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Transductions: some history

Early notion in formal language theory, motivated by coding theory,
compiling, linguistics...

Moore 1956 “Gedankenexperiments on sequential machines”

Church 1957, Schutzenberger 1961, Ginsburg-Rose 1966, Nivat 1968, Aho-

Hopcroft-Ullman 1969, Engelfriet 1972, Eilenberg 1976, Choffrut 1977, Berstel
1979.

Word transducers are weighted automata over the language semi-ring
(sum=union, product=concatenation)
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Transducers

transform objects - here: words

transduction: mapping (or relation) from words to words

metamorphosis

metamorphosis

>

metamorphosis

metamorphosis

mtmrphss

sisohpromatem

erase vowels

mirror

metamorphosismetamorphosis duplicate

phosismetamor

permute circularly
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Transducers

one-way (non-)deterministic finite-state transducers

metamorphosis »  mtmrphss

two-way (non-)deterministic finite-state transducers

metamorphosis » sisohpromatem
metamorphosis > metamorphosismetamorphosis
4 R

Transduction: binary relation over words

. J

erase vowels

mirror

doubling



¢, right|e ¢, left|c c, right|e

. right|e —, left|e -, right|e —, right|e

deterministic, 2-way transducer computing the mirror

(metamorphosis

) metamorphosis » sisohpromatem

metamorphosis



L()glC MSOT: monadic second-order transductions

[Courcelle, Engelfriet]
maps structures into structures

« output consists of fixed number of copies of input
positions

+ domain formula: unary MSO formula

“c-th copy of input position x occurs in the output and
Is labeled by symbol a”

+ order formula: binary MSO formula

“c-th copy of input position x precedes d-th copy of input
position y in the output”



Logic

MSOT: monadic second-order transductions

Example: W= ww
+ 2 copies
+ domain formula: domg,1(z) = domg 2(z) = a(x)

« order formula:  before; ; (x,y) = befores o (x,y) = (z < y)
before; o(x,y) = true



Logic

MSOT: monadic second-order transductions

Example: W= ww
+ 2 copies
+ domain formula: domg,1(z) = domg 2(z) = a(x)

« order formula:  before; ; (x,y) = befores o (x,y) = (z < y)
before; o(x,y) = true

MSOT = deterministic, two-way transducers (2DFT)

\_ J
[Engelfriet-Hoogelboom 2001]




Transducers with registers

SST:. streaming string transducers [Alur-Cerny 2010]

* ohe-way automata +

+ finite number of registers: output can be appended
left or right, registers can be concatenated

doubling o I X‘
_9

o-u.l’(x"af)

DSST: deterministic copyless streaming string transducers = MSOT



Landscape with transducers

1DFT 2DFT = DSST = MSOT

aWrs Wa Wr WW

decidable equivalence



Functions

A transducer is single-valued if there is at most one output
per input word

here: transductions are functions from words to words

2DFT = DSST = NSST =MSOT

regular word functions [Engelfriet-Hoogeboom 2001]
[Alur-Cerny 2010]
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Word functions

<v sequential word functions: 1DFT (one-way, deterministic)
poly
rational word functions: 1INFT (one-way, non-deterministic)

<' regular word functions: 2DFT = 2NFT = DSST = NSST = MSOT

non-elementary

[Filiot, Gauwin, Reynier, Servais 2013]



Regular vs rational
a R

Given a single-valued two-way transducer T:

+ it is decidable in ExpSPACE whether an equivalent one-way
transducer exists

= If “yes”: construction of 2-exp size equivalent one-way transducer

\_ J

[Baschenis, Gauwin, M., Puppis 2017]

Lower bounds

+ PSPACE for the decision procedure
+ the size of the one-way transducer is optimal

Remark: undecidable for relations
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Given a single-valued two-way transducer T, the existence of
an equivalent one-way transducer is decidable in ExpSPACE.

~

J

Example: w—ww with weR

« if R = (a+0b)" : noequivalent one-way transducer

« if R = (ab)” : an equivalent one-way transducer exists

Remark: doubling and mirror are typically two-way
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Given a single-valued two-way transducer T,
the existence of an equivalent one-way
transducer is decidable in ExpSPACE.

~

Key tool: inversions + word combinatorics



2N . )
Given a single-valued two-way transducer T,

the existence of an equivalent one-way
transducer is decidable in ExpSPACE.

\

Key tool: inversions + word combinatorics

The output between the red dots has exponentially-bounded period



Weighted automata: One-way vs Two-way

+ Two-way computation adds power

« |t can be decided if a two-way WA is equivalent to a one-way WA

(over commutative semiring) [Anselmo 1990]

+ One-way WA = restricted weighted MSO logic  [Droste, Gastin 2009]

= Two-way WA with pebbles = weighted FO logic + transitive closure
[Bollig, Gastin, Monmege, Zeitoun 2014]



Translations

Poly S

DSST = 2DFT

+ a one-way transducer T labels the input word by the accepting run
of the DSST

+ a 2DFT can build the output from the annotated input ...




Translations

Poly S

DSST = 2DFT

+ a one-way transducer T labels the input word by the accepting run
of the DSST

+ a 2DFT can build the output from the annotated input ...

... If T is reversible, so co-deterministic (and deterministic)



Translations

Poly .

DSST = 2DFT

Deterministic one-way transducers can be simulated by reversible
two-way transducers with quadratic blow-up.

[Dartois, Fournier, Jecker, Lhote 2017]

reversible = deterministic and co-deterministic



Reversible computations

reversible: deterministic and co-deterministic

DFS of computation tree of co-deterministic one-way automata

[Hopcroft-Ullman’67, Sipser’78] 1
a/ \ a




Reversible computations

reversible: deterministic and co-deterministic

DFS of computation tree of co-deterministic one-way automata

reversible
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Computation tree of co-deterministic
transducers
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Reversible transducers

reversible: deterministic and co-deterministic

Computation tree of co-deterministic
transducers

When to produce the output?

Double DFS “surrounding” accepting run

1DFT can be made reversible with
quadratic blow-up

[Dartois, Fournier, Jecker, Lhote’17]



Reversible transducers

reversible: deterministic and co-deterministic

Computation tree of co-deterministic
transducers

When to produce the output?

Double DFS “surrounding” accepting run

2DFT can be made reversible with
exponential blow-up

[Dartois, Fournier, Jecker, Lhote’17]



Some open problems

+ PSPACE lower bound for decision procedure “two-way
transducers to one-way” - better lower bound?
+ Better complexity for “two-way to deterministic one-way”?

+ Extension from single-valued transducers to finitely-valued ones?
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Rational expressions

One-way (rational) string functions equivalent to simple

expressions  f,g:=(u,v) | f4+g|f-g|f" (unambiguous)

2DFT equivalent to rational expressions plus

+ composition
< mirror transduction

+ doubling transduction or Hadamard product

[Gastin’19, Dave, Gastin, Krishna’18, Alur et aI.’14])




Polyregular word functions

[Bojanczyk’18]
a4 )

Polyregular word functions: functions computed by

+ two-way deterministic transducers with pebbles

+ smallest class of functions containing functions
computed by 1DFT, and closed under composition,
iterated reverse and squaring

+ for-transducers, polynomial list functions

= MSQO interpretations

[Bojanczyk, Kiefer, Lhote’19]
N\ _J

squaring abcd —» abcd abcd abcd abcd



Algebra

Long line of research on algebra for regular languages:

+ algebra offers machine-independent characterizations,
canonical objects (minimization), decision procedures
for subclasses

+ prominent example: decide whether a regular language
IS star-free

star-free = aperiodicity [Schitzenberger’65]

star-free = first-order logic [McNaughton, Papert’71]



Algebra for transducers?

+ A Myhill-Nerode theorem for deterministic one-way transducers ...

[Choffrut’79]
... thus a canonical (minimal) transducer



Algebra for transducers?

+ A Myhill-Nerode theorem for deterministic one-way transducers ...

[Choffrut’79]
... thus a canonical (minimal) transducer

+ Non-deterministic one-way transducers

Any one-way transducer is equivalent to the composition of a
deterministic left2right and a deterministic right2left transducer

[Elgot, Mezei’'65]
Bimachine: as above + output

For every one-way transducer there is a family of canonical
bimachines.

[Reutenauer, Schutzenberger’91]



First-order transductions

+ One-way transducers: equivalent to order-preserving MSOT

( )
Decidable whether a one-way transducer is equivalent to

some order-preserving first-order transduction.
. W,

[Filiot, Gauwin,Lhote’16]
proof uses canonical bimachines



First-order transductions

+ One-way transducers: equivalent to order-preserving MSOT

( )
Decidable whether a one-way transducer is equivalent to

some order-preserving first-order transduction.
. W,

[Filiot, Gauwin,Lhote’16]
proof uses canonical bimachines

+ [Two-way transducers: no decision procedure for first-order
transductions so far, but ...

4 )
First-order transductions = aperiodic two-way transducers =

aperiodic streaming transducers
- _J

[Carton, Dartois’15], [Filiot, Krishna, Trivedi’15]




More open problems

Can we decide whether a regular word function is

aperiodic / first-order definable?

Same for polyregular word functions.
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Equivalence problem

Given two transducers, do they compute the same relation?

Equivalence of non-deterministic one-way transducers (1NFT) is
undecidable.

[Fischer-Rosenberg, Griffiths'68]

PCP h, g: A* maps-to B*
[lbarra]

inputs from A* $ B*, output alphabet c

Take h. On input u $ z output

either a number of c’s different from |h(u)| (and smaller than |h(u)z|)

or, forsomeu=u"au” and z=2"tz”: number of c = |h(u’a)z”|, t not= h(a)

Same for g. Equivalence with “universal” 1NFT iff PCP has a no solution.



Equivalence problem

Given two transducers, do they compute the same relation?

Equivalence of non-deterministic one-way transducers (1NFT) is
undecidable.

[Fischer-Rosenberg, Griffiths'68]

PCP h, g: A* maps-to B* linearly ambiguous
[loarra]

inputs from A* $ B*, output alphabet c

Take h. On input u $ z output

either a number of c’s different from |h(u)| (and smaller than |h(u)z|)

or, forsomeu=u"au” and z=2"tz”: number of c = |h(u’a)z”|, t not= h(a)

Same for g. Equivalence with “universal” 1NFT iff PCP has a no solution.



Equivalence problem

Given two transducers, do they compute the same relation?

Equivalence of non-deterministic one-way transducers (1NFT) is
undecidable.
[Fischer-Rosenberg, Griffiths'68]
decidable ' undecidable
2DF 2DSST copyful 2DSST [ 1NF
PSPACE-c PSPACE decidable
[Gurari’82] [Alur-Cerny’10] [Filiot-Reynier’17]

[Benedikt et al.’17]



Equivalence problem
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Single-valued transducer: at most one output per input word

To check equivalence, single-valuedness is as good as determinism!



Equivalence problem

Single-valued transducer: at most one output per input word

To check equivalence, single-valuedness is as good as determinism!

single-valued i relational

PTime decidable PSPACE-c

[Blattner-Head'79)] | | [Alur-Deshmukh’11] ¢
[Culik-Karhumaki’87]

PSPACE-c: equivalence of 2NFA
is in PSPACE [Vardi’89]
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single-valuedness is not yet the end for equivalence problem



Equivalence problem

Single-valued transducer: at most one output per input word

single-valuedness is not yet the end for equivalence problem

k-valued transducer: for every input word at most k outputs
finitely-valued transducer: k-valued for some k

[Equivalence of k-valued 1DFT (and 2DFT) is decidable. ]

[Culik-Karhumaki’806]



Overview

Word transductions
automata = logic
translations between models
expressions

algebra?

Equivalence problem

finitely valued transducers
Ehrenfeucht & Hilbert

origin equivalence



Finitely valued

k-valued transducer: for every input at most k different outputs

[Equivalence of k-valued one-way transducers is decidable.J

[Culik-Karhumaki’86]

Proof based on the Ehrenfeucht’s conjecture:

Every infinite system of word equations has a finite, equivalent subsystem

word equation xy=2zt solution x=bc y=z=b t=cb

[shown in 1986 by Albert & Lawrence, and Guba]



s

\_

~

Equivalence of k-valued one-way transducers is decidable.

\/OQQ o

al cb
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Equivalence of k-valued one-way transducers is decidable.

. ,

\/O@ o

al cb

[Culik-Karhumaki’86]

1. show that there exists some m such that for any k-valued
transducers with at most n states, their equivalence needs to be
tested only on words up to length m

2. show that m can be computed effectively



( )

Equivalence of k-valued one-way transducers is decidable.

. ,

\/O@ o

al cb

[Culik-Karhumaki’86]

1. show that there exists some m such that for any k-valued
transducers with at most n states, their equivalence needs to be
tested only on words up to length m

2. show that m can be computed effectively

step 1: Ehrenfeucht’s conjecture step 2: Makanin’s algorithm for word equations



Equivalence of k-valued one-way transducers is decidable.
[Culik-Karhumaki’86]

a|x1 a

a | x4
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m m

+ For every input word: group outputs of each transducer in at most k groups
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+ For every input word: group outputs of each transducer in at most k groups
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A VS

wWE* groups



Equivalence of k-valued one-way transducers is decidable.
[Culik-Karhumaki’86]

a | X1 a
X5 . .
k-valued, one-way implies

\/ bounded outdegree

a a | x4
Given two transducers, replace output words by variables

x1 x3 x5... x5 =x2 x4 x5 ... x5 oninput a”t?
N——— ~——
m m

+ For every input word: group outputs of each transducer in at most k groups

+ System of equations expresses equalities between groups of the two transducers

A Vs G N VS

WE* groups wEeEISm groups
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Equivalence of k-valued one-way transducers is decidable.
[Culik-Karhumaki’86]

/\ \/ S equivalent to /\ \/ S

wWE* groups weEISm groups

Find m effectively: check for

A Vs= AN VS

wEISm groups weXS<m+1 groups

“Left quotient” of transducer T Ta(w) = T(aw) a € X
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Equivalence of k-valued NSST is decidable.

- _/

M., Puppis 2019]

a | x=xbc a | x=cb x

S .,

a | x=c x a | x=xc

First issue: bounded outdegree no longer obvious

Reason: SST produce their output piecewise, comparison is harder



Equivalence of k-valued NSST is decidable.

Difficulty: decide if runs of streaming transducers are “close”
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Equivalence of k-valued NSST is decidable.

Difficulty: decide if runs of streaming transducers are “close”

a | x=xbc a | x=cb x

2. O

a | x=c x a | x=xc

Normalization: invariant about periods of register and gap contents,
up to a suitable bound

Example (left): c bcbc bcbcbc = final output

N

X




Equivalence of k-valued NSST is decidable.

Normalization: keep invariants about periods of register/gap contents

Let T be k-valued. We may assume that the number of different updates in
transitions is bounded by a constant depending only on k and the number of
registers/states of T.



Equivalence of k-valued NSST is decidable.

-

-

Consequence: for fixed alphabets/number of registers/states, the

set X of k-valued SST is finite (modulo pruning unnecessary
transitions).




Equivalence of k-valued NSST is decidable.

4 )
Consequence: for fixed alphabets/number of registers/states, the

set X of k-valued SST is finite (modulo pruning unnecessary

transitions).
g ,

Next step: show that for any T in X and input word u, the “u-quotient” also
belongs to X:

T, (w) =T (uw)

Naive construction preserves the number of states, but not the update size



Equivalence of k-valued NSST is decidable.
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Ehrenfeucht: there is some N such that the set of words of length at most
N is a test set for all SST in X.
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Ty =n 15 equivalence over words of length at most N
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Equivalence of k-valued NSST is decidable.

~ )
Ehrenfeucht: there is some N such that the set of words of length at most
N is a test set for all SST in X.

\_ V),

Ty =n 15 equivalence over words of length at most N

How do we compute N? iInductively

Assume that we found N suchthat 17 =xN 1o iff 17 =n1q 1o

for all transducers from X

How? E.g. using an algorithm for solving word equations (Makanin)
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Ty (w) :=T(aw) T'e X implies T, € X

1y =n 13 ff 11 =n+1 12

1y =, 15 <— T7=n5 15 for all r > N and Tl,TQEX

17 =41 15 iff 114 =r12,4 for all a

ifft 11, =r—1124 for all a
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[Filiot-Reynier’17] [Benedikt et al.’17]

+ A. A.Markov (~ 1948): encoding words by integers

Every 2x2 matrix with non-negative integer entries and determinant 1 can be
encoded in a unigue way as product of matrices:

11 1 0
w=(o0) =)

Word concatenation turns into matrix multiplication
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Equivalence of copyful DSST is decidable.
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copyful: registers can occur
multiple times in updates

[Filiot-Reynier’17] [Benedikt et al.’17]

+ A. A.Markov (~ 1948): encoding words by integers

Every 2x2 matrix with non-negative integer entries and determinant 1 can be
encoded in a unigue way as product of matrices:

11 1 0
w=(o0) =)

Word concatenation turns into matrix multiplication

+ Encode binary string by (value, 2/length), e.g. 011 encoded by (3,8)
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polynomial automata [Benedikt et al.’17]
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automata:

Is the language of a polynomial automaton included in {0}?
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Equivalence of copyful DSST is decidable.
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[Filiot-Reynier’17] [Benedikt et al.’17]

copyful: registers can occur
multiple times in updates

(Copyful) DSST turn into word-to-integer transducers with registers and
polynomial operations:

polynomial automata [Benedikt et al.’17]

Equivalence of copyful DSST reduces to zeroness problem for polynomial
automata:

Is the language of a polynomial automaton included in {0}?

-

-

Zeroness of polynomial automata is decidable.

~

J

[Benedikt et al.’17]
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Equivalence of copyful DSST is decidable. |« euisters can ocour

- ~ multiple times in updates

[Filiot-Reynier’'17] [Benedikt et al.”17]

4 )

Zeroness of polynomial automata is decidable.

q y [Benedikt et al.’17]
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Equivalence of copyful DSST is decidable.
\_ J

[Filiot-Reynier’'17] [Benedikt et al.”17]

copyful: registers can occur
multiple times in updates

s

Zeroness of polynomial automata is decidable.

-

~

y [Benedikt et al.’17]

Two semi-algorithms: the first one searches input wit

N Non-zero output.

The other semi-algorithm searches a proof for the po
being constant zero using Hilbert’s Basis Theorem.

ynomial automaton

[Bojanczyk, SIGLOG’19]
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Origin equivalence

“Tag” each output symbol with the input position where it was generated:

output alphabet is I' x N
[Bojanczyk 2014]

Origin information brings word transducers closer to automata:

+ Regular word functions with origin information enjoy a Myhill-Nerode
congruence: machine-independent characterisation

+ First-order definable regular word functions have an effective
characterisation

+ Less combinatorics, more decidability



Origin equivalence

“Tag” each output symbol with the input position where it was generated

Transducers T, T’ are origin-equivalent if they are equivalent in the
origin semantics.

~

Origin-equivalence of non-deterministic two-way transducers (2NFT)
is decidable: PSPACE-complete.
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[Bose, M., Penelle, Puppis’18]

|dea: origin-equivalence for 2NFT reduces to “runs of same shape”.



Origin-equivalence of deterministic SST is decidable in PSPACE.

a | x1=x1c, 1

X2 = X2, X3 = X3
/ a | x2=x2c,

————— > 0 i a | yl=y2c,
X3 = X3, x1 = x1 y2 = y3, y3 = y1
\/
5 out(0) = x3 x1 x2 out(s) =y1 y2y3
out(1) = x1 x2 x3
a | x3=x3¢, out(2) = X2 X3 x1

x1 =x1, x2 = x2

|dea: origin-equivalence for DSST through backward propagation of
constraints (= simple word equations)



Origin-equivalence of deterministic SST is decidable in PSPACE.
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a | x1=x1c,
X2 = X2, X3 = X3

2

----- . / a | x2=x2c, T —
| X3 = x3, x1 = X1 ay2| Z1y3,3;%c=’ v
\J

a | X3 = X3 C, 3 out(1) = x3 x1 x2 out(s) = y1 y2y3

X1 =x1, X2 =x2 out(2) = x1 x2 x3

out(3) = x2 x3 x1

out(1) = out(s) x3 x1 x2 =y1y2y3
(1,s) <— (3,9) x3 ¢ x1 x2 =y2 c y3 yT X3 =y2, x1 x2 = y3 y1
(3,8) <— (2,9) x3=Vy3, x1x2c=yly2c X1 x2 =y1y2

2,s) <— (1,9) x3=y1, x1¢c x2=y2cy3 x1=y2,x2 =y3
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Origin-equivalence of deterministic SST is decidable in PSPACE.
_J
a | x1=x1c,
X2 = X2’X3=/X3' 2
_____ @ a | x2=x2c, ol a | yl=y2c,
x3 = X3, x1 = x1 y2 =y3,y3 = y1
\J
a | X3 = X3 C, 3 out(1) = x3 x1 x2 out(s) = y1 y2y3
X1 =x1, X2 =x2 out(2) = x1 x2 x3
out(3) = x2 x3 x1
out(1) = out(s) x3x1x2=y1y2y3
Invariants: at state 1 X1 =y2,x2 =y3, X3 =Vy1
at state 2 X1 =y1,x2 =y2, X3 =Vy3
at state 3 X1 =y3,x2=y1, x3 =Yy2
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Origin-equivalence of deterministic copyful SST is decidable.

J

Copyful: registers can occur several times in right-hand sides of
updates.

Algorithm:
« build product of SST 11,75

+ compute backwards constraints of the form

a=p, a€Ry, BER;

Termination: if no inconsistency detected during propagation,
termination is based on Ehrenfeucht’s conjecture + Makanin



Origin-equivalence of deterministic copyful SST is decidable.

\ _/

Copyful: registers can occur several times in right-hand sides of updates.

Alternatively: reduction to (classical) equivalence of copyful DSST
[Filiot]

+ additional register m, additional output symbol #
“ update x :=ay X breplacedbyx:amyxbm

* m:=m# at each transition



Unary output alphabet

« For origin-equivalence the output alphabet can be assumed to be unary:

4 R
Origin-equivalence over arbitrary output alphabet is polynomially

. reducible to origin-equivalence over unary alphabet. )




Unary output alphabet

« For origin-equivalence the output alphabet can be assumed to be unary:

4 R
Origin-equivalence over arbitrary output alphabet is polynomially

. reducible to origin-equivalence over unary alphabet. )

+ For usual equivalence this is conjectured to be false

Equivalence of deterministic, copyful SST is in Ackermann

(Benedikt et al. LICS’17)
\ Y

4 N
Equivalence of deterministic, copyful SST with unary output alphabet is

in PTIME (Karr’s algorithm, cf. Miller-Olm and Seidl 2004)
_ Y,




Open questions

+ Gomplexity of equivalence of deterministic SST?
+ Same for origin-equivalence?

+ Decomposition theorem for finitely-valued SST?

Every k-valued one-way transducer can be decomposed into k
single-valued one-way transducers.
[Weber’'96, Sakarovitch, de Souza’08]

If similar statement holds for NSST:

NSST = 2NFT in finite valued case (conjectured).
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Thank you for listening]!



