = \mathcal{H}^q C^{\bullet}$; in particular all have \mathcal{D}_X -module structure

Mihnea Popa (Harvard University)

Local cohomology

- In general similar interpretation in terms of localization: say Z defined locally by $I = (f_1, \ldots, f_s) \subset R = \mathcal{O}_X(V)$. For $J \subset \{1, \ldots, s\}$ denote $f_J := \prod_{j \in J} f_j$.
- \exists Čech-type complex (of \mathcal{D}_X -modules)

$$C^{ullet}: \quad 0 o C^0 o C^1 o \cdots o C^s o 0$$

with

$$C^{p} := \bigoplus_{|J|=p} R_{f_{J}},$$

such that $\mathcal{H}^q_Z \mathcal{O}_X = \mathcal{H}^q C^{\bullet}$; in particular all have \mathcal{D}_X -module structure

$$r = 1: \quad 0 \to R \to R_f \to 0 r = 2: \quad 0 \to R \to R_{f_1} \oplus R_{f_2} \to R_{f_1 f_2} \to 0$$

Mihnea Popa (Harvard University)

Local cohomological dimension

Consequence: $\mathcal{H}_Z^q \mathcal{O}_X = 0$ for q > minimal number of local defining equations for Z

• The local cohomological dimension of Z in X is

 $\operatorname{lcd}_X(Z) := \max\{q \mid \mathcal{H}_Z^q \mathcal{O}_X \neq 0\}.$

(A priori defined in terms of $\mathcal{H}^q_Z \mathcal{F}$ for all sheaves \mathcal{F} on X, but equivalent to this.)

Local cohomological dimension

Consequence: $\mathcal{H}_Z^q \mathcal{O}_X = 0$ for q > minimal number of local defining equations for Z

• The local cohomological dimension of Z in X is

 $\operatorname{lcd}_X(Z) := \max\{q \mid \mathcal{H}_Z^q \mathcal{O}_X \neq 0\}.$

(A priori defined in terms of $\mathcal{H}^q_Z \mathcal{F}$ for all sheaves \mathcal{F} on X, but equivalent to this.)

• Also have: $\min\{q \mid \mathcal{H}^q_Z \mathcal{O}_X \neq 0\} = \operatorname{codim}_X Z =: r.$

Local cohomological dimension

Consequence: $\mathcal{H}_Z^q \mathcal{O}_X = 0$ for q > minimal number of local defining equations for Z

• The local cohomological dimension of Z in X is

 $\operatorname{lcd}_X(Z) := \max\{q \mid \mathcal{H}_Z^q \mathcal{O}_X \neq 0\}.$

(A priori defined in terms of $\mathcal{H}^q_Z \mathcal{F}$ for all sheaves \mathcal{F} on X, but equivalent to this.)

- Also have: $\min\{q \mid \mathcal{H}_Z^q \mathcal{O}_X \neq 0\} = \operatorname{codim}_X Z =: r.$
- Example: If Z is a local complete intersection (LCI), then only $\mathcal{H}_Z^r \mathcal{O}_X \neq 0$.

But can also have non-LCI subvarieties with $lcd_X(Z) = r$. (E.g. most varieties with quotient singularities.) In general $lcd_X(Z)$ rather mysterious; more later.

Mihnea Popa (Harvard University)

Main point for us: $\mathcal{H}^q_Z \mathcal{O}_X$ carry the structure of mixed Hodge modules (MHM).

Main point for us: $\mathcal{H}^q_Z \mathcal{O}_X$ carry the structure of mixed Hodge modules (MHM).

Example: The case of a hypersurface $Z = D \subset X$ is relatively well understood:

- The \mathcal{D}_X -module $\mathcal{O}_X(*D)$ underlies the MHM $j_*\mathbf{Q}_U^H[n]$, i.e. the push-forward of the trivial Hodge module via $j: U = X \setminus D \hookrightarrow X$; in particular comes with **Hodge** filtration $F_{\bullet}\mathcal{O}_X(*D)$.
- Puts MHM structure on local cohomology, since

$$0 o \mathcal{O}_X o \mathcal{O}_X(*D) o \mathcal{H}^1_D \mathcal{O}_X o 0$$

• Analogously, for arbitrary $Z \subset X$ the complex

$$C^{\bullet}: \quad 0 \to C^0 \to C^1 \to \cdots \to C^s \to 0$$

is a complex of MHMs \implies get MHM structure on each $\mathcal{H}^q_Z \mathcal{O}_X$, in particular

 $F_k \mathcal{H}^q_Z \mathcal{O}_X$, with $k \geq 0$.

• Analogously, for arbitrary $Z \subset X$ the complex

$$C^{\bullet}: \quad 0 \to C^0 \to C^1 \to \cdots \to C^s \to 0$$

is a complex of MHMs \implies get MHM structure on each $\mathcal{H}^q_Z \mathcal{O}_X$, in particular

 $F_k \mathcal{H}^q_Z \mathcal{O}_X$, with $k \geq 0$.

• Right \mathcal{D}_X -module version: $\mathcal{H}_Z^q \omega_X \simeq \mathcal{H}_Z^q \mathcal{O}_X \otimes \omega_X$ and $F_k \mathcal{H}_Z^q \omega_X$.

Mihnea Popa (Harvard University)

List of formal properties of the Hodge filtration on local cohomology, as consequences of **mixed Hodge module theory** and **birational geometry**:

List of formal properties of the Hodge filtration on local cohomology, as consequences of **mixed Hodge module theory** and **birational geometry**:

1) If $Z \subseteq X$ is **smooth** of codimension r, then

 $F_k \mathcal{H}^r_Z(\mathcal{O}_X) = \mathcal{O}_k \mathcal{H}^r_Z(\mathcal{O}_X) := \{ u \in \mathcal{H}^r_Z(\mathcal{O}_X) \mid I_Z^{k+1} u = 0 \} \quad (\text{``order filtration''})$

List of formal properties of the Hodge filtration on local cohomology, as consequences of **mixed Hodge module theory** and **birational geometry**:

1) If $Z \subseteq X$ is **smooth** of codimension r, then

 $F_k \mathcal{H}^r_Z(\mathcal{O}_X) = \mathcal{O}_k \mathcal{H}^r_Z(\mathcal{O}_X) := \{ u \in \mathcal{H}^r_Z(\mathcal{O}_X) \mid I_Z^{k+1} u = 0 \} \quad (\text{``order filtration''})$

• Concretely, if Z defined locally by $I = (x_1, \ldots, x_r) \subset R$, then

$$H_{I}^{r}(R) \simeq \operatorname{Coker} \left(\bigoplus_{i=1}^{r} R_{x_{1} \cdots \widehat{x_{i}} \cdots x_{r}} \to R_{x_{1} \cdots x_{r}}
ight).$$

But we understand the Hodge filtration on localization along simple normal crossing divisors:

$$F_k R_{x_1 \cdots x_p} = F_k \mathcal{D}_X \cdot \frac{1}{x_1 \cdots x_p}$$

Mihnea Popa (Harvard University)

Properties: birational interpretation

2) Birational interpretation.

Let $f: Y \to X$ be a **log resolution** of (X, Z), assumed isom. over $U = X \setminus Z$. Denote $E = f^{-1}(Z)_{red}$, an SNC divisor.

$$V = Y \setminus E \longrightarrow Y$$
$$\downarrow \simeq \qquad \qquad \downarrow f$$
$$U = X \setminus Z \xrightarrow{j} X$$

Say $q \ge 2$; have: $(\mathcal{H}^q_Z \omega_X, F) \simeq R^{q-1} j_+(\omega_U, F) \simeq \mathcal{H}^{q-1} f_+(\omega_Y(*E), F).$

How do we compute RHS in practice?

Mihnea Popa (Harvard University)

• \exists complex of $f^{-1}\mathcal{D}_X$ -modules on Y:

$$\mathcal{A}^{\bullet}: \quad 0 \to f^*\mathcal{D}_X \to \Omega^1_Y(\log E) \otimes f^*\mathcal{D}_X \to \cdots \to \omega_Y(E) \otimes f^*\mathcal{D}_X \to 0$$

filtered by complexes of \mathcal{O}_Y -modules

$$F_{k}A^{\bullet}: \quad 0 \to f^{*}F_{k-n}\mathcal{D}_{X} \to \Omega^{1}_{Y}(\log E) \otimes f^{*}F_{k-n+1}\mathcal{D}_{X} \to \cdots \to \omega_{Y}(E) \otimes f^{*}F_{k}\mathcal{D}_{X} \to 0$$

• \exists complex of $f^{-1}\mathcal{D}_X$ -modules on Y:

$$\mathcal{A}^{\bullet}: \quad 0 \to f^*\mathcal{D}_X \to \Omega^1_Y(\log E) \otimes f^*\mathcal{D}_X \to \cdots \to \omega_Y(E) \otimes f^*\mathcal{D}_X \to 0$$

filtered by complexes of \mathcal{O}_Y -modules

$$F_{k}A^{\bullet}: \quad 0 \to f^{*}F_{k-n}\mathcal{D}_{X} \to \Omega^{1}_{Y}(\log E) \otimes f^{*}F_{k-n+1}\mathcal{D}_{X} \to \cdots \to \omega_{Y}(E) \otimes f^{*}F_{k}\mathcal{D}_{X} \to 0$$

• Turns out that $\mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* A^{\bullet}$; filtration on $\mathcal{H}^q_Z \omega_X$ a priori given by

$$F_k \mathcal{H}_Z^q \omega_X = \operatorname{Im} \left[R^{q-1} f_* F_k A^{\bullet} \xrightarrow{\varphi_k} R^{q-1} f_* A^{\bullet} \right].$$

Mihnea Popa (Harvard University)

• \exists complex of $f^{-1}\mathcal{D}_X$ -modules on Y:

$$\mathcal{A}^{\bullet}: \quad 0 \to f^*\mathcal{D}_X \to \Omega^1_Y(\log E) \otimes f^*\mathcal{D}_X \to \cdots \to \omega_Y(E) \otimes f^*\mathcal{D}_X \to 0$$

filtered by complexes of \mathcal{O}_Y -modules

$$F_k A^{\bullet}: \quad 0 \to f^* F_{k-n} \mathcal{D}_X \to \Omega^1_Y(\log E) \otimes f^* F_{k-n+1} \mathcal{D}_X \to \cdots \to \omega_Y(E) \otimes f^* F_k \mathcal{D}_X \to 0$$

• Turns out that $\mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* A^{\bullet}$; filtration on $\mathcal{H}^q_Z \omega_X$ a priori given by

$$F_k \mathcal{H}^q_Z \omega_X = \operatorname{Im} \left[R^{q-1} f_* F_k A^{\bullet} \xrightarrow{\varphi_k} R^{q-1} f_* A^{\bullet} \right].$$

• Crucial Hodge-theoretic point (Saito's strictness): φ_k is injective! (Generalized version of the E_1 -degeneration of the Hodge-to-de Rham spectral sequence.)

Mihnea Popa (Harvard University)

Conclusion:
$$F_k \mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* F_k A^{\bullet}$$
 $(q \ge 2, k \ge 0).$

Conclusion:
$$F_k \mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* F_k A^{\bullet}$$
 $(q \ge 2, k \ge 0).$

Examples:

•
$$\mathbf{k} = \mathbf{0}$$
: $F_0 \mathcal{H}_Z^q \omega_X \simeq R^{q-1} f_* \omega_Y(E) \ (\simeq R^{q-1} f_* \omega_E \text{ by Grauert-Riemenschneider}).$

Conclusion:
$$F_k \mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* F_k A^{\bullet}$$
 $(q \ge 2, k \ge 0).$

Examples:

- $\mathbf{k} = \mathbf{0}$: $F_0 \mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* \omega_Y(E)$ ($\simeq R^{q-1} f_* \omega_E$ by Grauert-Riemenschneider).
- $\mathbf{k} = \mathbf{1}$: $F_1 \mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* \left[\Omega^{n-1}_Y (\log E) \to \omega_Y(E) \otimes f^* F_1 \mathcal{D}_X \right].$

Conclusion:
$$F_k \mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* F_k A^{\bullet}$$
 $(q \ge 2, k \ge 0).$

Examples:

- $\mathbf{k} = \mathbf{0}$: $F_0 \mathcal{H}_Z^q \omega_X \simeq R^{q-1} f_* \omega_Y(E) \ (\simeq R^{q-1} f_* \omega_E \text{ by Grauert-Riemenschneider}).$
- $\mathbf{k} = \mathbf{1}$: $F_1 \mathcal{H}^q_Z \omega_X \simeq R^{q-1} f_* \left[\Omega^{n-1}_Y (\log E) \to \omega_Y(E) \otimes f^* F_1 \mathcal{D}_X \right].$
- Intuition: "niceness" of (filtration on) $\mathcal{H}^q_Z \omega_X$ corresponds to lots of vanishing of higher direct images $R^p f_* \Omega^q_Y(\log E)$. (More on this later.)

Mihnea Popa (Harvard University)

3) **Comparison with Ext filtration.** Combine with another well-known description of local cohomology:

$$\mathcal{H}^{\boldsymbol{q}}_{\boldsymbol{Z}}\omega_{\boldsymbol{X}}\simeq \lim_{\longrightarrow} \mathcal{E}\boldsymbol{x}t^{\boldsymbol{q}}\big(\mathcal{O}_{\boldsymbol{X}}/\mathcal{I}^{k+1}_{\boldsymbol{Z}},\omega_{\boldsymbol{X}}\big).$$

Define $E_k \mathcal{H}^q_Z \omega_X := \operatorname{Im} \left[\mathcal{E} x t^q \left(\mathcal{O}_X / \mathcal{I}_Z^{k+1}, \omega_X \right) \to \mathcal{H}^q_Z \omega_X \right].$

3) **Comparison with Ext filtration.** Combine with another well-known description of local cohomology:

$$\mathcal{H}^{q}_{Z}\omega_{X}\simeq \lim_{\longrightarrow} \mathcal{E}xt^{q}\big(\mathcal{O}_{X}/\mathcal{I}^{k+1}_{Z},\omega_{X}\big).$$

Define $E_k \mathcal{H}^q_Z \omega_X := \operatorname{Im} \left[\mathcal{E} x t^q \left(\mathcal{O}_X / \mathcal{I}^{k+1}_Z, \omega_X \right) \to \mathcal{H}^q_Z \omega_X \right].$

• Example: If Z = D hypersurface, q = 1 and have (Saito)

$$F_k \mathcal{H}_D^1 \omega_X \subseteq E_k \mathcal{H}_D^1 \omega_X \simeq \omega_X((k+1)D)/\omega_X,$$

i.e. Hodge filtration is contained in "pole order filtration". Equivalently

$$F_k\omega_X(*D) = \omega_X((k+1)D) \otimes I_k(D),$$

with $I_k(D) =$ **k-th Hodge ideal** of D; rich theory.

Mihnea Popa (Harvard University)

3) **Comparison with Ext filtration.** Combine with another well-known description of local cohomology:

$$\mathcal{H}^{q}_{Z}\omega_{X}\simeq \lim_{\longrightarrow}\mathcal{E}xt^{q}\big(\mathcal{O}_{X}/\mathcal{I}^{k+1}_{Z},\omega_{X}\big).$$

Define $E_k \mathcal{H}^q_Z \omega_X := \operatorname{Im} \left[\mathcal{E} x t^q \left(\mathcal{O}_X / \mathcal{I}_Z^{k+1}, \omega_X \right) \to \mathcal{H}^q_Z \omega_X \right].$

• Example: If Z = D hypersurface, q = 1 and have (Saito)

$$F_k \mathcal{H}_D^1 \omega_X \subseteq E_k \mathcal{H}_D^1 \omega_X \simeq \omega_X((k+1)D)/\omega_X,$$

i.e. Hodge filtration is contained in "pole order filtration". Equivalently

$$F_k\omega_X(*D) = \omega_X((k+1)D) \otimes I_k(D),$$

with $I_k(D) =$ **k-th Hodge ideal** of D; rich theory.

• General idea: think of E_k as the analogue of the pole order filtration (indeed equal to filtration O_k when Z is LCI); compare F_k and E_k .

Mihnea Popa (Harvard University)

Facts: (i) Always have $F_0 \mathcal{H}^q_Z \omega_X \subseteq E_0 \mathcal{H}^q_Z \omega_X$, for all q; because of birational description, equivalent to injectivity of natural map

$$R^{q-1}f_*\omega_E \longrightarrow \mathcal{E}xt^q(\mathcal{O}_Z,\omega_X).$$

(First proved by Kovács-Schwede.) Uses strictness.

Facts: (i) Always have $F_0 \mathcal{H}_Z^q \omega_X \subseteq E_0 \mathcal{H}_Z^q \omega_X$, for all q; because of birational description, equivalent to injectivity of natural map

$$R^{q-1}f_*\omega_E \longrightarrow \mathcal{E}xt^q(\mathcal{O}_Z,\omega_X).$$

(First proved by Kovács-Schwede.) Uses strictness.

Example: Z Cohen-Macaulay of codimension $r \implies R^i f_* \omega_E = 0$ for $i \neq r - 1$.

Facts: (i) Always have $F_0 \mathcal{H}_Z^q \omega_X \subseteq E_0 \mathcal{H}_Z^q \omega_X$, for all q; because of birational description, equivalent to injectivity of natural map

$$R^{q-1}f_*\omega_E \longrightarrow \mathcal{E}xt^q(\mathcal{O}_Z,\omega_X).$$

(First proved by Kovács-Schwede.) Uses strictness.

Example: Z Cohen-Macaulay of codimension $r \implies R^i f_* \omega_E = 0$ for $i \neq r - 1$.

• Well-known for a hypersurface $D: F_0 = E_0 \iff (X, D)$ log canonical $\iff D$ Du Bois. In general:

Theorem

If Z is Du Bois, then $F_0 \mathcal{H}_Z^q \omega_X = E_0 \mathcal{H}_Z^q \omega_X$ for all q. Converse also true if we assume Z Cohen-Macaulay (but not in general).

Mihnea Popa (Harvard University)

(ii) If $Z \subseteq X$ is **LCI** of codimension *r*, then for all *k*:

$$F_k \mathcal{H}_Z^r \omega_X \subseteq E_k \mathcal{H}_Z^r \omega_X \ (= O_k \mathcal{H}_Z^r \omega_X).$$

(ii) If $Z \subseteq X$ is **LCI** of codimension *r*, then for all *k*:

$$F_k \mathcal{H}_Z^r \omega_X \subseteq E_k \mathcal{H}_Z^r \omega_X \ (= O_k \mathcal{H}_Z^r \omega_X).$$

The **singularity index** of Z is

$$p(Z) := \max \{k \mid F_k = E_k\}.$$

(Convention: p(Z) = -1 if it never happens.)

(ii) If $Z \subseteq X$ is **LCI** of codimension *r*, then for all *k*:

$$F_k \mathcal{H}_Z^r \omega_X \subseteq E_k \mathcal{H}_Z^r \omega_X \ (= O_k \mathcal{H}_Z^r \omega_X).$$

The **singularity index** of Z is

$$p(Z) := \max \{k \mid F_k = E_k\}.$$

(Convention: p(Z) = -1 if it never happens.)

Theorem If Z is singular, then $p(Z) \leq \frac{\operatorname{codim}_Z(Z_{\operatorname{sing}})-1}{2} \leq \frac{\dim Z-1}{2}$.

Properties of the Hodge filtration

- 4) Measure of singularities. Based on the above, when Z is LCI:
 - ▶ Z is smooth $\iff p(Z) = \infty$ (i.e. $F_k = E_k$ for all $k \ge 0$).
 - p(Z) ≥ 0 ⇐⇒ Z has Du Bois singularities. (More generally p(Z) ≥ p ⇐⇒ Z has p-Du Bois singularities; see Mircea's talk.)
 - ▶ $p(Z) \ge 1 \implies Z$ has rational singularities (Chen-Dirks-Mustață-Olano)
 - General conjecture: $p(Z) = \max \{ [\widetilde{\alpha}(Z)] r, -1 \}.$
 - Here $\tilde{\alpha}(Z)$ = negative of the greatest root of the reduced Bernstein-Sato polynomial $\tilde{b}_Z(s) = b_Z(s)/(s+r)$ studied by Budur-Mustață-Saito.
 - Known when Z is a hypersurface, via connection with V-filtration due to Saito. (Main tool for understanding the *minimal exponent* of a hypersurface.)

5) **Vanishing theorem.** General Kodaira-Saito vanishing theorem for mixed Hodge module implies:

Corollary

If X is projective and L is an ample line bundle on X, then

 $\mathbf{H}^{i}(X, \operatorname{gr}_{F}^{k}\mathrm{DR}_{X}(\mathcal{H}_{Z}^{q}\mathcal{O}_{X})\otimes L)=0, \quad \forall \ i>0, q\geq 0, k\in\mathbb{Z}.$

5) **Vanishing theorem.** General Kodaira-Saito vanishing theorem for mixed Hodge module implies:

Corollary

If X is projective and L is an ample line bundle on X, then

 $\mathbf{H}^{i}ig(X,\mathrm{gr}_{F}^{k}\mathrm{DR}_{X}(\mathcal{H}_{Z}^{q}\mathcal{O}_{X})\otimes L)=0, \quad \forall \ i>0,q\geq 0,k\in\mathbb{Z}.$

• Example: For k = -n, using birational interpretation, get

$$H^{i}(X, \mathbb{R}^{q-1}f_{*}\omega_{Y}(E)\otimes L) = 0 \quad \forall i > 0.$$

Combination of vanishing theorems of Kollár, Fujino, Nadel.

Vanishing for Hodge ideals

• Example: Recall that when Z = D is a hypersurface, for all $k \ge 0$ we have

$$F_k\omega_X(*D) = \omega_X((k+1)D) \otimes I_k(D).$$

If X projective and D ample, then under mild assumptions

$$H^i(X, \omega_X((k+1)D)\otimes I_k(D))=0 \quad \forall i>0.$$

Vanishing for Hodge ideals

• Example: Recall that when Z = D is a hypersurface, for all $k \ge 0$ we have

$$F_k\omega_X(*D) = \omega_X((k+1)D) \otimes I_k(D).$$

If X projective and D ample, then under mild assumptions

$$H^i(X, \omega_X((k+1)D)\otimes I_k(D))=0 \quad \forall i>0.$$

• Combine with another consequence of the birational interpretation:

$$\operatorname{mult}_x(D) \geq \frac{n+p}{k+1} \implies I_k(D)_x \subseteq \mathfrak{m}_x^p.$$

"Generic" case of a folklore conjecture on theta divisors; problem with long history.

Theorem

Let (A, Θ) be a principally polarized abelian variety of dimension g. If Θ has isolated singularities, then

$$\operatorname{mult}_x(\Theta) \leq rac{g+1}{2} \quad ext{for all } x \in \Theta.$$

Moreover, equality can hold for at most one point.

"Generic" case of a folklore conjecture on theta divisors; problem with long history.

Theorem

Let (A, Θ) be a principally polarized abelian variety of dimension g. If Θ has isolated singularities, then

$$\operatorname{mult}_x(\Theta) \leq rac{g+1}{2} \quad ext{for all } x \in \Theta.$$

Moreover, equality can hold for at most one point.

Idea: use properties above for the Hodge ideal $I_1(\Theta)$.

• if
$$\operatorname{mult}_x(\Theta) \geq \frac{g+2}{2}$$
, then $I_1(\Theta) \subseteq \mathfrak{m}_x^2$.

•
$$H^1(A, \mathcal{O}_A(2\Theta) \otimes I_1(\Theta)) = 0.$$

• $\mathfrak{m}_x^2/I_1(\Theta)$ is 0-dimensional, plus translation trick, gives

$$H^1(\mathcal{A},\mathcal{O}_\mathcal{A}(2\Theta)\otimes\mathfrak{m}_y^2)=0, \hspace{1em} \forall y\in\mathcal{A}.$$

- Geometrically this means that the linear system $|2\Theta|$ separates tangent vectors.
- Contradiction, since the map $A \to \mathbf{P}^N$ given by $|2\Theta|$ (the Kummer map) is ramified at the 2-torsion points.

Mihnea Popa (Harvard University)

Hodge filtration and birational geometry I

Properties: generation level

6) Generation level of the Hodge filtration.

Definition: The filtration $F_{\bullet}\mathcal{M}$ on a \mathcal{D} -module \mathcal{M} is **generated at level** k if

$$F_k \mathcal{M} \cdot F_\ell \mathcal{D}_X = F_{k+\ell} \mathcal{M} \quad \text{for all} \ \ell \geq 0.$$

(Normally have only \subseteq .)

Properties: generation level

6) Generation level of the Hodge filtration.

Definition: The filtration $F_{\bullet}\mathcal{M}$ on a \mathcal{D} -module \mathcal{M} is **generated at level** k if

$$F_k \mathcal{M} \cdot F_\ell \mathcal{D}_X = F_{k+\ell} \mathcal{M} \quad \text{for all} \ \ell \geq 0.$$

(Normally have only \subseteq .)

• Birational characterization leads to:

Theorem

If $\mathcal{H}^p_Z \omega_X = 0$ for p > q, then the Hodge filtration on $\mathcal{H}^q_Z \omega_X$ is generated at level k if and only if

$$R^{q-1+i}f_* \ \Omega_Y^{n-i}(\log E) = 0 \quad \text{for all} \quad i > k.$$

(Hence always generated at level n - q.)

Application: Characterization of local cohomological dimension

• Recall that

$$\operatorname{lcd}_X(Z) := \max\{k \ge 0 \mid \mathcal{H}_Z^k \mathcal{O}_X \neq 0\}.$$

Studied by Hartshorne, Ogus, Peskine-Szpiro, then many others in CA. Over \mathbb{C} , complete **topological** characterization by Ogus in terms of algebraic de Rham/singular cohomology.

Application: Characterization of local cohomological dimension

• Recall that

$$\operatorname{lcd}_X(Z) := \max\{k \ge 0 \mid \mathcal{H}_Z^k \mathcal{O}_X \neq 0\}.$$

Studied by **Hartshorne**, **Ogus**, **Peskine-Szpiro**, then many others in CA. Over \mathbb{C} , complete **topological** characterization by Ogus in terms of algebraic de Rham/singular cohomology.

Our strategy: To show $\mathcal{H}_Z^q \omega_X = 0$, verify two things:

- $F_0 \mathcal{H}_Z^q \omega_X = 0.$
- $F_{\bullet}\mathcal{H}^q_Z\omega_X$ is generated at level 0.

• Result on the generation level of $F_{\bullet}\mathcal{H}_Z^q \omega_X$ plus the description of $F_0\mathcal{H}_Z^q \omega_X \Longrightarrow$ alternative **algebraic/holomorphic** characterization in terms of a finite collection of coherent sheaves:

• Result on the generation level of $F_{\bullet}\mathcal{H}^q_Z\omega_X$ plus the description of $F_0\mathcal{H}^q_Z\omega_X \Longrightarrow$ alternative **algebraic/holomorphic** characterization in terms of a finite collection of coherent sheaves:

Theorem

The following are equivalent:

1.
$$\operatorname{lcd}_X(Z) \le n - k$$
.
2. $R^{j+i} f_* \Omega_Y^{n-i}(\log E) = 0$ for all $j \ge n - k$ and all $i \ge 0$.

Examples: (Note: I ignore the $R^n f_*(\cdots)$, since they clearly vanish.)

1) We have:

$$\operatorname{lcd}_X(Z) \leq n-1 \iff R^{n-1}f_*\omega_Y(E) = 0.$$

Not hard to check that the vanishing holds $\iff Z$ has no isolated points.

Examples: (Note: I ignore the $R^n f_*(\cdots)$, since they clearly vanish.)

1) We have:

$$\operatorname{lcd}_X(Z) \leq n-1 \iff R^{n-1}f_*\omega_Y(E) = 0.$$

Not hard to check that the vanishing holds \iff Z has no isolated points.

Corollary (Hartshorne-Lichtenbaum Thm., smooth vars.) $lcd_X(Z) \le n-1 \iff Z$ has no isolated points.

Mihnea Popa (Harvard University)

Hodge filtration and birational geometry I

2) We have

$$\operatorname{lcd}_X(Z) \leq n-2$$

i.e $\mathcal{H}_Z^{n-1}\omega_X = \mathcal{H}_Z^n\omega_X = 0$, if and only if:

- $R^{n-1}f_*\Omega_Y^{n-1}(\log E) = 0$ (Non-obvious fact: this always holds.)
- $R^{n-1}f_*\omega_Y(E) = 0$ (Holds by 1).)
- $R^{n-2}f_*\omega_Y(E) = 0$ (Main issue.)

• Recall however that by $F_0 \subseteq E_0$ we have an injection

$$R^{n-2}f_*\omega_Y(E) \hookrightarrow \mathcal{E}xt^{n-1}_{\mathcal{O}_X}(\mathcal{O}_Z,\omega_X).$$

• Recall however that by $F_0 \subseteq E_0$ we have an injection

$$R^{n-2}f_*\omega_Y(E) \hookrightarrow \mathcal{E}xt^{n-1}_{\mathcal{O}_X}(\mathcal{O}_Z,\omega_X).$$

Recovers:

Theorem (**Ogus**) If depth $\mathcal{O}_Z \ge 2$ (e.g. Z normal), then $\operatorname{lcd}_X(Z) \le n-2$.

• Recall however that by $F_0 \subseteq E_0$ we have an injection

$$R^{n-2}f_*\omega_Y(E) \hookrightarrow \mathcal{E}xt^{n-1}_{\mathcal{O}_X}(\mathcal{O}_Z,\omega_X).$$

Recovers:

Theorem (**Ogus**) If depth $\mathcal{O}_Z \ge 2$ (e.g. Z normal), then $\operatorname{lcd}_X(Z) \le n-2$.

• Similar approach, but harder work, gives at least for isolated singularities:

Theorem (Varbaro, Dao-Takagi)

If depth $\mathcal{O}_Z \geq 3$, then $\operatorname{lcd}_X(Z) \leq n-3$.

• Recall however that by $F_0 \subseteq E_0$ we have an injection

$$R^{n-2}f_*\omega_Y(E) \hookrightarrow \mathcal{E}xt^{n-1}_{\mathcal{O}_X}(\mathcal{O}_Z,\omega_X).$$

Recovers:

Theorem (**Ogus**) If depth $\mathcal{O}_Z \ge 2$ (e.g. Z normal), then $\operatorname{lcd}_X(Z) \le n-2$.

• Similar approach, but harder work, gives at least for isolated singularities:

Theorem (Varbaro, Dao-Takagi)

If depth $\mathcal{O}_Z \geq 3$, then $\operatorname{lcd}_X(Z) \leq n-3$.

• This pattern stops here! There are examples with depth at least 4, but lcd n - 3. However...

Combined with various other techniques (combinatorial, du Bois complex), the Hodge filtration criterion leads to the ideal result in other instances:

Combined with various other techniques (combinatorial, du Bois complex), the Hodge filtration criterion leads to the ideal result in other instances:

Corollary

If Z satisfies one of the following:

▶ It is locally given by a monomial ideal. (Previously known: Lyubeznik, ...)

It has quotient singularities.

Then

$$\operatorname{lcd}_X(Z) = n - \operatorname{depth} \mathcal{O}_Z = \operatorname{pd} \mathcal{O}_Z.$$