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Modeling evolutionary dynamics of population

Main objectives
» To predict the evolution of organisms (viruses, mammals, trees,
bacteria ...), using empirical measures on the model parameters;

» To understand interplay between driven forces of evolution —
selection and mutation — in asexuals as well as sexual populations.

— Challenges Adaptation to changing environment

» Better management strategies of resistance
emergence. Antibiotics resistance is one
of the biggest threats to global health,
food security and development strategy
(World Health Organization, 2016)

What is

» Aging might be a source of senescence
when environmental conditions vary.
(Cotto and Ronce, 2014)



Adaptation and trait distribution

Adaptation: evolutionary process whereby an organism becomes better able
to live in its habitat.

Hyp: Adaptation is driven by mutation and selection.

Adaptive trait z quantify the adaptedness of an organism — its survival and
reproduction in a given environment — mortality rate p(z).

Population density f(t, z) describes the frequency of adaptive trait z inside
the population with mean trait z*.

Mortality rate
Adaptation occurs when mean
trait equal optimal trait:
Trait distribution  z* =z = argmin,cpu(z)



Mal-adaptation and changing €nvironment
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Changing environment modifies optimal trait — Z(t) := argmin,cpp(z, t).

Mortality rate
Mal-adaptation occurs when mean trait

deviates from optimal trait:

.- .
z' =7 = argmin eg/i(2) Trait distribution

z z z



Asexual and sexual population and changing environment

Wz, t) =d+a(z—vt)

d: intrinsic mortality rate;
v: speed of change (v = z(t)/t).

Objectives:
Describe the evolution dynamics under changing environment.






An asexual Individual Based Model

The model describes interplay of mutation, selection and competition.

» At time t = 0: initial distribution

» Each individual has 3 independent exponential clocks;
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An asexual Individual Based Model

Numerical simulation with n = 103 individuals

Constant environment Gradually changing environment
Trait distribution Trait distribution:
3 t=0
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trait = trait 2

Observation: The trait distribution converge to an equilibrium.

Main objective: Describe the equilibrium of trait distribution.



An asexual Individual Based Model

Numerical simulation with n = 103 individuals

Constant environment v = 0 Gradually changing environment v > 0
Trait distribution Trait distribution:

2 (t)
mean trait z*(¢)

mean trait

0 20 40 60 80 100

time (¢)

time ()
Observation: The mean trait do not always coincide with the optimal
trait.

Main objective: Quantify the lag between the mean trait z* and the
optimal trait z at the equilibrium.



Phenotype distribution F(z)

From stochastic to deterministic model

(Fournier and Méléard, 2004) The sequence of processes v] converges in
law to a deterministic continuous function f; solution of the following
integro-differential equation

(rd) = (fo, d) / ds/ dzm/ d2'K (2 — 2Vo(z + 7)
/ ds/ - (d2)6(2) { (z—vt) + (5 - d) /_0; fs(dz’)]
1.5 -~

— IBM model with n = 103
— Deterministic model

Goal: Describe the equilibrium of
the deterministic model.

Mutation kernel K

-2 -1 0 1 2
Phenotype z



A quantitative genetics model

Population dynamics model: population density f(t, z) described at time
(t) with trait (z) by

8tf(t,z)+(/1,(z— t)—f—(ﬂ—d)p(t))f(t,z) :ﬁ/RK(z—z’)f(t,z’)dz’

Changing environment: optimal trait is moving at speed v, z(t) := vt.

Mutation kernel: K(z — z’) probability that an individuals from trait z’
give birth to individuals of trait z.

Selection: Trait z only affects mortality 1,
w(z) :=d+ m(z) with m increasing with |z| and o = m"(0) > 0.

Density—dependence: Mortality increases with the size of the population

o(t) = /f(t,z)dz



Mutation kernels

Thin-tailed kernel Fat-tailed kernel
Rare mutations with large effect Frequent mutations with large effect
Definition Definition
Ja > 0 such that/ K(x)e™ < 0. Va>0, K(x) > e " for large |x|.
R
t

K(z) = Ce °®

K(z) =1-1,1(2) J(z) = (1+|))~ J(z) = CeVI#l

0

(Mirrahimi and Méléard 2014, Bouin et al.

(Diekman et al. 2005, Barles and Perthame 2018)

2008 )



Selection functions

w(z) :==d+ m(z) with m increasing with |z| and « = m"(0) > 0.
Super-quadratic functions
m(z) = az?/2 + 2°/64

Quadratic functions

m(z) = a22/2

Selection functions m

Bounded functions

; Trait z
az® /2

m(z)=1—e



A quantitative genetics model

Population dynamics model: population density f(t, z) described at time
(t) with trait (z) by

D:F(t,2)+ (ﬂ(z )+ (B — d)p(t)) f(t,z) = B/R K(z—2)f(t,2') dZ’

Q? Does a mutation/selection equilibrium exists for any speed v?
that is a positive solution F, of the non-local nonlinear problem in the
moving frame z — vt

—vO,F, (2)+u(2)F,(2)+(8 — d) / F,(z")dz'F,(z) = B/R K(z—Z)F,(Z')dZ

that is solution (\,, F,) of the spectral problem

—vO,F (2)+u(2)F (2)+ A\ Fu(2) = /RK(Z —Z")BF,(Z') dZ" with \, > 0.



A quantitative genetics model

Population dynamics model: population density f(t, z) described at time
(t) with trait (z) by

D:F(t,2)+ (ﬂ(z )+ (B — d)p(t)) f(t,z) = ﬂ/R K(z—2)f(t,2') dz’

Q? Does a mutation/selection equilibrium exists for any speed v?
that is solution (\,, F,) of the spectral problem

—vO,F (2)+u(z2)F (2)+ N Fu(2) = /R K(z —2')BF,(Z')dz’ with A\, > 0.

Q? What is the effect of the speed v? Focus on three main quantities:
(1) Lag load (A)X), = Ao — A, which measures how v modifies the fitness \,.

(2) Lag |z (t) — z(t)| which quantifies the distance between the mean
trait z;(t) and the optimal trait z(t).

(3) Standing variance Var(F,) which quantifies the variability of the
population around the mean z;(t)



Existence of mutation/selection equilibrium

Ouf(t,2)+ (lz = ve)+(8 = d)p(t) ) F(t,2) = B / K(z - 2)f(t,2') dz
R
Mutation/selection equilibrium in constant environment v — 0.

w(z)Fo(z) + XoFo(z) = B/R K(z — Z')Fo(Z') dZ’

Theorem — Existence of eigenvalue (Coville, 2010)

If the function (u —infg(p))~1 & L1() for an open set Q € R, then there
exists (Ao, Fo). Moreover Fy € C°(R) and Fy > 0.




Existence of mutation/selection equilibrium

8tf(t,z)+(u(z —vt)+(8 — d)p(t)) f(t,z) = ,6’/ K(z—Z)f(t,2")dZ
R
Mutation/selection equilibrium for any speed v > 07

CVOLF, + p(2)Fu(2) + MWFo(2) = B /R K(z — 2)F () dz'

Theorem — Existence of eigenvalue (Coville and Hamel, 2019)

If the function x € R, and p > 0 in R, then for any speed v > 0 there
exists (A, F,). Moreover F, € C}(R) and F, > 0.




The scaled model with thin—tailed kernels

MFo(2)—v O F,+u(z)Fy(z ﬂ/ < )Fv(z’) dz’ and )\, > 0.

o2: mutational variance that generates diversity across generations.

Two trait scales:

1/2
Selection scale Zy = () . measure the strength of selection;
(07

Diversity scale Zy, =0

__ Zay ( 2a)”2
= = g~ —
Zsel B

Scale ratio ¢




The scaled model with thin—tailed kernels

MF(2)—v O Fy+(d + m(z ﬁ/ ( )Fv(z/)dz/ and A\, >

o?: mutational variance that generates diversity across generations.

Two trait scales:

AN 172

I6] .

Selection scale Zy = () . measure the strength of selection;
(6%

Diversity scale Zy, =0

__ Zay ( 2a)”2
= = g~ —
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Rescaled quantitative model with thin—tailed kernels

Rescaled quantitative genetic model: z — z/Z,,

AN Fo(2)—cc 0,F,+m(z)F,(2) = / %K (Z_EZI>FV(Z’)dz’and A >%

v

with ¢ = o5 Ay — d and u(z) = m(2).

Q? Can we characterize the mutation/selection equilibrium?

I WITHOUT GAUSSIAN A PRIORI ASSUMPTION !!

Q? What are the effect of the changing speed v?

(1) Lag load (A)\), = Ao — A, measuring effects of v on the fitness.
(2) Lag |zF — z| measuring the adaptation delay?
(3) Standing variance Var(F) measuring the variability of the traits

around the mean?



Small mutation regime with fat—tailed kernels

MNFo(2) — v O, F, + u(2) B/ (z—2Z")F,(Z')dZ" and A, > 0.

Rescaling: We rescale the mutation jumps z — z+ h by
z — z 4 1)-(h) with the same probability, where the size of the jump is

W-(h) = sign(h) In(K) "' (K (h))

so the rescaled mutation kernel K. is given by

K= L 0O

—————————K(x)" an .n x))?K.(x) = &2
TR Gy K and [ (K4

Rescaled model with fat—tailed mutation kernel
d

MFo(2)—cc 0, Fo+m(2)Fu(z) = /RK(Z) Az =0 () d and A, >



Small mutation regime: Hamilton—Jacobi equation

Thin—tailed kernel

—
MF(2) —ec0,F, + m(2)F,(2) = /REK (z PZ )Fv(z’) dz' and X, > %

Thin—tailed kernel d

MF(2) = 82Fv+m(z)Fv(z):/K(z’)Fv(z—Ubgl(z’))dz' and A, > &
R

Distribution transformation

Fre) = oo (- 420)

€

Main idea when ¢ — 0: Taylor expansion according to £ parameter.
Us(z) = U%z)+eUl(z)+ ..
X = A4erl+..

4



Leading order contribution, lag load and lag

Leading order contribution (\2, U?) solve the following Hamilton-Jacobi equation

A+ co,U%(z) + m(z) = 1+ H(9,U%(z)) and A2 > %

with the Hamiltonian function H depending on K
/K (y)exp(yp) dy — 1. (thin-tailed)

H(p) = _
[ K ew P dy 1. (fa-taited) w(y) =

sign(y) In(K)(y)
In(K)'(0)

Selection: m(z) has an optimal trait at Z = 0.



Leading order contribution, lag load and lag
Leading order contribution (\2, U9) solve the following Hamilton-Jacobi equation

A+ co,U%(z) + m(z) =1+ H(9,U%(z)) and A2 > d

B

with the Hamiltonian function H depending on K

Mean fitness: \) =1 — L(c) with Lagrangian L(c) = sup,cg (pc — H(p)) .
» Selection free only depends on mutation;
» Mean fitness decreases as c increases.

» Critical speed ¢* such that \

d
8
and if ¢ > c* = A2 < ¢ EXTINCTION

v

Mean trait: z; = z:° roots of m(z;%) = L(c)

> Lag increases as c increases.

Standing variance: Var(F) = ec/m'(z)

» Standing variance depends on ¢ and selection.



Effect of the mutation kernels
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Effect of the mutation kernels

Diffusion apporx
Uniform
Gaussian
Exponential
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Effect of the mutation kernels
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Mean trait z*
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Effect of the selection functions

Speed of change (c)
(g) Mean trait

» Lag diverges for bounded selection;
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» Standing variance crucially depends on the shape of selection;



Numerical simulations

Mutation kernel: Gaussian kernel K(z) = exp(—z2/202)/V 20?2

Selection: m(z) = z2/2

Scale ratio ¢

€ = 0.1 quite large
parameter.

-
(%))
1

-
1

Legend
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- - Deterministic
Mutation kernol K simulation

— IBM simulation
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Phenotype distribution F(z)

o
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-1 0 1 2
Phenotype z
Our methodology provides a good approximation of the entire

distribution at equilibrium F,
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Numerical simulations

Mutation kernel: Gaussian kernel K(z) = exp(—z%/202)/V/2r0?

Selection: m(z) = z?/2 + z°/64
Scale ratio ¢

<15 q .
= e = 0.1 quite large
E parameter.
=
2 "
2 Legend
3 — Approximation formula
8,05 1 - - Deterministic
g A simulation
5} Mutation kernel K
=
A 0 :
-2 -1 0 1 2

Phenotype z
We are able to track NON Gaussian distribution.
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A quantitative genetics model
Population dynamics model: population density f(t, z) described at time
(t) with trait (z) by

Ouf + (1n(z = ve) + (8= d)p(t) ) f = BB(F)(¢.2)
Changing environment: optimal trait is moving at speed v, z(t) := vt.

Infinitesimal model: offspring phenotype z is drawn randomly around
mean of parents traits (z1, z), following Gaussian distribution G2:

)(t,2) = //R G, (z _Aa ‘2”2) f(t,z (M) dz,dz,

Selection: Trait z only affects mortality 1,

w(z) :=d+ m(z) with m increasing with |z| and o = m"(0) > 0.

Density—dependence: Mortality increases with the size of the population

£ = /f(t,z)dz



A quantitative genetics model

Population dynamics model: population density f(t, z) described at time
(t) with trait (z) by

Duf(t.2) + (1(z = vi) + (8 — d)p(1) ) F(,2) = BB(F)(t, 2)

Q? Does a mutation/selection equilibrium exists for any speed v?
that is a positive solution F, of the non-local nonlinear problem in the
moving frame z — vt

—vO,F,(2) + u(z)F,(2) + (8 — d) /R F,(z")dz'F,(z) = BB,(F.)(z)

that is solution ()\,, F,) of the spectral problem

—vO,F,(z) + p(z)F (2) + A\ Fu(2) = Bo(F,)(z) with )\, > 0.



A quantitative genetics model

Population dynamics model: population density f(t, z) described at time
(t) with trait (z) by

0uf(t,2) + (u(z = ve) + (8 — d)p(1) ) F(2,2) = BB(F)(t, 2)

Q? Does a mutation/selection equilibrium exists for any speed v?
that is solution (A, F,) of the spectral problem

—vO,F,(z) + p(2)F.(2) + A\ Fu(2) = B(F,)(z) with A, > 0.

Q? What is the effect of the speed v? Focus on two main quantity:
(1) Lag load (AX), = Ao — A, which measure how v modifies the fitness \,.

(2) Lag |zi(t) — z(t)| which quantifies the distance between the mean
trait z¥(t) and the optimal trait z(t).

(3) Standing variance Var(F,) which quantifies the variability of the
population around the mean z;(t).



The scaled model with thin—tailed kernels

)\VFV(Z) —vO,F, + M(Z)FV(Z) = ﬁBU(FV)(Z)

o variance at linkage equilibrium in absence of selection.

Two trait scales:
1/2
Selection scale Zg = () : measure the strength of selection;
«
Diversity scale Zg, =0

Scale ratio ¢




The scaled model with thin—tailed kernels

/\VFV(Z) - Vasz + (d + m(Z))FV(Z) = 6BU(FV)(Z)

o variance at linkage equilibrium in absence of selection.

Two trait scales:
3 1/2

Selection scale Z. = () : measure the strength of selection;
o

Diversity scale Zg, =0

Scale ratio ¢




Rescaled quantitative model

Rescaled quantitative genetic model: z — z/Z

MFo(z) —ec0.F, + m(z)F,(z) = B-(F,)(z) and A, > %

v

with ¢ = Ay — A +d and p(z) = m(z).

=5

Q? Can we characterize the mutation/selection equilibrium?

I WITHOUT GAUSSIAN A PRIORI ASSUMPTION !!

Q? What are the effect of the changing speed v?
(1) Lag load (A)), = Ao — A, measuring effects of v on the fitness.
(2) Lag |zF — z| measuring the adaptation delay?

(3) Standing variance Var(F) measuring the variability of the traits
around the mean?



Existence of mutation/selection equilibrium

Mutation/selection equilibrium in constant environment ¢ = 0.

d
dzidz and Ay > —

+ 22) Fo(z1)Fo(22)
f]R Fo(z;) dz, B

AoFo(2)+m(z)Fo(z) = / /RG (Z - 2

Theorem — Existence of equilibrium
(Calvez, Garnier, Patout, 2019)

For any local minimal z* of the selection Fonction de selection m
function m and small enough € > 0, there

. *
exists (>\07 FO) Centered arOUnd zZ. Densité de population

Espace phénotypique z



Existence of mutation/selection equilibrium
Mutation/selection equilibrium for any speed ?

—ec 0, F, + m(z)F,(z) + A\ F,(2) = BB-(F.,)(2)

Distribution transformation
Uy (2)
F:(z) :=exp <— = )

Main idea when ¢ — 0: Taylor expansion according to £ parameter.

Us(z) = U%z)+¢e2Ulz)+ ...

S = A+ + ..



Existence of mutation/selection equilibrium

Mutation/selection equilibrium for any speed ?

—EC OZFV + m(Z)F\,(Z) + AVFV(Z) - BBE(FV)(Z)

Distribution transformation

F;(z) :==exp (— U‘i(zz))

Main idea when ¢ — 0: Taylor expansion according to £ parameter.

1
Us(z) = i(z—z§)2+62U‘}(z)+...

S = A+ + ..



Leading order contribution, lag load and lag

Leading order contribution (\2, U?). It solves the following non—local equation

N 4cd,(z—25)+m(z) = exp (U&(z{)‘) —2U! (Z—;ZO) + U&(z)) and A\ > ;’

Mean trait: z; = z roots of m'(zf) = —c

» Lag increases as c increases.

Mean fitness: \% =1 — m(z})

» Mean fitness decreases as ¢ increases.

» Critical speed ¢* such that \.- = %
and if ¢ > ¢ = A2 < ¢ EXTINCTION
Standing variance: Var(F) = &2

» Standing variance do not depend on c!?



Leading order contribution, lag load and lag
Leading order contribution (\2, U?). It solves the following non—local equation

AOtc0,(z—25 )+m(z) = exp (U&(Zg) —2U2 (”220) + u&(z)> and A0 > g

H * * 2 ITI/N(Z ) 2 / *
Mean trait: z; =z = 2z +2¢ | 4 o(=7) roots of m'(z5) = —c
20

> Lag increases as c increases.

: m" () "
Mean fitness: A\ =1 — m(z;)-—= <2c + CT(ZS) +im (zo)> + o(e?)

» Mean fitness decreases as ¢ increases
» Critical speed ¢* such that \.

B
andif c > ¢ = N\ < % EXTINCTION

Standing variance: Var(F) = =

14+2e2m’(25) + o(£?)
» Standing variance depends on ¢ and selection.

N




Effect of the selection functions
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Effect of the selection functions
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Numerical simulations

Selection: m(z) = z%/2

o Scale ratio ¢
A 14 e = 0.1 quite large
é 08 - parameter.
=
£ 0.6 1 Legend
"3 0.4 - - - First order
g approximation formula
g 02+ — Second order
é 0 . approximation formula
-2 1 o Deterministic simulation

Phenotype z

Our methodology provides a good approximation of the entire
distribution at equilibrium F,



Numerical simulations

Selection: m(z) = z2/2 + z°/64

o Scale ratio ¢
: 1 € = 0.1 quite large
,8 0.8 - parameter.
2
5 0.6 - Legend
"3 04 - - - Firs-t orc.ier
g approximation formula
g 027 — Second order
é’ 0 v approximation formula
2 -1 0 1 * Deterministic simulation

Phenotype z
We are able to track NON Gaussian distribution.



Conclusions

* General methods to describe equilibrium in quantitative genetics
models:

- No Gaussian a priori on the density distribution F;

- Description and quantification of the entire distribution, as well as
lag load, lag with analytical formula;

- Flexible methodology to take into account — general mutation kernel,
general selection term, sexual/asexual reproduction;
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