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Definitions: pointed dynamical systems

I Let M be a group, or the monoid/semigroup N.

I A pointed (topological) dynamical system (PDS) is
(M,X , 0) where X is compact metrizable, 0 ∈ X , and
M acts continuously on X from the left with M0 = 0.

I We call 0 ∈ X the zero. We often omit it in the
notation, when obvious from context.

I When M is a group, we think of M as acting by “spatial
translations”,

I When M = N, we think of its action as “evolution in
time”; we then only give the generator f : X → X and
write (X , f ),

I When we have both, and the actions commute, we
write this as (G ,X , f ).
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Definitions: nilpotency and nilrigidity

I Write 0 also for the constant-0 function
∀x ∈ X : 0(x) = 0.

I When M = N, the PDS (X , f ) is...
I nilpotent if ∃n : f n = 0,
I asymptotically nilpotent (AN) if f n → 0 pointwise, and
I uniformly AN (UAN) if f n → 0 uniformly.

I We say a family of (N-)PDS F is nilrigid if for all
(X , f ) ∈ F , AN implies UAN. We also say (X , f ) is
nilrigid if {(X , f )} is.
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One-dimensional cellular automata

I The pointed (one-dimensional) full shift is X = AZ,
with zero 0 = 0Z for some 0 ∈ A, and the action is by
translations, (1 · x)i = σ(x)i = xi+1. A is the alphabet.

I A (pointed) cellular automaton (CA) is a σ-commuting
continuous map f : AZ → AZ satisfying f (0) = 0.

I A = Z/2Z, f (x)i = xi + xi+1 gives a XOR CA

N/time

(black = 1, gray = 0, ith row from the top is f i (x))

I XOR is not asymptotically nilpotent.
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Examples of (non-)nilpotency in CA
I The zero map 0 is a nilpotent CA.

I With A = {0, 1}, f (x)i = min(xi−1, xi , xi+1) satisfies
∀x 6= 1Z : f n(x)→ 0Z. Not asymptotically nilpotent.

I Nilpotent example, due to Theyssier

|A| = 3, f (x)i = F (xi−1, xi , xi+1), f 18 6= 0 = f 26

I There exist non-AN CA where f n → 0 uniformly in the
Besicovitch topology (= spatial density) [Törmä,’14],
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History lesson & mandatory undecidability slide

I Nilpotency of cellular automata is undecidable
(Σ0

1-complete). Proved by [Aanderaan-Lewis,’74]

,
forgotten, asked again by [Culik-Pachl-Yu,’88], proved
again by [Kari,’92].

I Basis of many undecidability results; undecidability of
conjugacy of cellular automata was proved by a
reduction from nilpotency [Jalonen-Kari, ’20].
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First nilrigidity results

Lemma

A cellular automaton is nilpotent if and only if it is UAN.

Proof.

After n steps, every point is close to zero. Then the entire
spatial orbit of every point is close to zero. By expansivity
such a point must be zero.

Theorem (Guillon-Richard, ’08)

Cellular automata (on one-dimensional full shifts) are nilrigid.

I Proof is specific to full shifts (or transitive SFTs) on Z.
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Subshifts and cellular automata

I The full shift is X = AG under gxh = xhg . A subshift is
a closed G -invariant subset of a full shift.

I A subshift of finite type (SFT) is a subshift of the form⋂
g∈G gC where C ⊂ AG is clopen. A subshift is sofic if

it is the image of an SFT under a shift-commuting
continuous function.

I A point x ∈ X is homoclinic if gx → 0 as g →∞ (= g
escapes finite sets). The support of x ∈ AG is
{g ∈ G | xg 6= 0}. The homoclinic points of a subshift
are those with finite support.

I A cellular automaton (CA) f : X → X is a
shift-commuting continuous map, by default on a full
shift. When there’s a zero, it is preserved.

I X = AG is an SFT, and its cellular automata are easy
to enumerate: if B b G is finite and F : AB → A
arbitrary, then f (x)g = F (gx |B) defines a CA.



Nilpotent
Endomorphisms of
Expansive Group

Actions

Ville Salo,
Ilkka Törmä
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I A cellular automaton (CA) f : X → X is a
shift-commuting continuous map, by default on a full
shift. When there’s a zero, it is preserved.

I X = AG is an SFT, and its cellular automata are easy
to enumerate: if B b G is finite and F : AB → A
arbitrary, then f (x)g = F (gx |B) defines a CA.
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Nilrigidity

Main theorem and
unpacking it

Tiered dynamical
systems

Motivation for
introducing tiered
systems

Questions and
assorted facts

Subshifts and cellular automata

I The full shift is X = AG under gxh = xhg . A subshift is
a closed G -invariant subset of a full shift.

I A subshift of finite type (SFT) is a subshift of the form⋂
g∈G gC where C ⊂ AG is clopen. A subshift is sofic if

it is the image of an SFT under a shift-commuting
continuous function.

I A point x ∈ X is homoclinic if gx → 0 as g →∞ (= g
escapes finite sets). The support of x ∈ AG is
{g ∈ G | xg 6= 0}. The homoclinic points of a subshift
are those with finite support.

I A cellular automaton (CA) f : X → X is a
shift-commuting continuous map, by default on a full
shift. When there’s a zero, it is preserved.

I X = AG is an SFT, and its cellular automata are easy
to enumerate: if B b G is finite and F : AB → A
arbitrary, then f (x)g = F (gx |B) defines a CA.



Nilpotent
Endomorphisms of
Expansive Group

Actions

Ville Salo,
Ilkka Törmä
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Nilrigidity for CA on abelian groups

Theorem (S.,’12)

If X is a one-dimensional SFT, then CA on X are nilrigid.

Theorem (S., ’12)

If G = Zd and X ⊂ AG is an SFT with dense homoclinic
points, then cellular automata on X are nilrigid.

I Proof idea: Zd ∼= Zd−1 × Z. “Periodization” in the
Zd−1-direction drops the dimension to one. This (kind
of) reduces the problem to the one for CA on
one-dimensional SFTs, which are nilrigid.

I It is easy to conclude the result for all abelian groups G .

I Strong irreducibility implies dense homoclinic points in
the pointed setting.
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Onto groups

Question (S., ’12)

For which finitely generated (f.g.) groups are cellular
automata on all G-full shifts nilrigid? For all groups?

abelian 3 Z,Z2

nilpotent 3 H3

polycyclic

solvable 3 Z2 o Z residually finite 3 Z2 o Z,F2

elem. amenable 3 S∞ o Z

amenable
LEF 3 S∞ o Z

sofic

all f.g. groups
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Theorem (S.-Törmä,’18/’20)

Let G be locally (residually finite and poly-(locally virtually
abelian)). Let (G ,X , 0) be an expansive zero-gluing pointed
dynamical system with dense homoclinic points. Then
endomorphisms of (G ,X , 0) are nilrigid.

Corollary

Let G be a residually finite solvable group. Let (G ,X , 0) be
an expansive pointed dynamical system with the shadowing
property and dense homoclinic points. Then endomorphisms
of (G ,X , 0) are nilrigid.

I In the zero-dimensional case, expansive + shadowing
characterizes SFTs.

Corollary

Let G be a residually finite solvable group. Then
endomorphisms of (G ,AG ) are nilrigid.
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Nilrigidity

Main theorem and
unpacking it

Tiered dynamical
systems

Motivation for
introducing tiered
systems

Questions and
assorted facts

Theorem (S.-Törmä,’18/’20)
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Expansivity and endomorphisms

Theorem

Let G be locally (residually finite and poly-(locally virtually
abelian)). Let (G ,X , 0) be an expansive zero-gluing pointed
dynamical system with dense homoclinic points. Then
endomorphisms of (G ,X , 0) are nilrigid.

I (G ,X , 0) is expansive if there exists ε > 0 such that

(∀g : d(gx , gy) < ε) =⇒ x = y .

I an endomorphism is a continuous map f : X → X s.t.
∀g ∈ G , x ∈ X : gf (x) = f (gx). Endomorphisms of
subshifts are cellular automata.
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Zero-gluing

Theorem

Let G be locally (residually finite and poly-(locally virtually
abelian)). Let (G ,X , 0) be an expansive zero-gluing
pointed dynamical system with dense homoclinic points.
Then endomorphisms of (G ,X , 0) are nilrigid.

I “zero-gluing = shadowing when close to zero”
I Let (G ,X , 0) be a dynamical system, G a group acting

from the left. Let E b G , A ⊂ G and δ > 0. Write
∂E (A) = {g ∈ A | Eg 6⊂ A}. A (δ,E )-designation is a
set of pairs (Ai , xi )i∈I such that G =

⊔
i Ai and

g ∈ ∂E (Ai ) =⇒ d(gxi , 0) < δ.
I An ε-realization of a designation (Ai , xi )i∈I is a point

x ∈ X such that for all g ∈ Ai , d(gx , gxi ) < ε.
I We say (G ,X , 0) is zero-gluing if for all ε > 0 there

exist δ > 0 and E b G such that every
(δ,E )-designation has an ε-realization.

I Shadowing/POTP implies zero-gluing, but not vice
versa.
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Group definitions: residual finiteness etc.

Theorem (S.-Törmä,’18/’20)

Let G be locally (residually finite and poly-(locally
virtually abelian)). Let (G ,X , 0) be an expansive
zero-gluing pointed dynamical system with dense homoclinic
points. Then endomorphisms of (X ,G , 0) are nilrigid.

I A f.g. group G is residually finite if one of the following
equivalent conditions holds:

I for each finite F b G , there exists a finite quotient
φ : G → H such that φ|F : F → H is injective,

I for each g ∈ G \ {1G} there is a finite-index subgroup
H ≤ G with g /∈ H,

I full shifts AG have dense periodic points (= points with
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Group definitions: locally, virtually, poly

I If C is a class/property of groups, we say G is locally C
if every f.g. subgroup H ≤ G is in C .

For example,
(Q,+) is locally free.

I G is K -by-H if there is a surjective homomorphism
φ : G → H with ker φ ∼= K . We say G is a group
extension.

I If C is a class of groups, poly-C is the class of groups G
admitting a subnormal series 1 C G0 C · · ·C Gn = G
such that each quotient Gi+1/Gi is in C . Equivalently,
poly-C is the smallest class of groups containing C and
closed under group extensions.

I A group is polycyclic if it is poly-cyclic. It is solvable if
it is poly-abelian.

I G is virtually C if it has a finite index subgroup in C .
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Nilrigidity

Main theorem and
unpacking it

Tiered dynamical
systems

Motivation for
introducing tiered
systems

Questions and
assorted facts

Group definitions: locally, virtually, poly

I If C is a class/property of groups, we say G is locally C
if every f.g. subgroup H ≤ G is in C . For example,
(Q,+) is locally free.

I G is K -by-H if there is a surjective homomorphism
φ : G → H with ker φ ∼= K . We say G is a group
extension.

I If C is a class of groups, poly-C is the class of groups G
admitting a subnormal series 1 C G0 C · · ·C Gn = G
such that each quotient Gi+1/Gi is in C . Equivalently,
poly-C is the smallest class of groups containing C and
closed under group extensions.

I A group is polycyclic if it is poly-cyclic. It is solvable if
it is poly-abelian.

I G is virtually C if it has a finite index subgroup in C .



Nilpotent
Endomorphisms of
Expansive Group

Actions

Ville Salo,
Ilkka Törmä
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That group pic again

abelian 3 Z,Z2

nilpotent 3 H3

polycyclic

solvable 3 Z2 o Z residually finite 3 Z2 o Z,F2

elem. amenable 3 S∞ o Z

amenable
LEF 3 S∞ o Z

sofic

all f.g. groups
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Examples

I the class G of locally (residually finite and poly-(locally
virtually abelian)) groups includes

I every linear group not containing a free group, (Tits)
I every virtually nilpotent group (= group of polynomial

growth by Gromov)
I every (abelian-by-polycyclic)-by-finite group

(Jategaonkar/Roseblade)
I every wreath product A o P where A is abelian and P is

polycyclic (e.g. lamplighter group Z2 o Z),
I several (classes of) groups which are not virtually

solvable.
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Nilrigidity

Main theorem and
unpacking it

Tiered dynamical
systems

Motivation for
introducing tiered
systems

Questions and
assorted facts

Examples

I the class G of locally (residually finite and poly-(locally
virtually abelian)) groups includes

I every linear group not containing a free group, (Tits)

I every virtually nilpotent group (= group of polynomial
growth by Gromov)

I every (abelian-by-polycyclic)-by-finite group
(Jategaonkar/Roseblade)

I every wreath product A o P where A is abelian and P is
polycyclic (e.g. lamplighter group Z2 o Z),

I several (classes of) groups which are not virtually
solvable.



Nilpotent
Endomorphisms of
Expansive Group

Actions

Ville Salo,
Ilkka Törmä
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Systems where our theorem applies (and endos
are nilrigid)

I Full shifts on groups in G.

I If G = 〈S〉 ∈ G, the golden mean shift
{x ∈ {0, 1}G | xg = 1 =⇒ ∀s ∈ S : xsg 6= 1} is an SFT
with dense homoclinic points.

I The subshift

{x ∈ {0, 1}Z2 | x |{(m,n),(m+1,n),(m,n+1)} ≡ 1 =⇒

x(m+1,n+1) = 1} ⊂ {0, 1}Z2

is SFT with dense homoclinics (not strongly irreducible).
I Let G ∈ G and X ⊂ AG be a proper sofic shift with

SFT cover φ : Y → X , such that |φ−1(0G )| = 1 (X is
0-to-0 sofic). Then X is zero-gluing but not shadowing.
If homoclinics are dense, our result applies.

I The Z-action by the hyperbolic toral automorphism
( 1 1
1 0 ) is expansive, shadowing and has dense homoclinic

points. Ditto for the x2 map on the 2-solenoid lim
←

S1.
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Nilrigidity

Main theorem and
unpacking it

Tiered dynamical
systems

Motivation for
introducing tiered
systems

Questions and
assorted facts

Systems where our theorem applies (and endos
are nilrigid)

I Full shifts on groups in G.
I If G = 〈S〉 ∈ G, the golden mean shift
{x ∈ {0, 1}G | xg = 1 =⇒ ∀s ∈ S : xsg 6= 1} is an SFT
with dense homoclinic points.

I The subshift

{x ∈ {0, 1}Z2 | x |{(m,n),(m+1,n),(m,n+1)} ≡ 1 =⇒

x(m+1,n+1) = 1} ⊂ {0, 1}Z2

is SFT with dense homoclinics (not strongly irreducible).

I Let G ∈ G and X ⊂ AG be a proper sofic shift with
SFT cover φ : Y → X , such that |φ−1(0G )| = 1 (X is
0-to-0 sofic). Then X is zero-gluing but not shadowing.
If homoclinics are dense, our result applies.

I The Z-action by the hyperbolic toral automorphism
( 1 1
1 0 ) is expansive, shadowing and has dense homoclinic

points. Ditto for the x2 map on the 2-solenoid lim
←

S1.



Nilpotent
Endomorphisms of
Expansive Group

Actions

Ville Salo,
Ilkka Törmä
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Rough sketch of our paper
Our paper uses the periodization idea from [S.,’12], but
Zd−1 × Z is replaced by a group extension K -by-H. The
induction step requires proving nilrigidity in higher generality.

1. Define tiered dynamical systems and their evolutions,
and generalize notions of zero-gluing, homoclinic points,
AN and UAN.

2. Prove closure under “extracting the periodic points
along a subgroup” (the Fix-construction), and
“extracting the points where information does not
spread away from a subgroup” (the Fin-construction).

3. Prove that for a large class of groups G , evolutions for
all such G -systems are nilrigid, by induction: if G is
K -by-H, apply Fin to K and Fix to H, and apply
induction.

4. This specializes to our main theorem for single tier
systems.
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and generalize notions of zero-gluing, homoclinic points,
AN and UAN.

2. Prove closure under “extracting the periodic points
along a subgroup” (the Fix-construction), and
“extracting the points where information does not
spread away from a subgroup” (the Fin-construction).

3. Prove that for a large class of groups G , evolutions for
all such G -systems are nilrigid, by induction: if G is
K -by-H, apply Fin to K and Fix to H, and apply
induction.

4. This specializes to our main theorem for single tier
systems.
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Tiered dynamical systems

Definition

A tiered (topological) dynamical system, or TTDS for short,
is defined as a triple X = (X , (Gt ,Xt)t∈D, (φ

t′
t )t≤t′∈D),

I X is a compact metric space, called the ambient space,
containing a special point 0 ∈ X ,

I D is a directed set with least element t0 ∈ D,

I for each t ∈ D, (Gt ,Xt) is an expansive pointed
dynamical system with 0 ∈ Xt ⊆ X ,

I for each pair t ≤ t ′ ∈ D we have Xt ⊆ Xt′ ,

I for all t ≤ t ′ ∈ D, φt
′
t : Gt′ → Gt is a finite-to-one

surjective homomorphism with φtt = 1Gt and
φt

′
t ◦ φt

′′
t′ = φt

′′
t for t ′′ ≥ t ′, and

I for all t ≤ t ′, x ∈ Xt and g ∈ Gt′ we have
φt

′
t (g) · x = g · x .

We denote Gt0 = G0, and call it the base group of X .
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Nilrigidity

Main theorem and
unpacking it

Tiered dynamical
systems

Motivation for
introducing tiered
systems

Questions and
assorted facts

Tiered dynamical systems

Definition

A tiered (topological) dynamical system, or TTDS for short,
is defined as a triple X = (X , (Gt ,Xt)t∈D, (φ

t′
t )t≤t′∈D),

I X is a compact metric space, called the ambient space,
containing a special point 0 ∈ X ,

I D is a directed set with least element t0 ∈ D,

I for each t ∈ D, (Gt ,Xt) is an expansive pointed
dynamical system with 0 ∈ Xt ⊆ X ,

I for each pair t ≤ t ′ ∈ D we have Xt ⊆ Xt′ ,

I for all t ≤ t ′ ∈ D, φt
′
t : Gt′ → Gt is a finite-to-one

surjective homomorphism with φtt = 1Gt and
φt

′
t ◦ φt

′′
t′ = φt

′′
t for t ′′ ≥ t ′, and

I for all t ≤ t ′, x ∈ Xt and g ∈ Gt′ we have
φt

′
t (g) · x = g · x .

We denote Gt0 = G0, and call it the base group of X .



Nilpotent
Endomorphisms of
Expansive Group

Actions

Ville Salo,
Ilkka Törmä
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Evolutions of tiered dynamical systems

Definition

An evolution map, or simply evolution, of a TTDS X is a
continuous function f : X → X such that for all t ≤ t ′ ∈ D
and x ∈ Xt , the condition f (x) ∈ Xt′ implies
f (g · x) = g · f (x) for all g ∈ Gt′ .

Definition

We say that a tier t ∈ D is f -stabilizing, if there exists
s(t) ≥ t such that f k(Xt) ⊆ Xs(t) for all k ∈ N. The TTDS
X is f -stabilizing if each of its tiers is. The quadruple
(X , (Gt ,Xt)t∈D, (φ

t′
t )t≤t′ , f ), which we may denote by

(X , f ), is called an evolution of a tiered (topological)
dynamical system, or ETTDS for short.
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More on the proof in the abelian case

I Recall that the proof idea in the abelian case was

periodization:

Suppose G = Z2, X ⊂ AZ2
SFT,

f : X → X an AN CA.
I Consider Kp = {0} × pZ = {(0, pn) | n ∈ Z} ≤ G .
I A CA f : X → X gives rise to a cellular automaton on

Yp = {x ∈ X | Kpx = x}.
I Yp is (up to isomorphism) a one-dimensional SFT under

the action of H = Z× {0}, and f gives rise to a CA on
this SFT.

I Clearly f is AN also on (H,Yp). Therefore
f n(Yp) = {0} for some n!
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More on the proof in the abelian case 2

I After the previous observation, the proof splits into two
cases: if K C G is a normal subgroup and f : AG → AG

a CA, say information cannot spread arbitrarily far from
K if

∃F b G : ∀x ∈ AG , n ∈ N : supp(f n(x)) ⊂ FK supp(x).

I When G = Z2, if information cannot spread arbitrarily
far from K1 = 〈(0, 1)〉 or 〈(1, 0)〉, then 0Z

d
is a

(Lyapunov) stable point, and we get UAN by an easy
argument.

I If information can spread arbitrarily far from one of
these groups, repeatedly apply the argument from the
previous slide to contradict AN: “shoot and kill by
periodization”.
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Nilrigidity

Main theorem and
unpacking it

Tiered dynamical
systems

Motivation for
introducing tiered
systems

Questions and
assorted facts

More on the proof in the abelian case 2

I After the previous observation, the proof splits into two
cases: if K C G is a normal subgroup and f : AG → AG

a CA, say information cannot spread arbitrarily far from
K if

∃F b G : ∀x ∈ AG , n ∈ N : supp(f n(x)) ⊂ FK supp(x).

I When G = Z2, if information cannot spread arbitrarily
far from K1 = 〈(0, 1)〉 or 〈(1, 0)〉, then 0Z

d
is a

(Lyapunov) stable point, and we get UAN by an easy
argument.

I If information can spread arbitrarily far from one of
these groups, repeatedly apply the argument from the
previous slide to contradict AN: “shoot and kill by
periodization”.



Nilpotent
Endomorphisms of
Expansive Group

Actions

Ville Salo,
Ilkka Törmä
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What is different from the abelian case?

I Proof idea: Suppose a large family of dynamical
systems has nilrigid endomorphisms on H and K .

I Let G be K -by-H, try to prove a similar result for G .

I If information cannot spread far from the subgroup
K C G , there is no “other direction”! There is no
natural K -system stabilized by f , but there is a natural
stack of them...

I If information does spread far from K , periodize in
direction K . The “repeatedly shoot and kill by
periodization” argument works, but H is not actually a
subgroup of G ...

I These are just the Fix and Fin-constructions,
respectively.
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stack of them...

I If information does spread far from K , periodize in
direction K . The “repeatedly shoot and kill by
periodization” argument works, but H is not actually a
subgroup of G ...

I These are just the Fix and Fin-constructions,
respectively.
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Example: Nilrigidity on the Heisenberg group
I The Heisenberg group is

H3 = 〈a, b, c | c = [a, b], [a, c], [b, c]〉.

Theorem

Cellular automata on the Heisenberg group are nilrigid.

I Proof idea: Suppose f : AH3 → AH3 is AN.
I Define Xt = {x ∈ AH3 | d(g , 〈c〉) > t =⇒ xg = 0},

the configurations with support in concentric tubes.
(This is the Fin-construction)

I Let D = (N, <), let Gt = Z for all t acting by
c-translation on Xt . Then (X , (Gt ,Xt)t∈D, (idZ)t≤t′∈D)
is a tiered dynamical system.

I If information cannot spread arbitrarily far from 〈c〉,
then ∀t : ∃t ′ : ∀n : f n(Xt) ⊂ Xt′ , i.e. we have
f -stabilization.

I Then f is a stabilizing ETTDS, apply nilrigidity of
Z-ETTDS to obtain the result.
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Nilrigidity on the Heisenberg group (cont’d)

I Suppose then the previous system is not f -stabilizing,
i.e. information can spread arbitrarily far from 〈c〉.

I For each t ∈ Z+, Kt = 〈ct〉 is normal. Let D = (Z+, |),
let Gt = H3/Kt , let φt

′
t : Gt′ → Gt be the natural map,

and define Xt = {x ∈ AH3 | ctx = x}. Then
(AH3 , (Gt ,Xt)t∈D, (φ

t′
t )t|t′∈D) is a tiered dynamical

system, with base group G1 = H3/K1
∼= Z2. (This is

the Fix-construction.)

I f -stabilization is trivial: f n(Xt) ⊂ Xt by
shift-commutation, and f is an AN evolution.

I Mimic argument from the abelian case using nilrigidity
of Z2-ETTDS. This contradicts AN for f !
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Questions

Question

Are CA nilrigid on full shifts on all groups? On SFTs with
dense homoclinics (e.g. strongly irreducible SFTs)?

I The question is open for F2 = 〈a, b〉!
I Also S≤∞ o Z is not covered (it’s not RF but it is LEF)

I RF EAG are also not covered... I think.

Question

Are there expansive actions in positive dimension where our
theorem says something non-trivial, i.e. expansive actions in
pos. dimension where endomorphisms can be very wild?

Question

Are cellular automata nilrigid on all Z2-SFTs?
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Limitations and partial results

Theorem (S.,’12)

Cellular automata on Z-sofics are not nilrigid.

Theorem (S.,Törmä,WIP)

Cellular automata on Z3-SFTs are not nilrigid.

Theorem (S.,’19)

Let T be the infinite k-regular tree and G its automorphism
group. Then endomorphisms of (G ,AT ) are nilrigid.
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Let T be the infinite k-regular tree and G its automorphism
group. Then endomorphisms of (G ,AT ) are nilrigid.
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Let T be the infinite k-regular tree and G its automorphism
group. Then endomorphisms of (G ,AT ) are nilrigid.
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The End

Thank you for listening!
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