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Application: Competing species
dxf (t) = x{ (t) [(f,g — x{(t) — xf(t)) dt + dEf(t)} i=1,2

where Ef(t) independent Brownian motions s.t. Var[E/(t)] = vt.
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Application: Competing species
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dxf (t) = x{(£) | (rf = x{() = x5 (t)) dt + dE[(t)]

where Ef(t) independent Brownian motions s.t. Var[E/(t)] = vt.

If ¢ is the only patch and r} > rf,
then
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Now, spatially couple patches with
X! = piXi...
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Application: Predator-prey interactions
prey dxy(t) =xa(t Zpl [(r — epixy — apbxo(t )) dt + dEf(t)}

predator dxa(t) =xo(t Z P> Kcaplxl(t) - d) dt + dEf(t)]
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