Number of Ergodic and Generic Measures for Minimal Subshifts

Jon Fickenscher (Princeton University)

2021-01-12

イロト イボト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

1

Languages Motivating Question Main Results

Definition

- \mathcal{A} is a finite *alphabet* of letters
- $\mathcal{A}^* = \{ w = w_1 w_2 \dots w_n : w_i \in \mathcal{A}, n \in \mathbb{N} \}$ finite words
- A language $\mathcal{L} \subseteq \mathcal{A}^*$ is any set such that

$$\forall w \in \mathcal{L}, \exists a, b \in \mathcal{A}, \text{ s.t. } awb \in \mathcal{L}$$

and $\forall w = w_1 \dots w_n \in \mathcal{L}, 1 \leq j \leq k \leq n$,

$$w_{[j,k]} = w_j w_{j+1} \dots w_{k-1} w_k \in \mathcal{L}.$$

イロト イボト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

-

SQR

Languages and subshifts

Languages Motivating Question Main Results

Definition The (factor/subword) complexity function for \mathcal{L} is $p(n) = \big| \{ w \in \mathcal{L} : |w| = n \} \big|,$ \mathcal{L}_n where |w| is the length of w.

イロト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

DQC2

3

Languages Subshifts Motivating Question Main Results

Definition

The subshift (X, T) with language \mathcal{L} is the set $X = \{ x = x_1 x_2 \dots \in \mathcal{A}^{\mathbb{N}} : x_{[1,n]} \in \mathcal{L} \quad \forall n \in \mathbb{N} \}$

the left shift map
$$T: X \to X$$
,
 $T(x_1x_2x_3\dots) = x_2x_3x_4\dots$

X is endowed with the topology (and Borel σ -algebra) generated by the cylinder sets

$$[w] = \{x \in X : x_{[1,n]} = w \}$$
 for each $w = w_1 w_2 \dots w_n \in \mathcal{L}.$

イロト イボト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

-

Languages Subshifts Motivating Question Main Results

The set $\mathcal{M}(X)$ of shift invariant probability measures:

Has a convex structure, meaning

$$\mu, \nu \in \mathcal{M}(X), t \in [0,1] \Rightarrow t \cdot \mu + (1-t) \cdot \nu \in \mathcal{M}(X).$$

• The ergodic measures $\mathcal{E}(X) \subset \mathcal{M}(X)$ are the *extremal* elements, meaning

$$\rho = t\mu_1 + (1-t)\mu_2 \Rightarrow \mu_1 = \mu_2 = \rho$$

for $\rho \in \mathcal{E}(X)$, $\mu_1, \mu_2 \in \mathcal{M}(X)$ and $t \in (0, 1)$.

イロト イ伊ト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

San

Languages Languages and subshifts Subshifts Motivating Question Main Results

• By the Pointwise Ergodic Theorem, if $\rho \in \mathcal{E}(X)$ then for ρ -a.e. $x \in X$ we have

$$\frac{|x_{[1,N]}|_{w}}{N} \xrightarrow[N \to \infty]{} \rho([w]) \quad \forall w \in \mathcal{L}.$$

We call such an x a ρ -generic point.

- The set of generic measures $\mathcal{G}(X) \subset \mathcal{M}(X)$ are the elements $\rho \in \mathcal{M}(X)$ such that a ρ -generic point $x \in X$ exists.
- So

$$\mathcal{E}(X) \subset \mathcal{G}(X) \subset \mathcal{M}(X).$$

None necessarily equal.

イロト イ伊ト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

San

Languages and subshifts

Languages Motivating Question Main Results

Question

What relationship(s) exist between \mathcal{L} and the sets $\mathcal{E}(X), \mathcal{G}(X)$ of measures?

> イロト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

= nar

Languages and subshifts Interval Exchanges Transformations Constructions/Proof Idea

Languages Subshifts Motivating Question Main Results

Theorem (F. in preparation) Let \mathcal{L} be uniformly recurrent and

$$\lim_{n\to\infty}\frac{p(n)}{n}=K,$$

for some $K \ge 4$. Then $|\mathcal{G}(X)| \le K - 2$.

- If this limit exists, then $K \in \mathbb{N}$ (Cassaigne & Nicolas 2010).
- Uniform recurrence: $\forall n, \exists N \text{ s.t.} \text{ each } W \in \mathcal{L}_N \text{ contains each } w \in \mathcal{L}_n \text{ as a subword. Equivalent to minimality of } (X, T).$
- The lim sup and lim inf of ^{p(n)}/_n are invariant under topological conjugacy.

San

Languages Motivating Question Main Results

Definition

A word $w \in \mathcal{L}$ is:

- *left (resp. right) special* if there exist more than one left (resp. right) extension of w in \mathcal{L} .
- bispecial if it is left and right special
- regular bispecial if it is bispecial and exactly one left (resp. right) extension is right (resp. left) special.

Languages and subshifts Interval Exchanges Transformations Constructions/Proof Idea Languages Subshifts Motivating Question Main Results

Example with Rauzy Graphs

In the language creating the top Γ_3 , *aa* is regular bispecial. In the language creating the bottom Γ_3 , *aa* is bispecial but not regular bispecial.

Number of Ergodic and Generic Measures for Minimal Subshifts

1

Languages Motivating Question Main Results

Definition

 \mathcal{L} satisfies the *Regular bispecial condition (RBC)* if all sufficiently long bispecial words are regular.

Lemma

If \mathcal{L} satisfies the RBC, there exists a growth rate K such that

$$p(n) = Kn + C \quad \forall n \ge n_0$$
 (ECG)

for integers C, n_0 .

イロト イポト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

Languages and subshifts

Languages Motivating Question Main Results

Theorem (Damron & F. accepted)

Let \mathcal{L} be recurrent satisfying the RBC with growth rate K. Then

$$\mathcal{E}(X) \Big| \leq \frac{K+1}{2}.$$

- Recurrence: $\forall u, v \in \mathcal{L}, \exists w \in \mathcal{L} \text{ such that } uwv \in \mathcal{L}.$ Equivalent to topological transitivity of (X, T).
- The RBC is equivalent to *eventual dendricity* (defined by Dolce & Perrin 2019), so
 - The RBC is invariant under topological conjugacy.
 - Recurrence is equivalent to uniform recurrence.

San

Measures IET subshifts Boshernitzan's Question Generic Measures

"Definition"

An Interval Exchange Transformation on (K + 1) intervals is defined by an ordering π on $\{1, 2, \dots, K+1\}$ and a choice $\lambda = (\lambda_1, \dots, \lambda_{K+1})$ of sub-interval lengths.

イロト イボト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

-

A typical IET is minimal (so not periodic).

Number of Ergodic and Generic Measures for Minimal Subshifts

< ロ ト < 部 ト < 注 ト < 注 ト - 注</p>

996

Languages and subshifts Interval Exchanges Transformations Constructions/Proof Idea Measures IET subshifts Boshernitzan's Question Generic Measures

Theorem (Katok 1973, Veech 1978)

If (K + 1)-IET is minimal, then $|\mathcal{E}(X)| \leq \frac{K+1}{2}$.* *The bound depends on π that defines the IET and may be strictly less than $\lfloor \frac{K+1}{2} \rfloor$.

Example (Keane 1977, Yoccoz 2009, F. 2014)

This bound is sharp, i.e. there exist minimal IETs that achieve the known bound for each choice of irreducible π .

Both proofs use the geometry of associated surfaces in some form.

・ロト・(アト・モミト・モミト) 注 少へで Number of Ergodic and Generic Measures for Minimal Subshifts

IET subshifts Boshernitzan's Question Generic Measures

"Natural" Coding to IET subshift

 $w = w_1 \dots w_n \in \mathcal{L}$ iff there exists point x on the interval such that for all $0 \le k \le n-1$ we have $T^k x$ in sub-interval labeled w_k .

In this example, $1413 \in \mathcal{L}$ and $3141 \in \mathcal{L}$

-

SQR

IET subshifts Boshernitzan's Question Generic Measures

As a subshift, the typical (K + 1)-IET has complexity

p(n) = Kn + 1.

Ferenczi & Zamboni (2008) characterized all \mathcal{L} that arise naturally from IETs.

Question (Boshernitzan 1984/85) Can the bound $|\mathcal{E}(X)| \leq \frac{K+1}{2}$ be shown using \mathcal{L} ?

> イロト イボト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

San

Measures IET subshifts Boshernitzan's Question Generic Measures

Theorem (Boshernitzan 1984/85) Let \mathcal{L} be uniformly recurrent. • If $\liminf_{n \to \infty} \frac{p(n)}{n} = \alpha$, then $|\mathcal{E}(X)| \le \max\{1, \lfloor \alpha \rfloor\}$ • If $\limsup_{n \to \infty} \frac{p(n)}{n} = \alpha$, then $|\mathcal{E}(X)| \le \max\{1, \lfloor \alpha \rfloor - 1\}$

For a (K + 1)-IET, this implies $|\mathcal{E}(X)| \le K - 1$, which agree with the known bound for $K \le 3$ (or up to 4 intervals).

・ロト・日本 コト・モント・モント モンシーマン Number of Ergodic and Generic Measures for Minimal Subshifts

IET subshifts Boshernitzan's Question Generic Measures

Question

Can these bounds be improved for such subshifts?

Answer (No)

(Cyr & Kra 2019) For each $K \in \mathbb{N}$, $K \ge 2$, there exists uniformly recurrent \mathcal{L} such that

$$\liminf_{n\to\infty}\frac{p(n)}{n}=K-1,\ \limsup_{n\to\infty}\frac{p(n)}{n}=K\ \text{and}\ |\mathcal{E}(X)|=K-1.$$

We need to restrict further!

イロト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

-

San

IET subshifts Boshernitzan's Question Generic Measures

Earlier Progress

Theorem (Damron & F. 2017) Let \mathcal{L} be uniformly recurrent such that for $K, C, n_0 \in \mathbb{N}, K > 4$. $p(n) = Kn + C, \quad \forall n > n_0,$ (ECG) then $|\mathcal{E}(X)| \leq K - 2$.

When combined with previous results, the bound for (K + 1)-IETs is agrees with known bound for $K \leq 5$ (up to six intervals).

> イロト イボト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

-

San

IET subshifts Boshernitzan's Question Generic Measures

Question Is this bound sharp?

The properties for \mathcal{L} from a (K + 1)-IET by (Ferenczi & Zamboni 2008) imply the RBC that we use in our proof that $|\mathcal{E}(X)| \leq \frac{K+1}{2}$.

> イロト イ伊ト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

IET subshifts Boshernitzan's Question Generic Measures

What about $\mathcal{G}(X)$?

Example (Chaika & Masur 2015) There exists a (5+1)-IET such that $|\mathcal{E}(X)| = 2$ and $|\mathcal{G}(X)| = 3$.

Question (Chaika & Masur 2015)

Is it true that $|\mathcal{G}(X)| \leq \frac{K+1}{2}$ for minimal (K+1)-IETs?

Cyr & Kra (2019) proved Boshernitzan's bounds, but for $\mathcal{G}(X)$ and with relaxed conditions on \mathcal{L} (uniform recurrence not required).

> ◆□▶ ◆□▶ ◆豆▶ ◆豆▶ Number of Ergodic and Generic Measures for Minimal Subshifts

San

Languages and subshifts Interval Exchanges Transformations Constructions/Proof Idea	$\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC $\mathcal{G}(X)$ proof: New Coloring
Main Idea	

Draw and color!

Number of Ergodic and Generic Measures for Minimal Subshifts

We create a (multi)graph Λ based on the branching points (special words) along the sequence $\{\Gamma_n\}$ Rauzy Graphs.

DQC2

Э

 $\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC Constructions/Proof Idea $\mathcal{G}(X)$ proof: New Coloring

We create a (non-standard) coloring rule C on Λ . STEP 1: Assign to $w \in \Lambda$ a measure $\mu_w \in \mathcal{M}(X)$.

イロト イボト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

nar

STEP 2: For each $\rho \in \mathcal{E}(X)$ fix ρ -generic point $x^{(\rho)} \in X$.

STEP 3: Check a density function \mathcal{D} defined by the frequency of the $w^{(k)}$'s within $x^{(\rho)}$.

STEP 4: If $\mathcal{D} > 0$ then $\rho \geq \delta \cdot \mu_w$ for $\delta = \delta(\mathcal{D}, K) \in (0, 1)$.

STEP 5: Extremality of $\mathcal{E}(X)$ implies that $\rho = \mu_w$, so we assign w the "color" ρ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ へへや

Languages and subshifts Interval Exchanges Transformations Constructions/Proof Idea	$\mathcal{E}(X)$ proof: Graphs and Colors
	$\mathcal{E}(X)$ proof: Bispecial Moves
	$\mathcal{E}(X)$ proof: Using the RBC
	$\mathcal{G}(X)$ proof: New Coloring

Lemma

- $\forall \rho \in \mathcal{E}(X)$, there exists vertices/edges colored with ρ by \mathcal{C} .
- Edge and vertex colorings are consistent.
- If an egde is colored by ρ , it belongs to a ρ -colored circuit.

There may be edges/vertices that are not colored.

イロトイクトイラトイラト ラークへで Number of Ergodic and Generic Measures for Minimal Subshifts Constructions/Proof Idea

 $\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves

 $\mathcal{E}(X)$ proof: Using the RBC

 $\mathcal{G}(X)$ proof: New Coloring

We need more!

Here, there are K = 4 colors.

DQC2

Э

 $\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC Constructions/Proof Idea $\mathcal{G}(X)$ proof: New Coloring

Bispecial moves control evolution of Γ_n 's as *n* increases.

3

DQC2

Languages and subshifts	$\mathcal{E}(X)$ proof: Graphs and Colors
Interval Exchanges Transformations Constructions/Proof Idea	$\mathcal{E}(X)$ proof: Using the RBC $\mathcal{G}(X)$ proof: New Coloring

These moves define evolutions from Λ to new Λ' with consistent colorings C and C' (resp.).

nac

3

 $\mathcal{E}(X)$ proof: Graphs and Colors Languages and subshifts $\mathcal{E}(X)$ proof: Bispecial Moves Interval Exchanges Transformations $\mathcal{E}(X)$ proof: Using the RBC Constructions/Proof Idea $\mathcal{G}(X)$ proof: New Coloring

Loops must "unravel" and therefore spread color.

We actually get $|\mathcal{E}(X)| \leq K - 2$ for $K \geq 4$ here (Damron & F. 2017). Need more to significantly improve!

> イロト イボト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

 $\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC Constructions/Proof Idea $\mathcal{G}(X)$ proof: New Coloring

We accelerate fixed colored loops asynchronously and then remove them to create a new (undirected) graph Ξ .

イロト イボト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

DQC2

Languages and subshifts	$\mathcal{E}(X)$ proof: Graphs and Colors
Interval Exchanges Transformations	$\mathcal{E}(X)$ proof: Bispecial Moves
Constructions/Proof Idea	$\mathcal{E}(X)$ proof: Using the RBC
Constructions/ Proof Idea	$\mathcal{G}(X)$ proof: New Coloring

Lemma (Main Lemma) If \mathcal{L} satisfies the RBC, Ξ must be weakly connected.

Consequence

$$|\Xi|_{\rm edges} \ge |\Xi|_{\rm vertices} - 1$$

Number of Ergodic and Generic Measures for Minimal Subshifts

nac

Э

Languages and subshifts nterval Exchanges Transformations Constructions/Proof Idea	$\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC $\mathcal{G}(X)$ proof: New Coloring
--	---

- Previous coloring method does not work for G(X), as the elements of G(X) \ E(X) are not extremal.
- For fixed proportion $D \gg K$, for all large enough *n* there exists a walk $W_{\rho,n} \subset \mathcal{L}_n$ in Γ_n of length at least Dn.
- These walks $W_{\rho,n}$ and $W_{\rho',n}$, $\rho \neq \rho'$, are vertex disjoint.

Languages and subshifts Interval Exchanges Transformations Constructions/Proof Idea	$\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC $\mathcal{G}(X)$ proof: New Coloring
---	---

- We may then "color" vertices and edges along these walks.
- These colorings must still contain loops, but do not enjoy all properties of the coloring rule from $\mathcal{E}(X)$.

• Not as "acceleration friendly" but still retains relationships between $W_{\rho,n}$ and $W_{\rho,n'}$ for n' > n.

 $\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC Constructions/Proof Idea $\mathcal{G}(X)$ proof: New Coloring

Details

STEP 1: For
$$ho,
ho'\in \mathcal{G}(X),\
ho
eq
ho',\ \exists\ w=w_{\{
ho,
ho'\}}$$
 such that $ho([w])
eq
ho'([w])$

STEP 2: There exists n_0 such that for all $N \ge n_0$

$$\left|\frac{\left|\mathbf{x}_{[1,N]}^{(\rho)}\right|_{w}}{N} - \rho([w])\right| \ll \left|\rho([w]) - \rho'([w])\right|$$

where \ll depends on the fixed $D \gg K$ (similar for ρ' with same n_0)

イロト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

DQC2

1

 $\mathcal{E}(X)$ proof: Graphs and Colors $\mathcal{E}(X)$ proof: Bispecial Moves $\mathcal{E}(X)$ proof: Using the RBC Constructions/Proof Idea $\mathcal{G}(X)$ proof: New Coloring

Details

STEP 3: For each *n* and $n_0 \leq m \leq Dn$,

$$\left|\frac{|x_{[m,m+n-1]}^{(\rho)}|_{w}}{n} - \rho([w])\right| < \frac{|\rho([w]) - \rho'([w])|}{3}$$

(similar for ρ')

STEP 4: So

$$W_{\rho,n} = \{x_{[m,m+n-1]}^{(\rho)} : n_0 \le m \le Dn\}$$

and $W_{\rho,n} \cap W_{\rho',n} = \emptyset$.

イロト イヨト イヨト Number of Ergodic and Generic Measures for Minimal Subshifts

DQC2

1

Languages and subshifts

Open* Questions

Examples?

- For K > 4, do there exist uniformly recurrent \mathcal{L} such that p(n) = Kn + C for all large *n* such that $|\mathcal{E}(X)| = K - 2$? If not, what if $\frac{p(n)}{r} \to K$ is assumed instead?
- Do there exist examples with this constant growth condition that are uniformly recurrent, satisfying $|\mathcal{E}(X)| \geq 2$ but not from an IET?

イロト イポト イヨト イヨト 三日 Number of Ergodic and Generic Measures for Minimal Subshifts

Languages and subshifts

Open* Questions

(More) Examples?

- Do there exist uniformly recurrent $\mathcal{L}(X)$ such that lim inf $_{n\to\infty} \frac{p(n)}{n} = K - 1$ and lim sup $_{n\to\infty} \frac{p(n)}{n} = K$ and $|\mathcal{G}(X)| = K - 1$ but $|\mathcal{G}(X) \setminus \mathcal{E}(X)| = G$, for fixed 1 < G < K - 3?
- Similar to above, but assuming p(n) = Kn + C (eventually) or $\lim_{n\to\infty} \frac{p(n)}{n} = K$ for $K \ge 4$.

Further Proofs?

- Can we use the remaining Ferenczi & Zamboni (2008) properties to fully achieve the known bound^{*} on $|\mathcal{E}(X)|$ for minimal IETs?
- Can we use word combinatorics to provide a proof on the bound of $|\mathcal{G}(X)|$ for minimal IETs?

*For example if $\pi = (9, 4, 3, 2, 5, 8, 7, 6, 1)$ the known bound for $|\mathcal{E}(X)|$ is $3 < |\frac{9}{2}|$.

> イロト イポト イヨト イヨト 三日 Number of Ergodic and Generic Measures for Minimal Subshifts

Languages and subshifts Interval Exchanges Transformations Constructions/Proof Idea

Open* Questions End

Merci pour votre attention!

Thank you!

Number of Ergodic and Generic Measures for Minimal Subshifts

<ロト < 団 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □