Kleene and Büchi for Weighted Forest Automata over M-Monoids

Introduction Structure of the Talk

Structure of the Talk

- WTA over M-Monoids
- Weighted Forest Automata

- WTA over M-Monoids
- Weighted Forest Automata
- Rectangularity

- WTA over M-Monoids
- Weighted Forest Automata
- Rectangularity
- Kleene for WFA

- WTA over M-Monoids
- Weighted Forest Automata
- Rectangularity
- Kleene for WFA
- Büchi for WFA

An M-Monoid is a tuple $(M,+,0,\Omega_M)$ where

An M-Monoid is a tuple $(M,+,0,\Omega_M)$ where

-
$$(M,+,0)$$
 is a monoid

An M-Monoid is a tuple $(M,+,0,\Omega_M)$ where

- (M,+,0) is a monoid
- $\Omega_M \subseteq \operatorname{Ops}(M)$

An M-Monoid is a tuple $(M,+,0,\Omega_M)$ where

- (M,+,0) is a monoid
- $\Omega_M \subseteq \operatorname{Ops}(M)$

An operation is a map $\,\omega\colon M^k o M$

M-Monoids generalise semirings $(S,+,\cdot,0,1)$

M-Monoids generalise semirings $(S,+,\cdot,0,1)$

$$M(S) = (S, +, 0, \Omega_S)$$
 , $\Omega_S = \{\Pi_k \mid k \ge 0\}$

M-Monoids generalise semirings $(S,+,\cdot,0,1)$

$$M(S) = (S, +, 0, \Omega_S)$$
 , $\Omega_S = \{\Pi_k \mid k \ge 0\}$

M-Monoids are more general than semirings

e.g. average, weighted sums, ...

$$A = (Q, n, F, \mu, \nu)$$

$$A = (Q, n, F, \mu, \nu)$$

$$A = (Q, n, F, \mu, \nu)$$

$$A = (Q, n, F, \mu, \nu)$$

$$A = (Q, n, F, \mu, \nu)$$

WTA over semirings

$$A = (Q, n, F, \mu, \nu)$$

WTA over semirings

$$A = (Q, n, F, \mu, \nu)$$

WTA over semirings

$$A = (Q, n, F, \mu, \nu)$$

WTA over semirings

$$A = (Q, n, F, \mu, \nu)$$

 \sum – ranked alphabet

 \sum – ranked alphabet

$$\mathrm{T}_\Sigma(X_n)$$
 trees over Σ with variables in X_n

 \sum - ranked alphabet

$$\mathrm{T}_\Sigma(X_n)$$
 trees over Σ with variables in X_n

Set of
$$(m,n)$$
 - forests over Σ

$$F(\Sigma)_n^m := \{n\} \times T_{\Sigma}(X_n)^m$$

 \sum - ranked alphabet

$$\mathrm{T}_\Sigma(X_n)$$
 trees over Σ with variables in X_n

Set of
$$(m,n)$$
 - forests over Σ

$$F(\Sigma)_n^m := \{n\} \times T_{\Sigma}(X_n)^m$$

m-tuples of trees with variables in X_n

 Σ – ranked alphabet

M - M-monoid

A weighted forest automaton over Σ and M is a tuple

 Σ - ranked alphabet

M - M-monoid

A weighted forest automaton over Σ and M is a tuple

$$A = (Q, m, n, F, \mu, \nu)$$

 Σ – ranked alphabet

M - M-monoid

A weighted forest automaton over Σ and M is a tuple

$$A = (Q, m, n, F, \mu, \nu)$$

where

 ${\cal Q}$ alphabet of states

m width of forests

n number of variables

 Σ – ranked alphabet

M - M-monoid

A weighted forest automaton over Σ and M is a tuple

$$A = (Q, m, n, F, \mu, \nu)$$

where

$$F = (F_1, \dots, F_m)$$
$$F_i \colon Q \to \Omega_M^{(1)}$$

root distribution function

 Σ – ranked alphabet

M - M-monoid

A weighted forest automaton over Σ and M is a tuple

$$A = (Q, m, n, F, \mu, \nu)$$

where

$$\mu = (\mu_k \colon Q^k \times \Sigma^{(k)} \times Q \to \Omega_M^{(k)} \mid k \ge 0)$$

transition mappings

 Σ – ranked alphabet

M - M-monoid

A weighted forest automaton over Σ and M is a tuple

$$A = (Q, m, n, F, \mu, \nu)$$

where

$$\nu \colon X_n \times Q \to \Omega_M^{(1)}$$

variable assignment

$$A = (Q, 2, 1, F, \mu, \nu)$$

$$A = (Q, 2, 1, F, \mu, \nu)$$

$$\left(1,\right.$$

$$A = (Q, 2, 1, F, \mu, \nu)$$

$$A = (Q, 2, 1, F, \mu, \nu)$$

$$f_1(\omega_a(\omega_b(\omega_c,\omega_d),\omega_e(\omega_f)))$$

$$A = (Q, 2, 1, F, \mu, \nu)$$

$$\operatorname{wt}(\rho) = \left(f_1(\omega_a(\omega_b(\omega_c, \omega_d), \omega_e(\omega_f))) , f_2(\omega_a'(\omega_b'(\omega_c', \omega_d'))) \right)$$

How to combine values in $\mathrm{wt}(\rho)$?

How to combine values in $\mathrm{wt}(\rho)$?

M contains a semiring if

How to combine values in $\mathrm{wt}(\rho)$?

M contains a semiring if

 \exists binary operation \cdot on M such that

How to combine values in $\mathrm{wt}(\rho)$?

M contains a semiring if

 \exists binary operation \cdot on M such that

 $(M,+,\cdot,0,1)$ is a semiring and $\forall k\colon \Pi_k\in\Omega_M$

The weighted language accepted by \boldsymbol{A}

The weighted language accepted by A

$$\llbracket A \rrbracket(\xi) = \sum_{\rho \in \text{Runs}_A(\xi)} \Pi_m(\text{wt}(\rho))$$

The weighted language accepted by \boldsymbol{A}

$$\llbracket A \rrbracket(\xi) = \sum_{\rho \in \text{Runs}_A(\xi)} \Pi_m(\text{wt}(\rho))$$

arity = number of variable positions in ξ

Theorem:

Theorem: Given $A=(Q,m,n,F,\mu,\nu)$

Theorem: Given $A=(Q,m,n,F,\mu,\nu)$

There exist weighted tree automata

Theorem: Given
$$A=(Q,m,n,F,\mu,\nu)$$

There exist weighted tree automata

$$A_1,\ldots,A_m$$

over Σ and M such that

Theorem: Given $A=(Q,m,n,F,\mu,\nu)$

There exist weighted tree automata

$$A_1,\ldots,A_m$$

over Σ and M such that

$$[\![A]\!] = \Pi_m([\![A_1]\!], \dots, [\![A_m]\!])$$

$$A = (Q, m, n, F, \mu, \nu)$$

Theorem: $\exists A_1, ..., A_m : [\![A]\!] = \Pi_m([\![A_1]\!], ..., [\![A_m]\!])$

Proof idea:

$$A = (Q, m, n, F, \mu, \nu)$$

Theorem:
$$\exists A_1, ..., A_m : [\![A]\!] = \Pi_m([\![A_1]\!], ..., [\![A_m]\!])$$

Proof idea: 1. Let
$$F = (F_1, \dots, F_m)$$

$$A = (Q, m, n, F, \mu, \nu)$$

Theorem:
$$\exists A_1, ..., A_m : [\![A]\!] = \Pi_m([\![A_1]\!], ..., [\![A_m]\!])$$

Proof idea: 1. Let
$$F = (F_1, \dots, F_m)$$

2. Choose
$$A_1=(Q,n,F_1,\mu,\nu)$$
 \vdots $A_m=(Q,n,F_m,\mu,\nu)$

$$A = (Q, m, n, F, \mu, \nu)$$

Theorem:
$$\exists A_1, ..., A_m : [\![A]\!] = \Pi_m([\![A_1]\!], ..., [\![A_m]\!])$$

Proof idea: 1. Let $F = (F_1, \dots, F_m)$

2. Choose
$$A_1=(Q,n,F_1,\mu,\nu)$$
 \vdots $A_m=(Q,n,F_m,\mu,\nu)$

3. Use distributivity

From [FulMalVog09]:

From [FulMalVog09]:

 $\operatorname{Rec}(\Sigma, n, M)$

accepted by weighted tree automata

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$\operatorname{Rat}(\Sigma, n, M)$$

accepted by weighted tree automata

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$\operatorname{Rat}(\Sigma, n, M)$$

accepted by weighted tree automata

generated by rational tree expressions

 $\omega . x_i$

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$Rat(\Sigma, n, M)$$

accepted by weighted tree automata

$$\omega.x_i \quad top_{\sigma,\omega}(\eta_1,\ldots,\eta_k)$$

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$Rat(\Sigma, n, M)$$

accepted by weighted tree automata

$$\omega . x_i \quad \text{top}_{\sigma,\omega}(\eta_1, \dots, \eta_k)$$

$$\eta_1 + \eta_2$$

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$Rat(\Sigma, n, M)$$

accepted by weighted tree automata

$$\omega . x_i \quad \text{top}_{\sigma,\omega}(\eta_1, \dots, \eta_k)$$

$$\eta_1 + \eta_2 \quad \eta_1 \cdot_i \eta_2$$

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$Rat(\Sigma, n, M)$$

accepted by weighted tree automata

$$\omega . x_i \quad \text{top}_{\sigma,\omega}(\eta_1, \dots, \eta_k)$$

 $\eta_1 + \eta_2 \quad \eta_1 \cdot_i \eta_2 \quad (\eta)_i^*$

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$\supseteq$$

$$Rat(\Sigma, n, M)$$

accepted by weighted tree automata

$$\omega . x_i \quad \text{top}_{\sigma,\omega}(\eta_1, \dots, \eta_k)$$

$$\eta_1 + \eta_2 \quad \eta_1 \cdot_i \eta_2 \quad (\eta)_i^*$$

From [FulMalVog09]:

$$\operatorname{Rec}(\Sigma, n, M)$$

$$\supseteq$$

$$Rat(\Sigma, n, M)$$

$$\operatorname{Rec}(\Sigma, n, M)$$

$$\subseteq$$

$$\operatorname{Rat}(\Sigma, \operatorname{fin}, M)|_{T_{\Sigma}(X_n)}$$

accepted by weighted tree automata

$$\omega . x_i \quad \text{top}_{\sigma,\omega}(\eta_1, \dots, \eta_k)$$

$$\eta_1 + \eta_2 \quad \eta_1 \cdot_i \eta_2 \quad (\eta)_i^*$$

Theorem:

Theorem:

$$\operatorname{Rec}(\Sigma, m, n, M)$$

accepted by weighted forest automata

Theorem:

$$\operatorname{Rec}(\Sigma, m, n, M)$$

$$\operatorname{Rat}(\Sigma, m, n, M)$$

accepted by weighted forest automata

Theorem:

$$\operatorname{Rec}(\Sigma, m, n, M)$$

$$Rat(\Sigma, m, n, M)$$

accepted by weighted forest automata

$$\Pi_m(\eta_1,\ldots,\eta_m)$$

Theorem:

$$\operatorname{Rec}(\Sigma, m, n, M)$$

$$\supseteq$$

$$\operatorname{Rat}(\Sigma, m, n, M)$$

accepted by weighted forest automata

$$\Pi_m(\eta_1,\ldots,\eta_m)$$

Theorem:

$$\operatorname{Rec}(\Sigma, m, n, M)$$

$$\supseteq$$

$$\operatorname{Rat}(\Sigma, m, n, M)$$

$$\operatorname{Rec}(\Sigma, m, n, M)$$

$$\subseteq$$

$$\operatorname{Rat}(\Sigma, m, \operatorname{fin}, M)|_{F(\Sigma)_n^m}$$

accepted by weighted forest automata

$$\Pi_m(\eta_1,\ldots,\eta_m)$$

From [FulStuVog12]:

From [FulStuVog12]:

 $\operatorname{Rec}_{\mathrm{f}}(\Sigma,0,M)$

accepted by weighted tree automata with final **states**

From [FulStuVog12]:

 $\operatorname{Rec}_{\mathbf{f}}(\Sigma, 0, M)$

accepted by weighted tree automata with final **states**

 $\mathrm{MDef}(\Sigma, M)$

From [FulStuVog12]:

 $\operatorname{Rec}_{\mathbf{f}}(\Sigma, 0, M)$

accepted by weighted tree automata with final **states**

 $\mathrm{MDef}(\Sigma, M)$

definable by tree M-expressions

 $H(\omega)$

From [FulStuVog12]:

 $\operatorname{Rec}_{\mathbf{f}}(\Sigma, 0, M)$

accepted by weighted tree automata with final **states**

 $\mathrm{MDef}(\Sigma, M)$

$$H(\omega) e_1 + e_2$$

From [FulStuVog12]:

$$\operatorname{Rec}_{\mathbf{f}}(\Sigma, 0, M)$$

accepted by weighted tree automata with final **states**

$$\mathrm{MDef}(\Sigma, M)$$

$$H(\omega)$$
 $e_1 + e_2$

$$e$$

From [FulStuVog12]:

$$\operatorname{Rec}_{\mathbf{f}}(\Sigma, 0, M)$$

accepted by weighted tree automata with final **states**

$$\mathrm{MDef}(\Sigma, M)$$

$$\frac{H(\omega)}{\sum_{x} e} \frac{e_1 + e_2}{\sum_{X} e}$$

From [FulStuVog12]:

$$\operatorname{Rec}_{\mathbf{f}}(\Sigma, 0, M)$$

accepted by weighted tree automata with final **states**

$$\mathrm{MDef}(\Sigma, M)$$

$$\begin{array}{ccc}
H(\omega) & e_1 + e_2 \\
\sum_{x} e & \sum_{X} e & \varphi \triangleright e
\end{array}$$

From [FulStuVog12]:

$$\mathrm{Rec}_{\mathrm{f}}(\Sigma,0,M)$$

accepted by weighted tree automata with final **states**

$$\mathrm{MDef}(\Sigma,M)$$

$$H(\omega) \quad e_1 + e_2$$

$$\sum_{x} e \quad \sum_{X} e \quad \varphi \triangleright e$$

Theorem:

Theorem:

$$\operatorname{Rec}_{\mathbf{f}}(\Sigma, m, 0, M)$$

accepted by weighted forest automata with final **states**

Theorem:

 $\operatorname{Rec}_{\mathbf{f}}(\Sigma, m, 0, M)$

 $\mathrm{MDef}(\Sigma, m, M)$

accepted by weighted forest automata with final **states**

Theorem:

$$\operatorname{Rec}_{\mathbf{f}}(\Sigma, m, 0, M)$$

accepted by weighted forest automata with final **states**

$$\mathrm{MDef}(\Sigma, m, M)$$

$$\Pi_m(e_1,\ldots,e_m)$$

Theorem:

$$\operatorname{Rec}_{\mathbf{f}}(\Sigma, m, 0, M) = \operatorname{MDef}(\Sigma, m, M)$$

accepted by weighted forest automata with final **states**

$$\Pi_m(e_1,\ldots,e_m)$$

Thank you for your attention!

References

[FulMalVog09]:

Z. Fülöp, A. Maletti, and H. Vogler. A Kleene theorem for weighted tree automata over distributive multioperator monoids. Theory Comput. Syst., 44:455-499, 2009.

[FulStuVog12]:

Z. Fülöp, T. Stüber, and H. Vogler. A Büchi-like theorem for weighted tree automata over multioperator monoids. Theory Comput. Syst., 50(2):241–278, 2012.