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Rotated odometers

Rotated odometers are a class of infinite interval exchange
transformations (IET).

Motivations for study:

- Model first return maps of flows on translation surfaces of infinite type,

- Can be considered as perturbation of the von Neumann-Kakutani map
(standard dyadic odometer).

Methods: Bratteli diagrams.

Results: Some results towards the classification up to an isomorphism
(measure-theoretical and continuous factors).
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The von Neumann-Kakutani map

A(x) = x− (1− 3 · 21−n) if x ∈ [1− 21−n, 1− 2−n), n ≥ 1,

is an infinite IET.

I1 I2 I3 I4

I1I2I3I4
0 1

There exists a Cantor set C = {0, 1}Z and a map ι : I → C such that

1. ι(I) is dense in C,

2. ι ◦A(x) = ι(x) + 1, where addition is with carry over to the right.

So (I, A) is measurably isomorphic to the standard dyadic odometer.
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Let q ≥ 2 and let π be a permutation of q symbols.

Divide I = [0, 1) into q intervals, then π induces a finite IET Rπ : I → I.

A rotated odometer is an infinite IET

Fπ = A ◦Rπ : I → I

Figure: The von Neumann-Kakutani map A and a rotated odometer F(012).
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Problem

Let q ≥ 2, let π be any permutation of q symbols.

Let Rπ : I → I be the corresponding finite IET (on intervals of equal
length), and let

Fπ = A ◦Rπ : I → I

be a rotated odometer.

Study the dynamics and ergodic properties of such systems.

But first, what is the motivation for studying rotated odometers?
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Rotated odometers model first return maps of flows on infinite-type
translation surfaces.

Theorem (Bruin and Lukina 2021)

Let q ≥ 2, and π be a permutation of q intervals.

Let λ be Lebesgue measure on I.

Then there exists a translation surface of infinite type, which is
topologically a Loch-Ness monster, such that (I, Fπ, λ) is measurably
isomorphic to the first return map of a parallel flow on this surface.

Note: more precise formulations will follow.
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Surfaces which appear in the previous theorem: a Loch-Ness monster and
a Loch-Ness monster with whiskers.

More details at the end of the talk, if time permits.

7 / 40



Consider a rotated odometer (I, Fπ) as a perturbation of the standard
von Neumann-Kakutani map (I, A).

What properties of (I, A) are preserved under such perturbation?

Theorem (Bruin and Lukina 2021)

1. Minimality is not preserved, and (I, Fπ) may have periodic points;
however, there is always an aperiodic subsystem (Inp, Fπ) with
unique minimal set (Imin, Fπ).

2. Often (Imin, Fπ) and even (Inp, Fπ) have the dyadic odometer as a
maximal equicontinuous factor.

3. However, there are examples where neither (Imin, Fπ) nor (Inp, Fπ)
have the dyadic odometers as equicontinuous factors, moreover,
equicontinuous factors for (Imin, Fπ) are (Inp, Fπ) are different.
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Dynamics of rotated odometers - method of coding partitions

(I, Fπ) rotated odometer, where π is a permutation of q symbols

sections Lk = [0, 2−kN ), where N = min{n | 2−n < q−1},

return maps Fk : Lk → Lk, with L0 = I.

1
3

2
3

L1 1
4

1

Pq,k is a partition of I into q2kN intervals

Pq,k induces a partition of Lk into q intervals

Coding

The partition of Lk−1 into q intervals from Pq,k−1 is the coding partition
for the orbits of q intervals in Lk under Fk−1.
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Using this approach, we can obtain the following:

- I = Iper ∪ Inp, where Iper is a possibly infinite union of intervals of
periodic points, Inp consists of non-periodic points

- for each k ≥ 1, Fk is a composition of a permutation Rk of q intervals,
and a scaled von Neumann-Kakutani map.

- 0 ∈ Inp, and the orbit of every non-periodic point accumulates at 0.

Lemma

The aperiodic subsystem (Inp, Fπ) has a unique minimal set.

We now concentrate on the study of (Inp, Fπ).
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Cantor set representation

Recall that the odometer A is continuous on [1− 1
2n−1 , 1− 1

2n ), n ≥ 0.

The rotated odometer Fπ is also continuous on subintervals in I.

Lemma

The set C of forward and backward orbits of the points
{R−1π (1− 1

2n ) | n ≥ 0} under Fπ is dense in Inp.

Adding limit points to Inp we obtain

I∗np = Inp ∪ {x− | x ∈ C} ∪ {1},

which is a Cantor set with order topology.

The extension Fπ : I∗np → I∗np is a homeomorphism.
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To summarize,

Theorem

There exists a Cantor set I∗np, and an injective map ι : Inp → I∗np, such
that:

1. The image ι(Inp) is dense in I∗np.

2. The IET Fπ extends to a homeomorphism Fπ : I∗np → I∗np in an
equivariant manner, i.e., ι ◦ Fπ = Fπ ◦ ι.

Remark: The forward orbit of 0 ∈ Inp is joined with the backward orbit of
one of the added points. So the orbit of 0 under Fπ in I∗np is two-sided.
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S-adic systems:

Recall that we code orbits of q sets in the partition Pq,k of Lk under
Fk−1 using the partition Pq,k−1 of Lk−1 into q sets.

1
3

2
3

L1 1
4

1

Recording the set of Pq,k−1 visited by the orbit of an interval in Pq,k
under Fk−1, we obtain substitutions

χk(i), 0 ≤ i ≤ q − 1with alphabetA = {0, 1, . . . , q − 1}.

Lemma

The sequence {χk}k≥1 is eventually periodic.
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Bratteli diagrams

We associate to the sequence {χk}k≥1 a Bratteli diagram:

- V0 = {v0}, Vk = {0, 1, . . . , q − 1} for k ≥ 1,

- in the set Ek of edges between i ∈ Vk+1 and j ∈ Vk, the number of
edges from j to i is equal to the number of occurrences of j in χk(i),

- edges incoming to i ∈ Vk+1 inherit the order from χk(i).

The total order on edges incoming to each
vertex induces a reverse lexicographic order
on the space of infinite paths X.

Lemma: The diagram (V,E) has a unique
minimal and unique maximal paths.

Consequence: (V,E) admits a Vershik
system (X, τ).

v0

...
...

...

14 / 40



A subdiagram (V ′, E′) of (V,E) consists of a subset of vertices V ′ of V ,
and edges in E such that both starting and ending vertices of the edge
are in V ′; there is a corresponding subset X ′ of paths in X, and τ
determines a Vershik map τ ′ on X ′.

Theorem

There exists a subdiagram (V ′, E′) of (V,E) with associated
Bratteli-Vershik system (X ′, τ ′) such that there is a homeomorphism

ψ : I∗np → X ′

and ψ ◦ Fπ = τ ′ ◦ ψ.

There is also a subdiagram (V̂ , Ê) with Bratteli-Vershik system (X̂, τ̂)
conjugate under ψ to the minimal subsystem (I∗min, Fπ) of (I∗np, Fπ).
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Ergodic measures:

Consider the systems (I, Fπ), (I
∗
np, Fπ) and (I∗min, Fπ).

Theorem

For the rotated odometer (I, Fπ), the Lebesgue measure λ is ergodic if
and only if (I, Fπ) has no periodic points.

The minimal subsystem (I∗min, Fπ) is uniquely ergodic (Durand 2000).

Example: Rotation by 1/3 corresponds to π = (012), by 2/3 to
π = (021).

In either case, the rotated odometer (I, Fπ) has no periodic points, so
I = Inp; also (I∗np, Fπ) = (I∗min, Fπ).

Thus I∗np has unique ergodic measure which corresponds to the Lebesgue
measure on I.
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Non-minimal (I∗np, Fπ): use the results of Bezuglyi, Kwiatkowski,
Medynets, Solomyak 2010.

The number of ergodic measures corresponds to eigenvalues greater than
1 with non-negative left eigenvectors in the Frobenius form of the
substitution matrix for the periodic part of the sequence {χk}k≥1.

It follows that there may be at most q invariant ergodic measures.

So far in examples we have seen at most 2 invariant ergodic measures on
(I∗np, Fπ).
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Example: Let q = 5 and π = (01234), so Rπ is a rotation by 1/5.

Then {χk}k≥1 is constant.

There are no periodic points, so Lebesgue measure is ergodic.

The substitution matrix in the Frobenius form (after renaming symbols)

B =


1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
4 4 8 8 8

 with F1 =

(
1 1
1 1

)
, F2 =

(
0 0
0 0

)
, F3 = (8).

There are two ergodic measures, µ1 supported on I∗min, and µ2

supported on I∗np and corresponding to the Lebesgue measure.
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Measure-theoretical and continuous rotational factors for (I∗min, Fπ)

We study the spectrum (eigenvalues) of the Koopman operator for
(I∗min, Fπ). Recall that:

- All eigenvalues of the Koopman operator are on the unit circle, i.e. of
the form ζ = e2πiθ, θ ∈ R.

- ζ is a measurable eigenvalue if the corresponding eigenfunction is
measurable.

- ζ is a continuous eigenvalue if the corresponding eigenfunction is
continuous.

For substitutions, eigenfunctions are always continuous, so measurable
and continuous factors coincide (Host 1986).
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Theorem (Bruin and Lukina 2021)

Let (I∗min, Fπ) be the minimal subset of (I∗np, Fπ). Then:

1. There exist infinitely many q ≥ 3 and permutations π of q symbols,
such that the minimal system (I∗min, Fπ) has a dyadic odometer as a
factor.

2. There exist infinitely many q ≥ 3 and permutations π of q symbols,
such that the minimal system (I∗min, Fπ) does not factor to a dyadic
odometer, but is not weakly mixing.

20 / 40



Part 1: Let q = 5 and π = (01234), then {χk}k≥1 is constant.

The minimal subdiagram has 0 and 3 as vertices.

The substitution matrices for the full diagram and the minimal
subdiagram are

B =


1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
4 8 8 4 8

 with Bmin =

(
1 1
1 1

)
.

Bmin has eigenvalues 0 and 2, and it follows that e2πi/2
m

is an
eigenvalue for any m ≥ 1.

It follows that the dyadic odometer is a factor of (I∗min, Fπ); in fact the
factor map is a conjugacy.
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Part 2: Let q = 5 and let π = (02431), then {χk}k≥1 is constant.

(I, Fπ) has no periodic points, so the Lebesgue measure is ergodic.

The substitution matrices for the full diagram and the minimal
subdiagram are

B =


1 1 2 0 1
1 0 1 0 1
2 1 1 0 1
3 5 3 8 5
1 1 1 0 0

 with Bmin =


1 1 2 1
1 0 1 1
2 1 1 1
1 1 1 0

 .

Bmin has eigenvalues 2±
√
5, −1 of multiplicity 2.

Only 2±
√
5 are important, since the initial vector h(1) of heights for the

Bratteli-Vershik diagram is decomposed over eigenvectors of 2±
√
5.
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Using Ferenczi, Mauduit, Nogueira 1996:

For every θ = a+ b
√
5, a, b ∈ Q there is an s ∈ Z such that e2πisθ is an

eigenvalue of the Koopman operator of (I∗min, Fπ).

Are there rational eigenvalues?

For any m ≥ 1, the components of Bmminh
(1) are odd, so e2πi/2

k

is not
an eigenvalue for any k ≥ 1.

More generally, one can show there are no rational eigenvalues.

So (I∗min, Fπ) does not have the dyadic odometer as a factor, and it is
also not weakly mixing.
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Factors for (I∗np, Fπ)

We use the results of Bezuglyi, Kwiatkowski, Medynets, Solomyak
2010 to determine eigenvalues for the non-minimal system (I∗np, Fπ).

Main differences with minimal case:

- There may be multiple ergodic measures with different eigenvalues.

- Eigenfunctions need not be automatically continuous.

Results: Similarly to the minimal case:

- There are rotated odometers which have the dyadic odometer as a
maximal equicontinuous factor.

- There are systems where eigenvalues for different ergodic measures are
different, and there are no continuous eigenvalues.
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Example: Let q = 5 and π = (01234), then {χk}k≥1 is constant.

Recall that there is an ergodic measure µ2 supported on I∗np,
corresponding to the Lebesgue measure on I, and

B =


1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 0 1 0
4 8 8 4 8

 .

B has eigenvalues 8, 2 and 0 of multiplicity 3.

It follows that e2πi/2
m

is an eigenvalue for any m ≥ 1 with respect to µ2.

Proposition: The dyadic odometer is the maximal equicontinuous factor
for (I∗np, Fπ).
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Example: Let q = 5 and let π = (02431), then {χk}k≥1 is constant.

Recall that there is an ergodic measure µ2 supported on I∗np,
corresponding to the Lebesgue measure on I, and

B =


1 1 2 0 1
1 0 1 0 1
2 1 1 0 1
3 5 3 8 5
1 1 1 0 0

 .

B has eigenvalues 8, 2±
√
5, −1 of multiplicity 2.

Recall that the minimal subsystem has irrational eigenvalues e2πs(a+b
√
5),

a, b ∈ Q, s ∈ Z.

What about eigenvalues of (I∗np, Fπ, µ2)?
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Proposition: We have for (I∗np, Fπ, µ2):

- e2πi/2
m

is an eigenvalue if and only if m = {1, 2}.

- For any a, b ∈ Q the number e2πi(a+b
√
5) is not an eigenvalue.

- For any other rational or irrational θ, e2πiθ is not an eigenvalue.

Thus (I∗np, Fπ, µ2) has the finite group with 4 elements as the only
rotational factor, but the factor map is not continuous.
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We have found examples of rotated odometers, where the minimal
system (I∗min, Fπ) and the aperiodic subsystem (I∗np, Fπ) have the dyadic
odometer as a factor, and examples, where they do not have the dyadic
odometer as a factor.

But we can only determine that on a case-by-case basis.

Problem

Let Fπ : I → I be a rotated odometer. Find necessary and sufficient
conditions under which (I∗min, Fπ) (or (I∗np, Fπ)) has a dyadic odometer
as a factor.

Problem

Are there any rotated odometers for which Lebesgue or the measure on
Imin are weakly mixing?
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Loch-Ness monsters

Identify the horizontal edges minus discontinuity points by the von
Neumann-Kakutani map, and vertical edges as in the standard torus.

I1 I2 I3I4
1

J1 J1

I1I2I3I4
0 1

This construction is similar to that of the Chamanara or baker’s surface
in the literature.

In the Chamanara surface, the vertical sides are also identified using the
von Neumann-Kakutani map.
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We use arguments from Randecker 2016 (thesis) and Delecroix,
Hubert, Valdez (book) to show that L has properties similar to the
Chamanara surface, namely:

The resulting surface L is

- a translation surface (admits an atlas with translation transition maps),

- non-compact of finite area,

- has infinite genus,

- has a single end.

A Loch-Ness monster is a topological surface of infinite genus with a
single end.

Loch-Ness monsters (usually of infinite area) also appear as typical leaves
in foliations of compact manifolds by surfaces.
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L \ L contains a single point

L is the metric completion of L.

Points in L marked by circles and squares are identified.

They are the same point since the distance between them is not bounded
away from zero.

I1 I2 I3I4
1

J1 J1

I1I2I3I4
0 1

The point in L \ L is a wild singularity.
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L has a single end

L has a single end which corresponds to a singularity.

Indeed, the complement of an open ε-neighborhood of the singularity is a
compact subset of a square.

1

0 1
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Straight-line flow on a Loch-Ness monster

Straight-line flow lines at angle θ = tan−1(q/p) travel through distance
p/q in horizontally while traveling through distance 1 vertically.

+
p
q

Let P be a horizontal section minus points for which the flow is not
defined for some t ∈ R, F : P → P be first return map, λ be Lebesgue
measure.

Lemma: (P, F, λ) is measurably isomorphic to the rotated odometer
(I, Fπ, λ) for π corresponding to a translation by p/q.
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Let π be any permutation of q symbols, let r ≥ q and let

0 < θ = tan−1
(
r

q

)
≤ π

4
,

so each flow lines intersects the square S in the horizontal direction
completely at least once.

For simplicity, in the talk we consider the flow at angle π
4 .

J0

J1

J2

J3

J4

J′0

J′1

J′2

J′3

J′4

I0 I1 I2 I3 I4

I0 I1 I2 I3 I4 I′0 I′1 I′2 I′3 I′4
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J0

J1

J2

J3

J4

J′0

J′1

J′2

J′3

J′4

I0 I1 I2 I3 I4

I0 I1 I2 I3 I4 I′0 I′1 I′2 I′3 I′4

The flow induces the maps

{Ij}
s // {J ′j}

s−1
// {I ′j}

mod 1// {Ij}

Set π′ = s ◦ π ◦ s−1 and identify by translations for j = 0, . . . , q − 1

J ′k ∼ Jπ′(k).
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Build a surface, where the horizontal sides are identified using the von
Neumann-Kakutani map, and vertical sides using the permutation π′.

J0

J1

J2

J3

J4

J′0 ∼ J0

J′1 ∼ J2

J′2 ∼ J1

J′3 ∼ J3

J′4 ∼ J4

Example: If π = (0)(1)(23)(4) and θ = π
4 then π′ = (0)(12)(3)(4).

The surface has one wild singularity and one cone angle singularity of
multiplicity 3.

It has one non-planar and one planar end.
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Theorem (Bruin and Lukina 2021)

Let q ≥ 2, π be a permutation of q symbols, r ≥ q be an integer.
Let λ be Lebesgue measure on I.

There exists a translation surface Lπ,r such that

1. The surface Lπ,r has finite area, one non-planar end and at most a
finite number of planar ends.

2. The metric completion of Lπ,r contains a single wild singularity and
at most a finite number of cone angle singularities.

3. For a horizontal section P ⊂ Lπ,r with Poincaré map F : P → P of
the flow of slope r/q, such that (P, F, λ) is measurably isomorphic
to the rotated odometer (I, Fπ, λ).
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A Loch-Ness monster with a finite number of planar ends is a Loch-Ness
monster with whiskers.
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We showed that rotated odometers model flows of rational slope on some
translation surfaces of infinite type.

The following problem is natural.

Problem

Find a Bratteli-Vershik system that models the first return (Poincaré)
map of a flow of irrational slope on a translation surface of finite area
with infinite genus and finite number of ends.
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40 / 40


	Introduction
	Dynamics of rotated odometers
	Translation surfaces

