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Objective

Address two different approaches in modeling cancer 
cell proliferation and genome evolution:

Proliferation models based on binary fission branching 
or linear birth and death processes 

Models based on population genetics paradigms: 
Wright-Fisher or Moran

Genetic forces considered (in growing populations):

Drift

Mutation

Selective sweeps



Genetic drift

Alleles: A1: A2:

Replication = sampling with 
replacement

A1 – becomes fixed

A2 – becomes lost

G1

G2

Gn

..

.



Mutation

Mutation times follow a Poisson process with intensity  measured per locus 
(per site) per generation

We use:

 Infinite Sites Model (ISM), where it is assumed that each mutation takes place 
at a DNA site that never mutated before

 Mutation sites can be represented as iid uniform(0, 1) rv’s

0 1𝑋 ~ uniform(0,1)

Genome = [0, 1]

mutation



Coalescence

Wright-Fisher seen in 
reverse time:

Eventually, all ancestry lines 
converge on common 
ancestor



Constant population size scenario

Expected (reverse) time to first coalescence 

with sample size 𝑘 is ~
𝑘
2

−1

Hence, coalescent tree with deep “valleys” 



Growing population scenario (≈ tumor 
growth case)

Coalescent tree more “star-like”

≈



Coalescence method

• Genetic drift viewed in reverse time

• Estimating the past of an n - sample of sequences 
taken at present. 

• Possible events that happen in the past are

– coalescences (lineage merges) leading to common 
ancestors of sequences, and 

– mutations along branches of ancestral tree each 
at a new site (“Poisson rain”)

– other



GT-coalescent (Kingman, Tajima)

When population size is constant, the scaled pure-death time-
continuous MC, counting the number of ancestors of the 𝑛-sample, at 
time 𝑡, 

has transition rates

Inter-coalescence time intervals are independent and exponentially 
distributed. 

Under exponential growth, it is enough to transform time 
deterministically



What if we use a linear birth-death process
instead of Kingman coalescent?

It can be done …



It just has to be drawn correctly …



Lambert (lbdp) coalescent

• We define random variables H0, H1, … as the consecutive 

coalescence times, contingent on representation of the tree in a 

specific order (coalescent point process). 

• Following Lambert (2010), Theorem 5.4, {𝑯𝒊}, conditional on the 

tree having n tips, form a sequence of n iid random variables with 

tail 𝑾(𝒕)−𝟏 conditioned on being less than tree depth x.

• Conversely, we can generate the iid rv’s and recreate the tree using 

the drawing rules as in the small table earlier on

• For ordinary lbdp, 𝑾 𝒕 = 𝜶 + 𝟏 − 𝜶 𝐞𝐱𝐩(𝒓𝒕), 𝜶 = 𝟏 − 𝒑𝒃/𝒓



Site Frequency Spectrum (SFS)

Most common statistic for equivalent mutation distribution

(neutral (?) “passenger” mutations in tumors)

SFS is bar chart of 𝜼𝟏 = # mutations represented in 𝒊 out of 𝒏 cells

𝜂 = {𝜂1, 𝜂2,…, 𝜂20} = 7, 0, 3, 0, 0, 2, 0, 0, 0, 1, … , 0

Σ𝑖=1
𝑛−1𝜂𝑖 = 𝑠 = # segregating sites

𝜂𝑖



Deriving E[SFS] requires modeling of both 
topology and metrics of coalescence trees
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Expected SFS based on GT-coalescent

𝑞𝑏 = probability that a mutation is present in 

𝑏 = 1, 2, … , 𝑛 sequences out of the sample of n sequences

Griffiths and Tavare, 1998
Depend on metrics of the tree:
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Durrett approximation under large 𝑁

Expected SFS under scaled mutation and growth rates

modo Durrett (heuristic, but simple and close to exact)

𝜗 = 𝜃𝑁, 𝛽 = 𝑟
𝑁

2



How to reconstruct past dynamics ?  

• Chief problem: how to measure time ?

• But are mutations not accumulating in/with time ?

• The difficulty is clear from the asymptotic Griffiths-Tavaré/Durrett formula

𝑞𝑚 ቐ
∼

𝑛𝜃

𝑟
ln 𝑁𝑟 , 𝑚 = 1 (singletons)

→
𝑛𝜃

𝑟

1

𝑚(𝑚−1)
, 𝑚 = 2, … , 𝑛 − 1

as 𝑁 → ∞

where 
𝜽

𝒓
𝐥𝒏 𝑵𝒓 =  𝜽𝒕, since  𝑁 = 𝑁 𝑡 = 𝑟exp(𝑟𝑡)

• So, time is associated with singleton count, but in genome data singletons 
are usually indistinguishable from sequencing errors and discarded



SFS for lbdp (Lambert et al.) 

This latter formula can be expressed in the terms of algebraic 
combination of powers and logarithms (Kimmel, in preparation)



Comparison of expected SFS 

Griffiths-Tavaré (continuous lines)
Durrett’s approximation (dashed lines)
Lambert (dotted lines)

slow growing (black)
moderate growing (blue)
fast-growing tumors (red)



lbdp SFS is sensitive (faintly) to b/d pattern

Expected SFS based on the lbdp, with N = 107, n = 30 and r = 0.04029, 

but with 1 − α = 10−8, 10−6, 0.0001, 0.01, 0.1, 0.5 (dashed, dotted, 

continuous, and again dashed, dotted and continuous lines), 

compared to GT SFS (diamonds) and Durrett approximation (circles).



Sequencing cancer DNA

http://www.nature.com/polopoly_fs/7.7203.1351622068!/image/single-cell-sequencing.jpg_gen/derivatives/fullsize/single-cell-sequencing.jpg

https://physicsforme.files.wordpress.com/2012/04/dna.jpg



Mutations

O. Morozova, M. A. Marra, Genomics, 2008

…TATATGCTAGCTAGCTACGGCGCGCTG…

…TATATGCTAGCTAGATACGGCGCGCTG…



Clone 0

Clone 1

Model of neutral evolution with a selective sweep
in a tumor



Selective sweep caused by appearance of a faster 
growing clone

• At time 𝑡0 = 0, corresponding to the unknown age of the individual, the 
initial malignant cell population (Clone 0) arises

• Clone 0 grows at rate 𝛾0, with cells acquiring mutations at the rate 𝜈0

per time unit per genome

• At time 𝑡1 > 0, a secondary clone (Clone 1) arises. 
• This is the “selective event”
• Clone 1 arises at the background of a haplotype already harboring  𝑲

mutational hits 
• It grows and mutates at generally different rates, 𝛾1 and 𝜈1, 

respectively



Sampling

• At 𝑡2 > 𝑡1 > 0, tumor is diagnosed and a sample of DNA is available for 
sequencing

• The resulting sequencing reads represent a mixture from all extant 
clones

• For each site of the genome, a sample of size 𝑛 is drawn from 𝑁0 + 𝑁1

cells where

𝑁0 = exp(𝛾0𝑡2), 𝑁1 = exp(𝛾1 𝑡2 − 𝑡1 )

so that probability a read is drawn from Clone 𝑖 is equal to

𝑝𝑖 =
𝑁𝑖

𝑁0 + 𝑁1
, 𝑖 = 0, 1



𝑄𝑚 = 𝑛
𝑝0𝜐0

𝛾0
+

𝑝1𝜐1

𝛾1

1

𝑚(𝑚 − 1)
+ 𝐾

𝑛
𝑚

𝑝0
𝑛−𝑚𝑝1

𝑚, 𝑚 = 2, … , 𝑛 − 1

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SFS, Clone 1, n1 = 20

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

SFS, Clone 0, n0 = 10

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Expected SFS, n = n0 + n1 = 30 reads drawn from N0 + N1

𝑞𝑚
0 =

𝑝0𝑛0𝜐0

𝛾0

1

𝑚(𝑚 − 1)
, 𝑚 = 2, … , 𝑛0 − 1 𝑞𝑚

1 =
𝑝1𝑛1𝜐1

𝛾1

1(𝑚 < 𝑛1)

𝑚(𝑚 − 1)
+ 𝐾𝛿𝑚,𝑛1

, 𝑚 = 2, … , 𝑛1





Reality more intricate than models?



Generalization of the single sweep model to 
multiple sweeps

SFS consists of a neutral part (GT or Lambert type) 

and number of binomial humps corresponding to emergent 
clones



SFS transformation under sampling

• DNA fragments (reads) originate from sampling from a population of 
cells.

• For each particular mutation site, each read covering this site 
originates from a different cell. Number of reads is usually of order 
102, while there are around at least 3-5 orders of magnitude more 
tumor cells in a cubic millimeter of tumor tissue (Del Monte 2009).

• For a given mutation site, given coverage R, the count Z of variant 
reads has a binomial distribution Binomial (R, ϕ), where ϕ is the 
relative frequency of this mutation among the tumor cells.

• For a given mutation site, the numbers of reads covering it is 
considered a random variable (generically named R) drawn from a 
distribution which is estimated from coverage data.



SFS transformation under sampling

We obtain the “expected sampled SFS”, # mutations with VAF between 
𝑥1 and 𝑥2

The data can be additionally “corrected” by rejecting (to eliminate 
sequencing errors)

Sites with coverage 𝑹 < 𝑴

Mutant sites with variant count 𝒁 < 𝑳

Transformation can account for this, and also help estimate the total 
(unobservable) mutation count from the tally



Fitting the SFS of case 
TCGA-A6-6141 (colon 
cancer). 

Threshold combinations 
of variant and total read 
counts: 

[A]: L = 5, M = 0, 

[B]: L = 10, M = 0, 

[C]: L = 15, M = 0, 

[D]: L = 20, M = 0, 

[E]: L = 5, M = 20, 

[F]: L = 5, M = 50, 

[G]: L = 5, M = 80, 

[H]: L = 5, M = 100.



Fitting the SFS of 
case TCGA-86-
A4D0 (lung 
cancer). Threshold 
combinations of 
variant and total 
read counts: 
[A]: L = 5, M = 0. 

[B]: L = 10, M = 0. 

[C]: L = 15, M = 0. 

[D]: L = 20, M = 0. 

[E]: L = 5, M = 20. 

[F]: L = 5, M = 50. 

[G]: L = 5, M = 80. 

[H]: L = 5, M = 100.



Fitting the SFS of 
case TCGA-62-
A46O (lung cancer

Threshold 
combinations of 
variant and total 
read counts: 

[A]: L = 5, M = 0, 

[B]: L = 10, M = 0, 

[C]: L = 15, M = 0, 

[D]: L = 20, M = 0, 

[E]: L = 5, M = 20, 

[F]: L = 5, M = 50, 

[G]: L = 5, M = 80, 

[H]: L = 5, M = 100



Some conclusions
• Fitting allows to determine several synthetic coefficients

•𝐴 = 𝑛(
𝑝0𝜃0

𝑟0
+

𝑝1𝜃1

𝑟1
+ ⋯ ) combined reduced mutation rate 

of clones
• 𝑝0, 𝑝1, … frequency of clones 0, 1 ,… in the bulk sample

•𝐾1, 𝐾2, … underlying haplotype size of clones 1, 2 ,…

• Selective events in history of tumor may have complicated nature (ploidy 
changes)

• Confidence intervals are mainly simulation-based; some theory exists but 
it is quite complicated

• Using Wright-Fisher or Moran leads to similar conclusions as using LBDP



Some formulae
Number of mutations in the funder of Clone 1 ≈ 𝐾 = 𝜃0𝑡1

Mass of neutral muts
𝐴

𝑛
= 𝐴′ =

𝑝0𝜃0

𝑟0
+

𝑝1𝜃1

𝑟1
= 

𝜃

𝑟
(𝑝0+𝑝1

𝜑

𝛼
)

where 𝑟0= 𝑟, 𝑟1= 𝛼𝑟, 𝜃0= 𝜃, 𝜃1= 𝜑𝜃, 𝑡1 = 𝑡, 𝑡2= 𝛽𝑡, ….

𝑝0=
𝑒𝑟0𝑡2

𝑒𝑟0𝑡2+𝑒𝑟1(𝑡2−𝑡1) ֜ 𝛽 𝛼 − 2 𝑟𝑡 = ln
𝑝1

1−𝑝1

𝐾

𝐴′
=

𝑟𝑡

𝑝0+𝑝1
𝜑

𝛼

hence    
𝐾

𝐴′
> 𝑟𝑡 ֜

𝜑

𝛼
< 1

Growth accelerates faster than mutation rate

(Assume cumulative growth rate  𝑟𝑡 = ln 1011 = 25.33)



Estimates of SFS parameters based on colon cancer 
genomes from TCGA

A' p1 K1 p2 K2 A+K1+K2 (K1+K2)/A' ln(p/(1-p))
Colon-mutator

TCGA-A6-6141 1300 0.12 42000 0.28 180000 1522000 170.77 -0.41
TCGA-AA-3555 2000 0.35 230000 2230000 115.00 -0.62

TCGA-AA-3977 20000 0.35 450000 0.23 200000 20650000 32.50 0.32

TCGA-AA-A00N 20000 0.23 450000 20450000 22.50 -1.21
TCGA-AG-A002 5000 0.41 700000 5700000 140.00 -0.36
TCGA-AZ-4315 3300 0.13 30000 0.31 1000000 4330000 312.12 -0.24
TCGA-BS-A0TC 1000 0.39 17000 1017000 17.00 -0.45

TCGA-CA-6717 40000 0.21 1000000 0.09 1500000 42500000 62.50 -0.85
TCGA-CA-6718 10000 0.28 600000 0.50 40000 10640000 64.00 1.27
TCGA-EI-6917 2500 0.27 800000 3300000 320.00 -0.99

TCGA-F5-6814 80000 0.38 800000 0.25 400000 81200000 15.00 0.53

Colon non-mutator

TCGA-CA-6718 100 0.27 6500 0.44 600 107100 71.00 0.90
TCGA-AZ-4315 50 0.13 900 0.33 22000 72900 458.00 -0.18

Mutation rate: We note that 𝑲 = 𝜽𝟎𝒕𝟏, number of mutation in clone 1’s backbone.
Suppose the 𝒕𝟏 = 𝟏𝟎 𝒚𝒓.
Non-mutator  cases show 1-2 mutations per genome per day, almost normal range.
Mutator cases show 10 – 1000 time more.



Estimates of SFS parameters based on colon cancer 
genomes from TCGA

A' p1 K1 p2 K2 A+K1+K2 (K1+K2)/A' ln(p/(1-p))
Colon-mutator

TCGA-A6-6141 1300 0.12 42000 0.28 180000 1522000 170.77 -0.41
TCGA-AA-3555 2000 0.35 230000 2230000 115.00 -0.62

TCGA-AA-3977 20000 0.35 450000 0.23 200000 20650000 32.50 0.32

TCGA-AA-A00N 20000 0.23 450000 20450000 22.50 -1.21
TCGA-AG-A002 5000 0.41 700000 5700000 140.00 -0.36
TCGA-AZ-4315 3300 0.13 30000 0.31 1000000 4330000 312.12 -0.24
TCGA-BS-A0TC 1000 0.39 17000 1017000 17.00 -0.45

TCGA-CA-6717 40000 0.21 1000000 0.09 1500000 42500000 62.50 -0.85
TCGA-CA-6718 10000 0.28 600000 0.50 40000 10640000 64.00 1.27
TCGA-EI-6917 2500 0.27 800000 3300000 320.00 -0.99

TCGA-F5-6814 80000 0.38 800000 0.25 400000 81200000 15.00 0.53

Colon non-mutator

TCGA-CA-6718 100 0.27 6500 0.44 600 107100 71.00 0.90
TCGA-AZ-4315 50 0.13 900 0.33 22000 72900 458.00 -0.18

We note that 
𝑲

𝑨′
=

𝒓𝒕

𝒑𝟎+𝒑𝟏
𝝋

𝜶

and assume 𝒓𝒕 = 𝒍𝒏 𝟏𝟎𝟏𝟏 = 𝟐𝟓. 𝟑𝟑. We note that 

observed values of  
𝑲

𝑨′
are generally higher than those of 𝒓𝒕, indicating growth rate 

acceleration over mutation rate acceleration in clone 1.



Discussion

• Based on TCGA colon cancer subsample, parameters obtained from 
the SFS are crudely consistent with know epidemiology of colon 
cancer and and human mutation rates.

• Ploidy and CNV variation may alter conclusions, but consider 
coverage distributions.
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Discussion

• Williams et al. (Nature Genet.) propose that most humps are 
simply diploid genome signature of the ancestral cell of the 
tumor (“truncal mutations”). 
• This is unlikely in mutator cases, since it would indicate the 

hypermutation rate in premalignant cells. 

• In other cases it may be te case if humps are forced to 0.5 VAF.

• This may be right, if contamination with normal cells is serious.

• On the other hand, hematologic examples indicate that 
drivers of malignancy appear late in the natural course of 
disease (Wojdyla et al. PLoS CB; Kimmel and Corey, Front. 
Immunol.)



Tug of war between passenger and driver mutations

Kimmel, Bobrowski, Dinh and Kurpas

Cells sequentially acquire 
- Less frequent Driver mutations (advantageous)
- More frequent Passenger mutations (disadvantageous)

Individual cell fitness increases with the number of drivers 
but decreases with the number of passengers

Cells compete by the rules of Moran process (or critical bp)

As a result, tumor fitness fluctuates and aggressive clones 
are transiently established



100 cells


