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Finite representations
—EEE

Sets > — 40,1} NFA, Logic, ...

Functions X" — S Weighted Automata,

Weighted Logics [1]

Sets Graphs — {0,1}  Graph acceptors, logic [2]

Functions Graphs — S Weighted Tiling Automata,
Weighted Logics [3]

1. Droste and Gastin, Weighted automata and weighted logics. TCS. 2007
2. Thomas, On logics, tilings and automata. ICALP. 1991
3. Droste, Dlck, Weighted automata and logics on graphs. MFCS. 2015



Weighted Tiling Systems

node, edge labelled

%l labels come from a finite set

WTS : Graphs — S

Examples:

binary trees - Ichild, rchild
grids - down, right
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Weighted Tiling Systems

node, edge labelled

%l labels come from a finite set

WTS : Graphs — S

Examples:
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Weighted Tiling Systems

a finite description to represent weight-functions on graphs

by means of tiling/coloring
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Weighted Tiling Systems

a finite description to represent weight-functions on graphs
by means of tiling/coloring

finite set of colors/states

permitted tiles
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Weighted Tiling Systems

a finite description to represent weight-functions on graphs
by means of tiling/coloring

finite set of colors/states

permitted tiles + weights
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Weighted Tiling Systems

a finite description to represent weight-functions on graphs

by means of tiling/coloring

finite set of colors/states

Qpermitted tiles + weights
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Weighted Tiling Systems

Weight of a coloring / run

Product of weights of the tiles
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Weighted Tiling Systems

Weight of a coloring / run

Product of weights of the tiles
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Weighted Tiling Systems

Weight of a coloring / run

Product of weights of the tiles

Weight assigned to a graph

Sum of the weights of all colourings
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Example: Computing the permanent

n X n matrix A = (a; ;)

perm(A) = Z Hai,a(i)
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Example: Computing the permanent

n X n matrix A = (a; ;)

perm(A) = Z Hai,g(i) -

ccS, 1=1
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Example: Computing the permanent
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Example: Computing the permanent

n X n matrix A = (a; ;)

perm(A) = Z Hai,a(z’) -

ccsS, 1=1




Example: Computing the clique number
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Example: Computing the clique number
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Example: Computing the clique number
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Evaluation Problem

Input : aWTS, a Graph

Output : Weight assigned to the Graph



Evaluation Problem

Input : aWTS, a Graph

Output : Weight assigned to the Graph

Evaluation problem can be solved in Polynomial
space.




Evaluation Problem : (+, X) -semiring

Input : aWTS, a Graph

Output : Weight assigned to the Graph

Evaluation problem is #P-complete.

A function is #P, if there is a polynomial time TM such that the value on x
equals the number of accepting paths of TM on input x.

Weights given in Binary




#P- upper bound:

A poly time NTM will guess a colouring

e Compute and write in binary the weight of this tiling in a
different tape

* Make as many accepting paths as the computed weight.

A function is #P, if there is a polynomial time TM such that the value on x
equals the number of accepting paths of TM on input x.



#P- lower bound:

e Computing permanent is #P hard.

A function is #P, if there is a polynomial time TM such that the value on x
equals the number of accepting paths of TM on input x.



Evaluation Problem : (max, +) -semiring

Input : aWTS, a Graph

Output : Weight assigned to the Graph

Evaluation problem is PNPllogl-complete.

PNPllog]l : makes logarithmically many oracle queries to an NP machine.

Weights given in Unary




PNPlogl - completeness:

e Computing cliqgue number is PNPllogl hard.

* For the upper bound, do a binary search in the possible
weights space, each time calling an NP machine to check
If there is a colouring with at least that weight.

PNPllog]l : makes logarithmically many oracle queries to an NP machine.



Evaluation complexity: Bounded Tree-width

Input : aWTS, a Graph

Output : Weight assigned to the Graph

Evaluation Problem can be solved in linear time
wrt. Graph and polynomial time wrt. WTS.




* Get a tree decomposition using Bodlander’s algorithm
 Extract a tree term

e Construct a weighted tree automaton from the given weighted
automata that runs on tree terms

* Guess the colour for each node as it is added

* Maintain the tile for every “active” node

* Weight of a tile given when a node becomes “inactive”
e Weight of all other transitions is 1.

e Evaluate the tree automaton on the tree term



Graphs with Bounded Tree-width

e Bounded tree-width captures many weighted systems studied in the
literature.

e Weighted Mazurkiewics traces [1]

e Weighted pushdown systems, nested words [2]

e Under-approximations of multi pushdown systems
e Under-approximations of message passing systems

e Uniform evaluation procedure

1. Bollig and Meinecke, Weighted distributed systems and their logics. LFCS. 2007
2. Mathissen, Weighted logics for nested words and algebraic formal power series. LMCS. 2010
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