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Climate change adaptation

One observes rapid phenotypic changes in invasive or natural
populations that are subject to environmental changes.

Such fast evolution may result in adaptation of these populations facing
changing environment.

Our aim:

To model the response of a population to a gradual change in
environment, based on an individual-based model.

To capture the dynamics in the past of the lineage (genetic history) of an
individual chosen at random at a fixed time.



The population process

Each individual is characterized by a quantitative genetic or phenotypic
real parameter, usually called trait.

The parameter K scales the population size. It will be large.

Population of NK (t) individuals weighted by 1
K and traits

(X 1
t , · · · ,X

NK (t)
t ) ∈ RNK (t).

The population is described by the point measure

νK
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1
K

NK (t)∑
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δX i
t
.

∫
ϕ(x)νK

t (dx) =
1
K

NK (t)∑
i=1

ϕ(X i
t ) ;

∫
νK

t (dx) =
NK (t)

K

The population process (νK
t , t ≥ 0) is a Markov process with values in

D(R+,MF (R)).



The transitions

BIRTH

Clonal reproduction at rate 1 from each individual of trait x : the
offsprings inherits of x .

MUTATION: two different modeling

1) During its life time, the trait of the individual is submitted to many very
small centered mutations.
Its behavior is modeled by a Brownian motion with variance σ2.

2) At rate 1, there is a reproduction event with mutation.
The offspring of an individual with trait x will inherit the trait x + σh,
where h is distributed according to a symmetric law G(h)dh.
(Ex: G(h)dh is a centered reduced Gaussian law).



The mortality rate

•Without environmental effect: mutation-selection balance

Each individual with trait x dies at rate

x2

2
+

NK (t)
K

=
x2

2
+

∫
νK

t (dx).

The intrinsic death rate x2

2 depends on the trait x of the individual.

1
K

: competition pressure between two individuals.

The term
∫
νK

t (dx) represents the interaction between individuals.



Effect of the environment

• The environment evolves linearly in time at the velocity σc.

• The optimal trait is driven by the environment: the optimal trait at time t will
be σct .

• In our modeling, we will replace the death rate x2/2 by (x − σct)2/2.

• Moving optimal trait: x = σct .



The stochastic population process

The population process νK is solution of a stochastic differential equation
driven by Poisson point measures governing birth and death events and
Brownian motions or Poisson processes governing mutations.

Semi-martingale decomposition.

∫
ϕ(x)νK

t (dx) =

∫
ϕ(x)νK

0 (dx) + MK
t (ϕ)

+

∫ t

0

∫ (
1− (x − σcs)2

2
−
∫
νK

s (dx)
)
ϕ(x)νK

s (dx)ds

+


∫ t

0

∫
σ2

2 ϕ
′′(x) νK

s (dx)ds∫ t
0

∫ ∫
ϕ(x + σh)− ϕ(x))G(h)dh νK

s (dx)ds

where MK (ϕ) is a square integrable martingale with

E((MK
t (ϕ))2) =

C(ϕ, t)
K

.



Large population approximation

Proposition: Let T > 0. Under appropriate assumptions, the population
process νK is approximated on [0,T ] by the unique weak solution of

∂tu(t , x) =
(

1− (x − σct)2

2
−
∫

u(t , x)dx
)

u(t , x)

+

{
σ2

2 ∂
2
xx u(t , x)∫

(u(t , x + σh)− u(t , x))G(h)dh
.

That means that ∀ε > 0, ∀ϕ ∈ C2
b ,

lim
K→+∞

P(sup
t≤T
|
∫
ϕ(x)νK

t (dx)−
∫
ϕ(x)u(t , x)dx | > ε) = 0.

In particular,

lim
K→+∞

P(sup
t≤T
|
∫
νK

t (dx)−
∫

u(t , x)dx | > ε) = 0.



Moving Framework - Gaussian case
Let us define Z̃ K as the image-measure of νK by the map x −→ x − σct .

Then for all C2
b function ϕ,

∫
ϕ(x)Z̃ K

t (dx) =

∫
ϕ(x)νK

0 (dx) + M̃K
t (ϕ)

+

∫ t

0

∫ ((
1− x2

2
−
∫

Z̃ K
s (dx)

)
ϕ(x)− σcϕ′(x) +

σ2

2
ϕ′′(x)

)
Z̃ K

s (dx)ds.

where M̃K (ϕ) is a square integrable martingale with second order moment of
the form C(T ,ϕ)

K .

The macroscopic approximation when K is large is given by the density
profile f (t , x) = u(t , x + σct), solution of

∂t f (t , x) =
(

1− x2

2
−
∫

f (t , x)dx
)

f (t , x) + σc∂x f (t , x)

+
σ2

2
∂2

xx f (t , x).

with f (0, x) = u0(x).



The stationary distribution

Theorem: Gaussian case.

There is a unique positive stationary distribution, solution of

σ2

2
F ′′ + σcF ′ +

(
1− x2

2
−
∫

F
)

F = 0,

if and only if

1− σ

2
− c2

2
> 0.

It is given by

F (x) =
λ√
2πσ

exp
(
− (x + c)2

2σ

)
and

∫
F (x)dx = λ = 1− σ

2
− c2

2
.

Remark: If u0 = F , then for any ε > 0,

lim
K→+∞

P(sup
t≤T
|
∫

Z̃ K
t (dx)− λ| > ε) = 0.



The population follows the optimum that moves to the right at the constant
speed σc.

The shape of the wave that follows this movement "stabilizes" to become

u(x , t) = F (x − σct).

In the Gaussian case, F has its maximum in -c in the moving reference frame.
The population is always "behind" its environment.



Stationary dynamics - Research of genetic lineages in a gradual
environment

Assume that the population is at equilibrium in the moving reference frame.

Question: what is the internal dynamics in the stationary distribution?

The maladaptive individuals of yesterday have become more adapted today
and these phylogenies can be seen as a "trace" of past environmental
change.



The associated branching-diffusion process: the nonlinearity is frozen

We construct on the same probability space a branching-diffusion process
(Z K

t , t ≥ 0), issued from the same initial condition where the nonlinearity is
fixed to λ = ‖F‖1.

For any ϕ ∈ C2
b (R),∫

ϕ(x)Z K
t (dx) =

∫
ϕ(x)νK

0 (dx) + MK
t (ϕ)

+

∫ t

0

∫ ((
1− x2

2
− λ

)
ϕ(x)− σcϕ′(x) +

σ2

2
ϕ′′(x)

)
Z K

s (dx)ds.

•We assume that νK
0 converges in law to F . (For example, the r.v. X i

0 are
independent with law F ).

Then
lim

K→+∞
E
(

sup
t≤T

∣∣ ∫ ϕ(x)Z K
t (dx)−

∫
ϕ(x)Z̃ K

t (dx)
∣∣2) = 0.

We will approximate the nonlinear process by the branching-diffusion process
which has beautiful properties based on the branching property.

In particular, it’s enough to consider one initial individual taking K = 1.



An auxiliary one-dimensional process

One initial individual and K = 1.

We can easily observe (using Itô’s Formula) that for any bounded continuous
function ϕ, for t ≥ 0 and x ∈ R,

Eδx

[ ∫
ϕ(x)Zt (dx)

]
= Ex

[
exp

( ∫ t

0

(
1− 1

2
Y 2

s − λ
)

ds
)
ϕ(Yt )

]
,

where Y is the drifted Brownian motion

dYt = σ(dBt − cdt).

Then, mt (x) = Eδx

[ ∫
Zt (dx)

]
satisfies

mt (x) = Ex

[
exp

( ∫ t

0

(
1− 1

2
Y 2

s − λ
)

ds
)]
,

and then m ∈ C1,∞
b ([0,T ]× R).



From Feynman-Kac formula, we deduce that (mt (x), x ∈ R, t ≥ 0) is the
unique strong solution of{

∂tm = σ2

2 ∂xx m − σc∂x m + (1− x2

2 − λ)m
m0(x) = 1.

That implies that for any t ≥ 0,∫
mt (x)F (x)dx =

∫
F (x)dx = λ.

Moreover, following Fitzsimmons-Pitman-Yor arguments using Girsanov’s
transform, one can explicitely compute mt :

mt (x) =
√

1 + tanh(σt) exp

(
−
(
x + e−σtc

)2

2σ
(1 + tanh(σt)) +

(x + c)2

2σ

)
.



The historical particle system

We extend the previous formula to the historical system until a fixed
(observation) time T .

VT denotes the set of individuals alive at time T .

Let us take i ∈ VT and t < T .

X i (t) denotes the historical lineage of the individual i in the following
sense:

If the individual i was born at time t , then X i (t) denotes the trait of i at t .

But if the individual i was not born at time t , then X i (t) = X j (t) where j is
the most recent ancestor of i living at time t .

We write (j, t) � (i,T ).

Theorem: For any t1 < t2 < · · · < tn ≤ T , for any x ∈ R,

Eδx

∑
i∈VT

ϕ(X i
t1 , . . . ,X

i
tn )

 = Ex

[
exp

(∫ T

0

(
1− 1

2
Y 2

s − λ
)

ds
)
ϕ(Yt1 , . . . ,Ytn )

]
.





The spinal approach - the typical trajectory

Theorem:
For x ∈ R and Φ a continuous bounded function on C([0,T ],R), we have

lim
K→+∞

EKδx

 1
NK

T

∑
i∈V K

T

Φ(X i
s, s ≤ T )

 =
1

mT (x)
Eδx

∑
i∈VT

Φ(X i
s, s ≤ T )


= Ex

[
Φ(Ỹs, s ≤ T )

]
,

where Ỹ is an inhomogeneous Markov Process (depending on T ) with
infinitesimal generator given for f ∈ C2

b (R) by

Gt f (x) =
L(mT−t f )(x)− f (x)LmT−t (x)

mT−t (x)
,

where L is the infinitesimal generator of the drifted Brownian Y .

The process Ỹ describes the behavior of the phenotypic trajectory of an
individual uniformly sampled among the individuals alive at time T , in a
large population.



The biaised initial distribution

Taking s = 0, we obtain that the initial value of Ỹ is not distributed according

to
1
λ

F but according to the biaised distribution
1
λ

mT F .

Proof: (Cf. A. Marguet).
Markov property and Itô’s Formula applied to f (Yt )mT−t (Yt ).

Using the explicit value of mt (x), we deduce that for 0 ≤ t ≤ T ,

Ỹt =
cosh(σ(T − t))

cosh(σT )
Ỹ0 + c cosh(σ(T − t))

(
tanh(σ(T − t))− tanh(σT )

)
+σ cosh(σ(T − t))

∫ t

0

dBs

cosh(σ(T − s))
.



For any t ≥ 0, the random variable Ỹt is a Gaussian variable.

Computation gives that for any 0 ≤ t ≤ T ,

Ỹt ∼ N
(
− c e−σ(T−t),

σ

1 + tanh(σ(T − t))

)

Then the density p(t , y) of Ỹt satisfies

∂y log p(t , y) = −x + c e−σ(T−t)

σ

(
1 + tanh(σ(T − t))

)
.



Time-reversion of the process: the phenotypic lineage equation to the
ancestor

We can now apply a result of Haussmann and Pardoux.

The reverse-time process of a diffusion b(t , Ỹt )dt + σdBt is a diffusion
process whose drift is given by

br (t , y) = −b(T − t , y) + σ2∂y log p(T − t , y)

and the diffusion part stays unchanged.

Here we obtain that the time-reverse diffusion process of Ỹ is the
Ornstein-Uhlenbeck process

dXt = −σXtdt + σdBt ,

which is homogeneous and independent of T !!



Dominant trait: −c.
Optimal trait: 0.



Work in progress - The non local case

In this case, we have seen that the pde is

∂t f (t , x) =

∫ (
f (t , x + σh)− f (t , x)

)
G(h)dh +

(
1− x2

2
−
∫

f (t , x)dx
)

f (t , x)

+σc∂x f (t , x)

with f (0, x) = u0(x).

In what follows, we will denote by Gσ ∗ f the operator

Gσ ∗ f (x) =

∫
f (x + σh)G(h)dh.



The stationary distribution

Theorem: (Coville-Hamel, Velleret)

Let us define the operator A for any smooth function f by

Af = f −Gσ ∗ f − cσ∂x f +
1
2

x2f .

Then
(i) There exists a unique λ ≥ 0 and a unique positive function φ ∈ H1(R)
satisfying

∫
φ = 1 and x2φ ∈ L2 satisfying that

Aφ = λφ.

In addition, the function φ is a smooth function.

(ii) There exists a unique non zero stationary distribution F for our non local
problem if and only if

λ < 1.

Moreover,
∫

F = 1− λ.



A part of the previous approach stays valid but without explicit computations.

• The auxiliary process is now

dYt = σ
(
− cdt +

∫
hN(dt , dh)

)
,

with N a Poisson point measure on R+ × R with intensity G(h)dh dt .

• Approach based on additive functionals (Dynkin) and reverse time for
general Markov processes (Reinhard-Roynette).

Let (Pt ) the semigroup defined by

Ptϕ(x) = Ex

[
exp

( ∫ t

0

(
1− 1

2
Y 2

s − λ
)

ds
)
ϕ(Yt )

]
.

• One can show that since F is stationary, then

P∗t F = F .

We deduce that the law of Ỹt issued from mT F is mT−t .F .
Moreover, using reverse time technics, we obtain that the semigroup of the
reverse time process of Ỹ satisfies

PR
t ϕ =

P∗t (Fϕ)

F
.

This semigroup does not depend on mt !



Thank you for your attention!


