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Let A = {a1, . . . an} and B be two sets. We sometimes write a function f ∶A→ B explicitly72

by listing the image of each element: f = [a1 � f(a1), . . . , an � f(an)]. The set of all73

functions from A to B is denoted BA. If A is � then the only relation (and hence function)74

from A to B is �. We denote this trivial empty function by f�.75

Let M be a non-deterministic Turing machine. The number of accepting runs of M on an76

input x is denoted #M(x), and the number of rejecting runs of M on x is denoted #M(x).77

A semiring is an algebraic structure S = (S,⊕,⊗, 0S, 1S) where S is a set, ⊕ and ⊗ are78

two binary operations on S, (S,⊕, 0S) is a commutative monoid, (S,⊗, 1S) is a monoid, ⊗79

distributes over ⊕, 0S is an annihilator for ⊗. A semiring is commutative if ⊗ is commutative.80

Examples include Boolean = ({0, 1},∨,∧, 0, 1), Natural = (N,+,×, 0, 1), Integer = (Z,+,×, 0, 1),81

Rational = (Q,+,×, 0, 1) and Rational+ = (Q≥0,+,×, 0, 1). Further examples are tropical82

semirings: max-plus-N = (N ∪ {−∞}, max,+,−∞, 0), max-plus-Z = (Z ∪ {−∞}, max,+,−∞, 0),83

min-plus-N = (N ∪ {+∞}, min,+,+∞, 0) and min-plus-Z = (Z ∪ {+∞}, min,+,+∞, 0). We will84

consider only these semirings in this paper. Note that all these semirings are commutative.85

Graphs. We consider graphs with di�erent sorts of edges. For example, a grid will have86

horizontal successor edges, and vertical successor edges. A binary tree will have left-child87

relations and right-child relations. Message sequence charts will have process-successor88

relations and message send-receive relations. These graphs have bounded degree, and for89

each sort of edge, a vertex will have at most one outgoing/incoming edge of that sort. Our90

definition of graphs below allows to capture such graph classes.91

Let � be a finite set of edge names, and let � be a finite set of node labels. A (�, �)-graph92

G = (V, (E“)“∈�, ⁄) has a finite set of vertices V , edge relation E“ ⊆ V × V for every “ ∈ �,93

and ⁄∶V → � assigning a label from � to each vertex v ∈ V . The graphs we consider will94

have at most one outgoing edge and at most one incoming edge for every edge name. That95

is, for each “ ∈ �, for all v ∈ V , �{u � (v, u) ∈ E“}� ≤ 1 and �{u � (u, v) ∈ E“}� ≤ 1.96

The type of a vertex is determined by the set of names of incoming and outgoing edges.97

For example, the root of a tree has no incoming left-child or right-child edges and leaves of98

a tree has no outgoing left- or right-child. A type · = (�in, �out) indicates that the set of99

incoming (resp. outgoing) edge names is �in (resp. �out). Let Types = 2�
× 2� be the set of100

all types. We define type∶V → Types and use type(v) to denote the type of vertex v.101

A weighted Tiling Automaton is a finite state mechanism for defining functions from a102

class of graphs to a weight domain. It has a finite set of states and set of permissible tiles for103

each type of vertices. Formally, a weighted tiling automaton (WTA) over (�, �)-graphs and104

a semiring S = (S,⊕,⊗, 0S, 1S) is a tuple A = (Q, �, wgt) where Q is the finite set of states,105

� = �·∈Types �· — for a type · = (�in, �out) ∈ Types, the set �· ⊆ Q�in ×Q × � ×Q�out106

gives the set of permissible tiles of type · , and wgt∶�→ S, assigns a weight for each tile.107

A run fl of A on a graph G = (V, (E“)“∈�, ⁄) is a labeling of the vertices by states that108

conforms to �. Given a labeling fl∶V → Q, for a vertex v ∈ V with type(v) = (�in, �out) we109

define the tile of v wrt. to fl to be tilefl(v) = (fin, fl(v), ⁄(v), fout) where fin∶�in → Q is given110

by “ � fl(u) if (u, v) ∈ E“ and fout∶�out → Q is given by “ � fl(u) if (v, u) ∈ E“ . A labeling111

fl∶V → Q is a run if for each v ∈ V , tilefl(v) ∈�type(v).112

The weight of a run fl, denoted wgt(fl), is the product of the weights of the tiles in fl.113

With commutative semirings, we do not need to specify an order for this product. The value114
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For example, the root of a tree has no incoming left-child or right-child edges and leaves of98

a tree has no outgoing left- or right-child. A type · = (�in, �out) indicates that the set of99
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× 2� be the set of100
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each type of vertices. Formally, a weighted tiling automaton (WTA) over (�, �)-graphs and104
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✓Formalism - WTS


• WTS  to model algorithmic problems on graphs


• Evaluation problem and complexity 


• The case of Bounded tree-width graphs
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Example: Computing the clique number

23:4 Weighted Tiling Automata

[[A]](G) computed by A for a graph G is the sum of the weights of the runs. That is,115

[[A]](G) = �

fl�fl is a run of A on G

wgt(fl) wgt(fl) = �
v∈V wgt(tilefl(v)).116

117

I Example 1 (A weighted automaton to compute the clique number of a graph). The clique118

number of a graph is the size of the largest clique in the graph.119

The graphs on which we want to compute the clique number have unbounded degrees120

indeed. In our setting we consider only bounded degree graphs. Hence we need to encode any121

arbitrary graph as a bounded degree graph. One way to do that is to consider the adjacency122

matrix and represent this matrix using a grid graph.123

For the particular case of clique number, our input is an undirected graph, so we will124

consider a lower-right triangular matrix in a lower-right triangular grid graph. For this we125

let � = {→, ↓} and � = {0, 1}. The labels of all diagonal vertices are 1. A graph is depicted in126

Figure 1 and its lower-right triangular adjacency matrix is depicted in Figure 2.127

We will now construct a WTA over the tropical semiring max-plus-N that computes the128

clique number on a lower triangular grid graph. The run of an automaton will guess a subset129

of vertices of the original graph (corresponds to labeling some diagonal elements with state130

�) and checks that there is an edge between every pair of these (corresponds to checking the131

label is 1, if the row and column end in a �-labeled vertex). The weight of such a run will be132

the size of the subset, and the max over all the runs gives us the clique number as required.133

Let Q = {�,⌘,⌫,#}. A run will label a subset of diagonal vertices with �. A vertex is134

labeled with ⌘ (resp. ⌫, �) if its column (resp. row, both) starts in a vertex labeled �. In135

addition a vertex may get state � only if its label is 1. All other vertices get state #.136

Tiles for diagonal vertices are given by �(�,�out) = {(f�,#, 1, fout), (f�,�, 1, fout)} . For137

an inside vertex we have138

�({→,↓},�out) = {(fin,#, b, fout) � b ∈ {0, 1}, fin(→) = fin(↓) = #}139

∪ {(fin,�, 1, fout) � fin(→) ∈ {�,⌫}, fin(↓) ∈ {�,⌘}}140

∪ {(fin,⌫, b, fout) � b ∈ {0, 1}, fin(→) ∈ {�,⌫}, fin(↓) ∈ {⌫,#}}141

∪ {(fin,⌘, b, fout) � b ∈ {0, 1}, fin(→) ∈ {⌘,#}, fin(↓) ∈ {�,⌘}} .142
143

The weight of a tile of the form (f�,�, 1, fout) is 1. Notice that only the diagonal vertices144

labeled � will get such a tile. The weight of all other tiles is 0. Thus the weight of a run145

is the number of diagonal vertices labeled � - which corresponds to a subset of vertices146

inducing a clique. The maximum weight across di�erent runs will compute the clique number147

as required. A run on the graph in Figure 2 is depicted in Figure 3. J148
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Let A = {a1, . . . an} and B be two sets. We sometimes write a function f ∶A→ B explicitly72

by listing the image of each element: f = [a1 � f(a1), . . . , an � f(an)]. The set of all73

functions from A to B is denoted BA. If A is � then the only relation (and hence function)74

from A to B is �. We denote this trivial empty function by f�.75

Let M be a non-deterministic Turing machine. The number of accepting runs of M on an76

input x is denoted #M(x), and the number of rejecting runs of M on x is denoted #M(x).77

A semiring is an algebraic structure S = (S,⊕,⊗, 0S, 1S) where S is a set, ⊕ and ⊗ are78

two binary operations on S, (S,⊕, 0S) is a commutative monoid, (S,⊗, 1S) is a monoid, ⊗79

distributes over ⊕, 0S is an annihilator for ⊗. A semiring is commutative if ⊗ is commutative.80

Examples include Boolean = ({0, 1},∨,∧, 0, 1), Natural = (N,+,×, 0, 1), Integer = (Z,+,×, 0, 1),81

Rational = (Q,+,×, 0, 1) and Rational+ = (Q≥0,+,×, 0, 1). Further examples are tropical82

semirings: max-plus-N = (N ∪ {−∞}, max,+,−∞, 0), max-plus-Z = (Z ∪ {−∞}, max,+,−∞, 0),83

min-plus-N = (N ∪ {+∞}, min,+,+∞, 0) and min-plus-Z = (Z ∪ {+∞}, min,+,+∞, 0). We will84

consider only these semirings in this paper. Note that all these semirings are commutative.85

Graphs. We consider graphs with di�erent sorts of edges. For example, a grid will have86

horizontal successor edges, and vertical successor edges. A binary tree will have left-child87

relations and right-child relations. Message sequence charts will have process-successor88

relations and message send-receive relations. These graphs have bounded degree, and for89

each sort of edge, a vertex will have at most one outgoing/incoming edge of that sort. Our90

definition of graphs below allows to capture such graph classes.91

Let � be a finite set of edge names, and let � be a finite set of node labels. A (�, �)-graph92

G = (V, (E“)“∈�, ⁄) has a finite set of vertices V , edge relation E“ ⊆ V × V for every “ ∈ �,93

and ⁄∶V → � assigning a label from � to each vertex v ∈ V . The graphs we consider will94

have at most one outgoing edge and at most one incoming edge for every edge name. That95

is, for each “ ∈ �, for all v ∈ V , �{u � (v, u) ∈ E“}� ≤ 1 and �{u � (u, v) ∈ E“}� ≤ 1.96

The type of a vertex is determined by the set of names of incoming and outgoing edges.97

For example, the root of a tree has no incoming left-child or right-child edges and leaves of98

a tree has no outgoing left- or right-child. A type · = (�in, �out) indicates that the set of99

incoming (resp. outgoing) edge names is �in (resp. �out). Let Types = 2�
× 2� be the set of100

all types. We define type∶V → Types and use type(v) to denote the type of vertex v.101

A weighted Tiling Automaton is a finite state mechanism for defining functions from a102

class of graphs to a weight domain. It has a finite set of states and set of permissible tiles for103

each type of vertices. Formally, a weighted tiling automaton (WTA) over (�, �)-graphs and104

a semiring S = (S,⊕,⊗, 0S, 1S) is a tuple A = (Q, �, wgt) where Q is the finite set of states,105

� = �·∈Types �· — for a type · = (�in, �out) ∈ Types, the set �· ⊆ Q�in ×Q × � ×Q�out106

gives the set of permissible tiles of type · , and wgt∶�→ S, assigns a weight for each tile.107

A run fl of A on a graph G = (V, (E“)“∈�, ⁄) is a labeling of the vertices by states that108

conforms to �. Given a labeling fl∶V → Q, for a vertex v ∈ V with type(v) = (�in, �out) we109

define the tile of v wrt. to fl to be tilefl(v) = (fin, fl(v), ⁄(v), fout) where fin∶�in → Q is given110

by “ � fl(u) if (u, v) ∈ E“ and fout∶�out → Q is given by “ � fl(u) if (v, u) ∈ E“ . A labeling111

fl∶V → Q is a run if for each v ∈ V , tilefl(v) ∈�type(v).112

The weight of a run fl, denoted wgt(fl), is the product of the weights of the tiles in fl.113

With commutative semirings, we do not need to specify an order for this product. The value114
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arbitrary graph as a bounded degree graph. One way to do that is to consider the adjacency122
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addition a vertex may get state � only if its label is 1. All other vertices get state #.136

Tiles for diagonal vertices are given by �(�,�out) = {(f�,#, 1, fout), (f�,�, 1, fout)} . For137

an inside vertex we have138
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labeled � will get such a tile. The weight of all other tiles is 0. Thus the weight of a run145
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Let A = {a1, . . . an} and B be two sets. We sometimes write a function f ∶A→ B explicitly72

by listing the image of each element: f = [a1 � f(a1), . . . , an � f(an)]. The set of all73

functions from A to B is denoted BA. If A is � then the only relation (and hence function)74

from A to B is �. We denote this trivial empty function by f�.75

Let M be a non-deterministic Turing machine. The number of accepting runs of M on an76

input x is denoted #M(x), and the number of rejecting runs of M on x is denoted #M(x).77

A semiring is an algebraic structure S = (S,⊕,⊗, 0S, 1S) where S is a set, ⊕ and ⊗ are78

two binary operations on S, (S,⊕, 0S) is a commutative monoid, (S,⊗, 1S) is a monoid, ⊗79

distributes over ⊕, 0S is an annihilator for ⊗. A semiring is commutative if ⊗ is commutative.80
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semirings: max-plus-N = (N ∪ {−∞}, max,+,−∞, 0), max-plus-Z = (Z ∪ {−∞}, max,+,−∞, 0),83

min-plus-N = (N ∪ {+∞}, min,+,+∞, 0) and min-plus-Z = (Z ∪ {+∞}, min,+,+∞, 0). We will84

consider only these semirings in this paper. Note that all these semirings are commutative.85

Graphs. We consider graphs with di�erent sorts of edges. For example, a grid will have86

horizontal successor edges, and vertical successor edges. A binary tree will have left-child87

relations and right-child relations. Message sequence charts will have process-successor88

relations and message send-receive relations. These graphs have bounded degree, and for89

each sort of edge, a vertex will have at most one outgoing/incoming edge of that sort. Our90

definition of graphs below allows to capture such graph classes.91

Let � be a finite set of edge names, and let � be a finite set of node labels. A (�, �)-graph92

G = (V, (E“)“∈�, ⁄) has a finite set of vertices V , edge relation E“ ⊆ V × V for every “ ∈ �,93

and ⁄∶V → � assigning a label from � to each vertex v ∈ V . The graphs we consider will94

have at most one outgoing edge and at most one incoming edge for every edge name. That95

is, for each “ ∈ �, for all v ∈ V , �{u � (v, u) ∈ E“}� ≤ 1 and �{u � (u, v) ∈ E“}� ≤ 1.96

The type of a vertex is determined by the set of names of incoming and outgoing edges.97

For example, the root of a tree has no incoming left-child or right-child edges and leaves of98

a tree has no outgoing left- or right-child. A type · = (�in, �out) indicates that the set of99

incoming (resp. outgoing) edge names is �in (resp. �out). Let Types = 2�
× 2� be the set of100

all types. We define type∶V → Types and use type(v) to denote the type of vertex v.101

A weighted Tiling Automaton is a finite state mechanism for defining functions from a102

class of graphs to a weight domain. It has a finite set of states and set of permissible tiles for103

each type of vertices. Formally, a weighted tiling automaton (WTA) over (�, �)-graphs and104

a semiring S = (S,⊕,⊗, 0S, 1S) is a tuple A = (Q, �, wgt) where Q is the finite set of states,105

� = �·∈Types �· — for a type · = (�in, �out) ∈ Types, the set �· ⊆ Q�in ×Q × � ×Q�out106

gives the set of permissible tiles of type · , and wgt∶�→ S, assigns a weight for each tile.107

A run fl of A on a graph G = (V, (E“)“∈�, ⁄) is a labeling of the vertices by states that108

conforms to �. Given a labeling fl∶V → Q, for a vertex v ∈ V with type(v) = (�in, �out) we109

define the tile of v wrt. to fl to be tilefl(v) = (fin, fl(v), ⁄(v), fout) where fin∶�in → Q is given110

by “ � fl(u) if (u, v) ∈ E“ and fout∶�out → Q is given by “ � fl(u) if (v, u) ∈ E“ . A labeling111

fl∶V → Q is a run if for each v ∈ V , tilefl(v) ∈�type(v).112

The weight of a run fl, denoted wgt(fl), is the product of the weights of the tiles in fl.113

With commutative semirings, we do not need to specify an order for this product. The value114

CVIT 2016

1

1

1

0
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✓Formalism - WTS


✓WTS  to model algorithmic problems on graphs


• Evaluation problem and complexity 


• The case of Bounded tree-width graphs



Evaluation Problem
Input      :   a WTS,   a Graph


Output   : Weight assigned to the Graph



Evaluation Problem
Input      :   a WTS,   a Graph


Output   : Weight assigned to the Graph

Theorem

Evaluation problem can be solved in Polynomial 
space.



Evaluation Problem : (+, x) -semiring

Input      :   a WTS,   a Graph


Output   : Weight assigned to the Graph
Theorem

Evaluation problem is #P-complete.

A function is #P, if there is a polynomial time TM such that the value on x 
equals the number of accepting paths of TM on input x.

Weights given in Binary



• A poly time NTM will guess a colouring


• Compute and write in binary  the weight of this tiling in a 
different tape 


• Make as many accepting paths as the computed weight.

#P- upper bound:

A function is #P, if there is a polynomial time TM such that the value on x 
equals the number of accepting paths of TM on input x.



• Computing permanent is #P hard. 

#P- lower bound:

A function is #P, if there is a polynomial time TM such that the value on x 
equals the number of accepting paths of TM on input x.



Evaluation Problem : (max, +) -semiring

Input      :   a WTS,   a Graph


Output   : Weight assigned to the Graph
Theorem

Evaluation problem is PNP[log]-complete.

PNP[log] : makes logarithmically many oracle queries to an NP machine.

Weights given in Unary



PNP[log] : makes logarithmically many oracle queries to an NP machine.

 PNP[log] - completeness:

• Computing clique number is  PNP[log] hard.


• For the upper bound, do a binary search in the possible 
weights space, each time calling an NP machine to check 
if there is a colouring with at least that weight. 



Evaluation complexity: Bounded Tree-width 

Theorem

Evaluation Problem can be solved in linear time 
wrt. Graph and polynomial time wrt. WTS.

Input      :   a WTS,   a Graph


Output   : Weight assigned to the Graph



• Get a tree decomposition using Bodlander’s algorithm


• Extract a tree term


• Construct a weighted tree automaton from the given weighted 
automata that runs on tree terms


• Guess the colour for each node as it is added


• Maintain the tile for every “active” node


• Weight of a tile given when a node becomes “inactive”


• Weight of all other transitions is 1.


• Evaluate the tree automaton on the tree term



Graphs with Bounded Tree-width
• Bounded tree-width captures many weighted systems studied in the 

literature.


• Weighted Mazurkiewics traces [1]


• Weighted pushdown systems, nested words [2]


• Under-approximations of multi pushdown systems


• Under-approximations of message passing systems


• Uniform evaluation procedure

1. Bollig and Meinecke, Weighted distributed systems and their logics. LFCS. 2007
2. Mathissen, Weighted logics for nested words and algebraic formal power series. LMCS. 2010



Conclusions

✓Formalism - WTS


✓WTS  to model algorithmic problems on graphs


✓Evaluation problem and complexity 


✓The case of Bounded tree-width graphs


