# Cooperative behavior between soil bacteria

#### with E. Abs (UC Irvine), R. Ferrière (ENS Paris)

Hélène Leman CIRM 11/02/2020





1/ .

#### Introduction

Bacterial role in carbon cycle?



Decomposer Cafe was a surprisingly popular spot in the food chain.

"The eye of the needle through which all organic matter entering the soil must pass" Jenkinson 1977

Microbial C biomass = 50-80% labile C Microbial respiration = 10x human emissions



Tate 2017, World Scientific

### Response to changes



#### Rapid evolution

- ▶ Same scale as climate change
- ▶ Not introduced in climate models

How does enzyme production evolve?



 Individual based-model (Fournier and Méléard 2004, Champagnat 2006, ...)



Enzymatic reaction :

- Complex formation : rate  $\lambda ZC$
- Complex dissociation : rate  $\lambda_{-1}X$
- Decomposition : rate  $\mu X$



Enzymatic reaction : fast events (Frankowicz et al. 1987)

- Complex formation : rate  $\lambda ZC$
- Complex dissociation : rate  $\frac{1}{\varepsilon}\lambda_{-1}X$
- Decomposition : rate  $\frac{1}{\varepsilon}\mu X$



Simplification of the model when  $\varepsilon \to 0$ 

• Complex formation : rate  $V_{mD}ZC = \lambda \frac{\mu}{\lambda_{-1} + \mu}ZC$ 



• mortality : rate  $d_M$  with release of

$$\blacktriangleright p\alpha/\beta$$
 SOC

• 
$$(1-p)\alpha$$
 DOC

• growth : rate  $N(1-\varphi)\gamma_M V_{mU} \frac{D}{K_{mU}+D}$ 

• growth of 
$$\frac{1}{N}$$

• disappearance of  $\frac{\alpha}{\gamma_M N}$  DOC

• enzyme production : rate  $\varphi \gamma_Z V_{mU} \frac{D}{K_{mU} + D}$ 



- Enzyme deactivation : rate  $d_Z$
- Leaching of SOC, DOC : rates  $l_C$ ,  $l_D$
- SOC input : constant rate  $I_C$

Counting atoms of carbon :

• A bacteria is  $\alpha$ -times larger than a DOC molecule  $\alpha = 10^{10}$ 

 A bacteria is α/β-times larger than a SOC molecule or an enzyme

$$\alpha/\beta=10^7$$

- Events associated to M are slower.
- ▶ SOC, DOC and enzymes are more numerous.

#### Model simplification

#### Theorem

When  $\alpha \to +\infty$  and  $N \to \infty$ , convergence to a PDMP where M evolves randomly according to

• mortality : rate  $d_M$  with release of DOC and SOC between two jumps of  $M : (z, c, d, \Delta)$  follow (in carbon biomass)

$$\begin{cases} z'(t) = \varphi \omega_M \gamma_Z \frac{V_{mU}d}{K_{mU} + d} M - d_Z z \\ c'(t) = I_C - l_C c - V_{mD} z c \\ d'(t) = I_D - l_D d + V_{mD} z c + (1 - l) d_Z z - \omega_M \frac{V_{mU}d}{K_{mU} + d} M \\ \Delta'(t) = \omega_M (1 - \varphi) \gamma_M \frac{V_{mU}d}{K_{mU} + d}, \end{cases}$$

#### Public good dilemma

#### Assumptions of rare mutations on $\varphi$



#### Public good dilemma

Assumptions of rare mutations on  $\varphi$ 



In a well-mixed environment, enzyme production is counter-selected : Public good dilemma

### Spatial model

#### spatially structured



well-mixed



Abs, Ferriere, Leman (in prep.)

### Spatial model



Abs, Ferriere, Leman (in prep.)

### Example of dynamics



### Example of dynamics



### Example of dynamics



### Evolutionary response



Excenzyme allocation traits ( $\phi$ ) of competing strains

#### Evolutionary response



#### Evolutionary response



The effect of spatial structure is strongly modulated by diffusion of resources D

#### Effect on soil C stock



15/ .

#### Perspectives

- ▶ Simplify spatial dynamics
- Spatial continuous setting
- ▶ Introduction of the model in a global setting

#### Perspectives

- Simplify spatial dynamics
- Spatial continuous setting
- ▶ Introduction of the model in a global setting

# Thank you for your attention