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Definition

A is a finite alphabet of letters

A∗ = {w = w1w2 . . .wn : wi ∈ A, n ∈ N} finite words

A language L ⊆ A∗ is any set such that

∀w ∈ L, ∃a, b ∈ A, s.t. awb ∈ L

and ∀w = w1 . . .wn ∈ L, 1 ≤ j ≤ k ≤ n,

w[j ,k] = wjwj+1 . . .wk−1wk ∈ L.
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Definition

The (factor/subword) complexity function for L is
p(n) =

∣∣ {w ∈ L : |w | = n}︸ ︷︷ ︸
Ln

∣∣,
where |w | is the length of w .
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Definition

The subshift (X ,T ) with language L is the set
X = {x = x1x2 · · · ∈ AN : x[1,n] ∈ L ∀n ∈ N}

the left shift map T : X → X ,
T (x1x2x3 . . . ) = x2x3x4 . . . .

X is endowed with the topology (and Borel σ-algebra) generated
by the cylinder sets

[w ] = {x ∈ X : x[1,n] = w}
for each w = w1w2 . . .wn ∈ L.
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The set M(X ) of shift invariant probability measures:

Has a convex structure, meaning

µ, ν ∈M(X ), t ∈ [0, 1]⇒ t · µ+ (1− t) · ν ∈M(X ).

The ergodic measures E(X ) ⊂M(X ) are the extremal
elements, meaning

ρ = tµ1 + (1− t)µ2 ⇒ µ1 = µ2 = ρ

for ρ ∈ E(X ), µ1, µ2 ∈M(X ) and t ∈ (0, 1).
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By the Pointwise Ergodic Theorem, if ρ ∈ E(X ) then for
ρ-a.e. x ∈ X we have∣∣x[1,N]

∣∣
w

N
−→
N→∞

ρ
(
[w ]
)
∀w ∈ L.

We call such an x a ρ-generic point.

The set of generic measures G(X ) ⊂M(X ) are the elements
ρ ∈M(X ) such that a ρ-generic point x ∈ X exists.

So
E(X ) ⊂ G(X ) ⊂M(X ).

None necessarily equal.
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Question

What relationship(s) exist between L and the sets E(X ),G(X ) of
measures?
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Theorem (F. in preparation)

Let L be uniformly recurrent and

lim
n→∞

p(n)

n
= K ,

for some K ≥ 4. Then |G(X )| ≤ K − 2.

If this limit exists, then K ∈ N (Cassaigne & Nicolas 2010).

Uniform recurrence: ∀n, ∃N s.t. each W ∈ LN contains each
w ∈ Ln as a subword. Equivalent to minimality of (X ,T ).

The lim sup and lim inf of p(n)
n are invariant under topological

conjugacy.
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Definition

A word w ∈ L is:

left (resp. right) special if there exist more than one left (resp.
right) extension of w in L.

bispecial if it is left and right special

regular bispecial if it is bispecial and exactly one left (resp.
right) extension is right (resp. left) special.
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Example with Rauzy Graphs

aa

ab

ac

ad

ba

ca

(part of) Γ2

(part of) Γ3

baa

caa

aab

aac

aad

baa

caa

aab

aac

aad

or

In the language creating the top Γ3, aa is regular bispecial.
In the language creating the bottom Γ3, aa is bispecial but not
regular bispecial.
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Definition

L satisfies the Regular bispecial condition (RBC) if all sufficiently
long bispecial words are regular.

Lemma

If L satisfies the RBC, there exists a growth rate K such that

p(n) = Kn + C ∀n ≥ n0 (ECG)

for integers C , n0.
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Theorem (Damron & F. accepted)

Let L be recurrent satisfying the RBC with growth rate K . Then∣∣E(X )
∣∣ ≤ K + 1

2
.

Recurrence: ∀u, v ∈ L, ∃w ∈ L such that uwv ∈ L.
Equivalent to topological transitivity of (X ,T ).

The RBC is equivalent to eventual dendricity (defined by
Dolce & Perrin 2019), so

The RBC is invariant under topological conjugacy.
Recurrence is equivalent to uniform recurrence.
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“Definition”

An Interval Exchange Transformation on (K + 1) intervals is
defined by an ordering π on {1, 2, . . . ,K + 1} and a choice
λ = (λ1, . . . , λK+1) of sub-interval lengths.

(3+1)-IET

Number of Ergodic and Generic Measures for Minimal Subshifts



Languages and subshifts
Interval Exchanges Transformations

Constructions/Proof Idea

Measures
IET subshifts
Boshernitzan’s Question
Generic Measures

T

T2

T3

A typical IET is minimal (so not periodic).
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Theorem (Katok 1973, Veech 1978)

If (K + 1)-IET is minimal, then |E(X )| ≤ K+1
2 .∗

∗The bound depends on π that defines the IET and may be strictly
less than bK+1

2 c.

Example (Keane 1977, Yoccoz 2009, F. 2014)

This bound is sharp, i.e. there exist minimal IETs that achieve the
known bound for each choice of irreducible π.

Both proofs use the geometry of associated surfaces in some form.
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“Natural” Coding to IET subshift

w = w1 . . .wn ∈ L iff there exists point x on the interval such that
for all 0 ≤ k ≤ n − 1 we have T kx in sub-interval labeled wk .

T

T2

T3

1 2 3 4

x

Tx

T2x

T3x

y

Ty

T2y

T3y

In this example, 1413 ∈ L and 3141 ∈ L
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As a subshift, the typical (K + 1)-IET has complexity

p(n) = Kn + 1.

Ferenczi & Zamboni (2008) characterized all L that arise naturally
from IETs.

Question (Boshernitzan 1984/85)

Can the bound |E(X )| ≤ K+1
2 be shown using L?
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Theorem (Boshernitzan 1984/85)

Let L be uniformly recurrent.

If lim inf
n→∞

p(n)

n
= α, then |E(X )| ≤ max{1, bαc}

If lim sup
n→∞

p(n)

n
= α, then |E(X )| ≤ max{1, bαc − 1}

For a (K + 1)-IET, this implies |E(X )| ≤ K − 1, which agree with
the known bound for K ≤ 3 (or up to 4 intervals).
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Question

Can these bounds be improved for such subshifts?

Answer (No)

(Cyr & Kra 2019) For each K ∈ N, K ≥ 2, there exists uniformly
recurrent L such that

lim inf
n→∞

p(n)

n
= K − 1, lim sup

n→∞

p(n)

n
= K and |E(X )| = K − 1.

We need to restrict further!
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Earlier Progress

Theorem (Damron & F. 2017)

Let L be uniformly recurrent such that for K ,C , n0 ∈ N, K ≥ 4,

p(n) = Kn + C , ∀n ≥ n0, (ECG)

then |E(X )| ≤ K − 2.

When combined with previous results, the bound for (K + 1)-IETs
is agrees with known bound for K ≤ 5 (up to six intervals).
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Question

Is this bound sharp?

The properties for L from a (K + 1)-IET by (Ferenczi & Zamboni
2008) imply the RBC that we use in our proof that

∣∣E(X )
∣∣ ≤ K+1

2 .
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What about G(X )?

Example (Chaika & Masur 2015)

There exists a (5 + 1)-IET such that |E(X )| = 2 and |G(X )| = 3.

Question (Chaika & Masur 2015)

Is it true that |G(X )| ≤ K+1
2 for minimal (K + 1)-IETs?

Cyr & Kra (2019) proved Boshernitzan’s bounds, but for G(X ) and
with relaxed conditions on L (uniform recurrence not required).
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Main Idea

Draw and color!
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Λ

Γn1 Γn2 Γn3 ...

We create a (multi)graph Λ based on the branching points (special
words) along the sequence {Γn} Rauzy Graphs.

Number of Ergodic and Generic Measures for Minimal Subshifts



Languages and subshifts
Interval Exchanges Transformations

Constructions/Proof Idea

E(X ) proof: Graphs and Colors
E(X ) proof: Bispecial Moves
E(X ) proof: Using the RBC
G(X ) proof: New Coloring

We create a (non-standard) coloring rule C on Λ.
STEP 1: Assign to w ∈ Λ a measure µw ∈M(X ).

Λ

Γn1 Γn2 Γn3 ...

w

w' w'' w'''

[
∀v ∈ L, µw ([v ]) = lim

k→∞

|w (k)|v
|w (k)|

]
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STEP 2: For each ρ ∈ E(X ) fix ρ-generic point x (ρ) ∈ X .

STEP 3: Check a density function D defined by the frequency of
the w (k)’s within x (ρ).

STEP 4: If D > 0 then ρ ≥ δ · µw for δ = δ(D,K ) ∈ (0, 1).

STEP 5: Extremality of E(X ) implies that ρ = µw , so we assign w
the “color” ρ.
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Lemma

∀ρ ∈ E(X ), there exists vertices/edges colored with ρ by C.

Edge and vertex colorings are consistent.

If an egde is colored by ρ, it belongs to a ρ-colored circuit.

There may be edges/vertices that are not colored.
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We need more!

Λ
Here, there are K = 4 colors.
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Bispecial moves control evolution of Γn’s as n increases.

aa

ab

ac

ad

ba

ca
Γn

Γn+1
baa

caa

aab

aac

aad

baa

caa

aab

aac

aad

baa

caa

aab

aac

aad

or or

(RBC)(not RBC) (not RBC)
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These moves define evolutions from Λ to new Λ′ with consistent
colorings C and C′ (resp.).

Λ

Γn1 Γn1' Γn2 Γn2' Γn3 Γn3'

Λ'

...
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Loops must “unravel” and therefore spread color.

Λ Λ'

unravels
contradictions

We actually get |E(X )| ≤ K − 2 for K ≥ 4 here (Damron & F.
2017). Need more to significantly improve!
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We accelerate fixed colored loops asynchronously and then remove
them to create a new (undirected) graph Ξ.

Λ Ξ

local
accelarations

delete
loops/direction
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Lemma (Main Lemma)

If L satisfies the RBC, Ξ must be weakly connected.

Consequence

|Ξ|edges ≥ |Ξ|vertices − 1
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Previous coloring method does not work for G(X ), as the
elements of G(X ) \ E(X ) are not extremal.

For fixed proportion D � K , for all large enough n there
exists a walk Wρ,n ⊂ Ln in Γn of length at least Dn.

These walks Wρ,n and Wρ′,n, ρ 6= ρ′, are vertex disjoint.
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We may then “color” vertices and edges along these walks.

These colorings must still contain loops, but do not enjoy all
properties of the coloring rule from E(X ).

Not as “acceleration friendly” but still retains relationships
between Wρ,n and Wρ,n′ for n′ > n.
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Details

STEP 1: For ρ, ρ′ ∈ G(X ), ρ 6= ρ′, ∃ w = w{ρ,ρ′} such that

ρ([w ]) 6= ρ′([w ])

STEP 2: There exists n0 such that for all N ≥ n0∣∣∣∣
∣∣x (ρ)[1,N]

∣∣
w

N
− ρ([w ])

∣∣∣∣� |ρ([w ])− ρ′([w ])|

where � depends on the fixed D � K (similar for ρ′ with same n0)
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Details

STEP 3: For each n and n0 ≤ m ≤ Dn,∣∣∣∣ |x (ρ)[m,m+n−1]|w
n

− ρ([w ])

∣∣∣∣ < |ρ([w ])− ρ′([w ])|
3

(similar for ρ′)

STEP 4: So

Wρ,n = {x (ρ)[m,m+n−1] : n0 ≤ m ≤ Dn}

and Wρ,n ∩Wρ′,n = ∅.
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Examples?

For K ≥ 4, do there exist uniformly recurrent L such that
p(n) = Kn + C for all large n such that |E(X )| = K − 2? If

not, what if p(n)
n → K is assumed instead?

Do there exist examples with this constant growth condition
that are uniformly recurrent, satisfying |E(X )| ≥ 2 but not
from an IET?
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(More) Examples?

Do there exist uniformly recurrent L(X ) such that

lim infn→∞
p(n)
n = K − 1 and lim supn→∞

p(n)
n = K and

|G(X )| = K − 1 but |G(X ) \ E(X )| = G , for fixed
1 ≤ G ≤ K − 3?

Similar to above, but assuming p(n) = Kn + C (eventually) or

limn→∞
p(n)
n = K for K ≥ 4.
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Further Proofs?

Can we use the remaining Ferenczi & Zamboni (2008)
properties to fully achieve the known bound∗ on |E(X )| for
minimal IETs?

Can we use word combinatorics to provide a proof on the
bound of |G(X )| for minimal IETs?

∗For example if π = (9, 4, 3, 2, 5, 8, 7, 6, 1) the known bound for
|E(X )| is 3 <

⌊
9
2

⌋
.
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Merci pour votre attention!

Thank you!
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