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How might species distribute themselves across spatially heterogeneous
environments?

A suggestion came from someone who wrote
I was actually studying earthworm brains for my doctoral
dissertation . . . but the formal research was not going well. . . I
was irritated by Lack’s dogmatic position. . . that territorial
behavior did not affect habitat selection. . . in desperation,. . . I
put it all into . . . mathematical models...[and] made several
wondrous discoveries. . . I soon dropped the earthworm research;
both the worms and I were having nervous breakdowns and
getting nowhere.
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A species exhibits an ideal free distribution (IFD) if the per-capita growth
rates in all occupied patches are equal and individuals moving to an
unoccupied patch would lower their per-capita growth rate.

Properties include
evolutionarily stability [Křivan et al., 2008]

At equilibrium, the per-capita growth rate are zero in occupied
patches ⇒ no sink populations (i.e. local populations that decline without
immigration)

Can lead to...
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input matching for resource
consumption [Parker, 1978]
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Ghost of competition past:
Competing species evolve to
only select habitats where
they are competitively
superior. Connell [1980]
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Enemy-free space: prey use low quality
habitat to avoid natural enemies [Jeffries
and Lawton, 1984, Schreiber et al., 2000]
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Hylocichla	
  
mustelina	
  

However, populations often aren’t ideal...

sink populations are common [Pulliam, 1988, Holt,
1997, Schreiber, 2012, Furrer and Pasinelli, 2016]

overmatching and undermatching of resource
availability is the norm

many competing species have overlapping geo-
graphical ranges

Main questions: How should habitat selection of interacting species
coevolve when environmental conditions vary in space and time?

When
is there selection for sink populations? What effect does spatio-temporal
variation have on the ghost of competition past or enemy-free space?
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Implicit space!
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Implicit space!
Mass action!!
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Implicit space!
Mass action!!
Diffusion approximations!!!



Dynamics within patch `

x `i (t) density of species i in patch ` where 1 ≤ i ≤ n and 1 ≤ ` ≤ k

b`i intrinsic per-capita growth rate of spp. i in patch `

a`ij per-capita interaction rate of spp i with spp j in patch `.

Assume

E[x `i (t + ∆t)− x `i (t)|x `(t)] ≈ x `i (t)

 n∑
j=1

a`ijx `j (t) + b`i

∆t,

and
Var[x`i (t + ∆t)− x`i (t) | x`(t)] ≈ σ``i

(
x`i (t)

)2
∆t

In limit ∆t ↓ 0, get the Itô stochastic differential equations (SDEs)

dx `i (t) = x `i (t)

 n∑
j=1

a`ijx `j (t) + b`i

 dt + dE `
i (t)


where E `

i (t) is a Brownian motion with mean 0 and variance σ``i t
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Spatial coupling of patch dynamics

p`i fraction of species i in patch ` where 1 ≤ i ≤ n and 1 ≤ ` ≤ k

xi (t) =
∑k
`=1 x `i (t) total density of species i

Assume

Cov[x`i (t + ∆t)− x`i (t), xm
i (t + ∆t)− xm

i (t) | x(t)] ≈ x`i (t)xm
i (t)σ`mi ∆t

In limit ∆t ↓ 0, get the Itô stochastic differential equations (SDEs)
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`

p`i

 n∑
j=1

a`ijp`j xj(t) + b`i

 dt +

√
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`,m
p`i pm

i σ
`m
i dBi (t)


where Bi (t) are Brownian motions satisfying Var[Bi(t)] = t
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To persist or not to persist, that is the question
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Consider
dxi (t) = xi (t)

[
fi (x(t))dt +

√
Vi (x(t))dEi (t)

]
(F)

where Ei (t) a multivariate Brownian motion with Var[Ei(t)] = t.

(F) is stochastically persistent if for all ε > 0 there is δ > 0 s.t.

lim sup
t→∞

#{1 ≤ τ ≤ t : mini xi (t) ≤ δ}
t ≤ ε a.s. whenever min

i
xi (0) > 0

When (F) compactly supported, Schreiber et al. [2011] introduced the
sufficient condition:

max
i

E
[

fi (x̂)− Vi (x̂)
2

]

> 0

(♣)

for all

stationary x̂ = (x̂1, . . . , x̂n)

s.t. P [mini x̂i = 0] = 1.

Hening and Nguyen [2018], Benäım [2018] extended (♣) to non-compact domains
(e.g. LV system) with additional condition to ensure tightness
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Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i

mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t) + b`i

 dt + dE `
i (t)



dyi ′(t) =
k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)



Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n).

If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t) + b`i

 dt + dE `
i (t)



dyi ′(t) =
k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)



Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n).

If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t) + b`i

 dt + dE `
i (t)



dyi ′(t) =
k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)


Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n).

If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t)+ai i ′q`i ′yi ′(t) + b`i

 dt + dE `
i (t)



dyi ′(t) =
k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)


Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n).

If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t)+ai i ′q`i ′yi ′(t) + b`i

 dt + dE `
i (t)


dyi ′(t) =

k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)



Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n).

If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t)+ai i ′q`i ′yi ′(t) + b`i

 dt + dE `
i (t)


dyi ′(t) =

k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)


Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n).

If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t)+ai i ′q`i ′yi ′(t) + b`i

 dt + dE `
i (t)


dyi ′(t) =

k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)


Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n). If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



Resident-Mutant dynamics
x(t) = (x1(t), . . . , xn(t)) w/ p`i mutant yi ′(t) in spp i ′ w/ q`i ′

dxi (t) =
k∑
`=1

p`i xi (t)

 n∑
j=1

a`ijp`j xj(t)+ai i ′q`i ′yi ′(t) + b`i

 dt + dE `
i (t)


dyi ′(t) =

k∑
`=1

q`i ′yi ′(t)

 n∑
j=1

a`i ′jp`j xj(t)+a`i ′i ′q`i ′yi ′(t)) + b`i ′

 dt + dE `
i ′(t)


Theorem. Assume residents satisfy (♣) (i.e. persistence) with a positive
stationary distribution x̂ = (x̂1, . . . , x̂n). If

I(p, qi ′) :=
∑
`

q`i ′

 n∑
j=1

a`i ′jp`j E[x̂j ] + b`i ′

− 1
2

k∑
`,m=1

q`i ′qm
i ′ σ`mi ′ < 0

then

lim
δ→0

P
[

lim sup
t→∞

1
t log yi ′(t) < 0|yi ′(0) = δ

]
= 1

13 / 20



unbeatable strategy [Hamilton, 1967] “This
word was applied in just the same sense in
which it could be applied to the ‘minimax’
strategy of a zero-sum two-person game.

Such a strategy should not, without
qualification be called optimum because it
is not optimum against - although
unbeaten by - any strategy differing from
itself.”

Evolutionarily stable strategy [Smith and
Price, 1973] - a strategy that cannot be
invaded by any other strategy that is
initially rare
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Invasion rates I(p, qi ) :=
∑
`

q`i

=:f `
i (p)︷ ︸︸ ︷ n∑

j=1
a`ijp`j E[x̂j ] + b`i

−1
2

=:Vi (q)︷ ︸︸ ︷∑
j,`

q`i qm
i σ

`m
i

The resident strategy p is a coevolutionary stable strategy (coESS) if
I(p, qi ) < 0 for all 1 ≤ i ≤ n and qi 6= pi

Proposition. A necessary condition for p to be a coESS is: for all 1 ≤ i ≤ n

f `i (p)−
∑
m

pm
i σ

m`
i =− 1

2Vi (p) in patches ` occupied by species i

f `i (p)−
∑
m

pm
i σ

m`
i ≤− 1

2Vi (p) in patches ` not occupied by species i

Note: f `i (p) are solutions to a system of linear equations

perfectly correlated fluctuations ⇒ ideal free distribution

imperfectly correlated fluctuations ⇒ local growth rate f `i (p)− σ``
i
2 < 0 in

all occupied patches!!!!
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Application: Competing species
dx `i (t) = x `i (t)

[(
r `i − x `1(t)− x `2(t)

)
dt + dE `

i (t)
]

i = 1, 2

where E `
i (t) independent Brownian motions s.t. Var[E `

i (t)] = vt.

If ` is the only patch and r `2 > r `1 ,
then

lim sup
t→∞

1
t log X `

1(t) < 0 a.s.

whenever X1(0)X2(0) > 0

Now, spatially couple patches with
X `

i = p`i Xi ...
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Application: Predator-prey interactions

prey dx1(t) =x1(t)
∑
`

p`1
[(

r ` − εp`1x1 − ap`2x2(t)
)

dt + dE `
1(t)

]
predator dx2(t) =x2(t)

∑
`

p`2
[(

cap`1x1(t)− d
)

dt + dE `
2(t)

]

a source and sink habitat r 1 > 0 > r 2, weak competition ε ≈ 0
prey experiences temporal variation v in source habitat

There exist 0 < v∗ < v∗∗ < v∗∗∗ s.t.
v < v∗ ⇒ no sink populations i.e. p2

1 = p2
2 = 0

v∗ < v < v∗∗ ⇒ only prey uses sink habitat i.e. p2
1 > 0, p2

2 = 0
v∗∗ < v < v∗∗∗ ⇒ both species use both habitats
v∗∗∗ < v ⇒ predator only uses sink habitat i.e. p2

1 > 0, p2
2 = 0
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Finale
Perfectly correlated fluctuations across space select for an ideal free
distribution whereby local per-capita growth rates = 0 in occupied
patches, < 0 elsewhere

Partially correlated fluctuations select for negative local per-capita growth
rates in all occupied patches that are, generically, unequal.

For competing species, the ghost of competition past only excorcised if
fitness differences are sufficiently small relative to temporal fluctuations

For enemy-victim interactions, environmental fluctutations can select for
enemy-free sink and enemy-free source populations

Thanks to U.S. National Science
Foundation for funding and CIRM for hosting.

You for listening!

Questions?
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