Weighted Tiling Systems for Graphs Evaluation Complexity

C. Aiswarya

Chennai Mathematical Institute IRL ReLaX, CNRS Paul Gastin

LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France

Outline

- Formalism WTS
- WTS to model algorithmic problems on graphs
- Evaluation problem and complexity
- The case of Bounded tree-width graphs

Finite representations

- 1. Droste and Gastin, Weighted automata and weighted logics. TCS. 2007
- 2. Thomas, On logics, tilings and automata. ICALP. 1991
- 3. Droste, Dück, Weighted automata and logics on graphs. MFCS. 2015

 $0 \rightarrow 1 \rightarrow 1 \rightarrow 0 \rightarrow$

 $0 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow 0$

a finite description to represent weight-functions on graphs

by means of tiling/coloring

a finite description to represent weight-functions on graphs

by means of tiling/coloring

a finite description to represent weight-functions on graphs

by means of tiling/coloring

a finite description to represent weight-functions on graphs

by means of tiling/coloring

a finite description to represent weight-functions on graphs

by means of tiling/coloring

a finite description to represent weight-functions on graphs

by means of tiling/coloring

finite set of colors/states

permitted tiles

a finite description to represent weight-functions on graphs

by means of tiling/coloring

finite set of colors/states

permitted tiles + weights

a finite description to represent weight-functions on graphs

by means of tiling/coloring

Weight of a coloring / run

Weight of a coloring / run

Weight of a coloring / run

Weight of a coloring / run

Outline

\checkmark Formalism - WTS

- WTS to model algorithmic problems on graphs
- Evaluation problem and complexity
- The case of Bounded tree-width graphs

$$\operatorname{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

$$\operatorname{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

$$\operatorname{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

$$\operatorname{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

$$\operatorname{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

$$\mathsf{max-plus-}\mathbb{N} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$$

$$\mathsf{max-plus-}\mathbb{N} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$$

Outline

\checkmark Formalism - WTS

✓WTS to model algorithmic problems on graphs

- Evaluation problem and complexity
- The case of Bounded tree-width graphs

Evaluation Problem

- Input : a WTS, a Graph
- Output : Weight assigned to the Graph

Evaluation Problem

- Input : a WTS, a Graph
- Output : Weight assigned to the Graph

Theorem

Evaluation problem can be solved in Polynomial space.

Evaluation Problem : (+, x) -semiring

- Input : a WTS, a Graph
- Output : Weight assigned to the Graph

Theorem

Evaluation problem is #P-complete.

A function is #P, if there is a polynomial time TM such that the value on x equals the number of accepting paths of TM on input x.

Weights given in Binary

#P- upper bound:

- A poly time NTM will guess a colouring
- Compute and write in binary the weight of this tiling in a different tape
- Make as many accepting paths as the computed weight.

A function is #P, if there is a polynomial time TM such that the value on x equals the number of accepting paths of TM on input x.

#P- lower bound:

• Computing permanent is #P hard.

A function is #P, if there is a polynomial time TM such that the value on x equals the number of accepting paths of TM on input x.

Evaluation Problem : (max, +) -semiring

- Input : a WTS, a Graph
- Output : Weight assigned to the Graph

Theorem

Evaluation problem is PNP[log]-complete.

P^{NP[log]}: makes logarithmically many oracle queries to an NP machine.

Weights given in Unary

P^{NP[log]} - completeness:

- Computing clique number is PNP[log] hard.
- For the upper bound, do a binary search in the possible weights space, each time calling an NP machine to check if there is a colouring with at least that weight.

P^{NP[log]} : makes logarithmically many oracle queries to an NP machine.

Evaluation complexity: Bounded Tree-width

- Input : a WTS, a Graph
- Output : Weight assigned to the Graph

Theorem

Evaluation Problem can be solved in linear time wrt. Graph and polynomial time wrt. WTS.

- Get a tree decomposition using Bodlander's algorithm
- Extract a tree term
- Construct a weighted tree automaton from the given weighted automata that runs on tree terms
 - Guess the colour for each node as it is added
 - Maintain the tile for every "active" node
 - Weight of a tile given when a node becomes "inactive"
 - Weight of all other transitions is 1.
- Evaluate the tree automaton on the tree term

Graphs with Bounded Tree-width

- Bounded tree-width captures many weighted systems studied in the literature.
 - Weighted Mazurkiewics traces [1]
 - Weighted pushdown systems, nested words [2]
 - Under-approximations of multi pushdown systems
 - Under-approximations of message passing systems
- Uniform evaluation procedure

- 1. Bollig and Meinecke, Weighted distributed systems and their logics. LFCS. 2007
- 2. Mathissen, Weighted logics for nested words and algebraic formal power series. LMCS. 2010

Conclusions

 \checkmark Formalism - WTS

 \checkmark WTS to model algorithmic problems on graphs

 \checkmark Evaluation problem and complexity

✓ The case of Bounded tree-width graphs