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Climate change adaptation

@ One observes rapid phenotypic changes in invasive or natural
populations that are subject to environmental changes.

@ Such fast evolution may result in adaptation of these populations facing
changing environment.

Our aim:

@ To model the response of a population to a gradual change in
environment, based on an individual-based model.

@ To capture the dynamics in the past of the lineage (genetic history) of an
individual chosen at random at a fixed time.



The population process

Each individual is characterized by a quantitative genetic or phenotypic
real parameter, usually called trait.

The parameter K scales the population size. It will be large.

Population of N¥(t) individuals weighted by + and traits
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The population process (vf,t > 0) is a Markov process with values in
D(R4, Me(R)).



The transitions

@ BIRTH

Clonal reproduction at rate 1 from each individual of trait x : the
offsprings inherits of x.

@ MUTATION: two different modeling

1) During its life time, the trait of the individual is submitted to many very
small centered mutations.
Ilts behavior is modeled by a Brownian motion with variance 2.

2) At rate 1, there is a reproduction event with mutation.

The offspring of an individual with trait x will inherit the trait x + oh,
where h is distributed according to a symmetric law G(h)dh.

(Ex: G(h)dhis a centered reduced Gaussian law).



The mortality rate

o Without environmental effect: mutation-selection balance

Optimal trait (fixed)

‘mortality
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Equilibrium in a fixed environment

Each individual with trait x dies at rate
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The intrinsic death rate é depends on the trait x of the individual.

P competition pressure between two individuals.

The term [ vf(dx) represents the interaction between individuals.



Effect of the environment

e The environment evolves linearly in time at the velocity oc.

e The optimal trait is driven by the environment: the optimal trait at time t will
be oct.

« In our modeling, we will replace the death rate x?/2 by (x — oct)?/2.

e Moving optimal trait: x = oct.



The stochastic population process

The population process ¥ is solution of a stochastic differential equation
driven by Poisson point measures governing birth and death events and
Brownian motions or Poisson processes governing mutations.

Semi-martingale decomposition.
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Large population approximation

Proposition: Let T > 0. Under appropriate assumptions, the population

process v is approximated on [0, T] by the unique weak solution of

(x —oct)?

ou(t,x) = (1 - —/u(t.,x)dx)u(t,x)

{";Ofxu(t, X)
+
J(u(t,x + ch) — u(t,x))G(h)dh

That means that Ve > 0, Yy € CZ,

lim IP’(sup\ o(x )VtK(dx)—/gp(x)u(t,X)dX| >e)=0.
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In particular,

lim P(sup| [ v{(dx)— / u(t, x)dx| > ¢) = 0.

K—too  “t<T



_ Moving Framework - Gaussian case
Let us define ZX as the image-measure of v* by the map x — x — oct.

Then for all C2 function ¢,

[ o020 = [ etouii(@0 + (o)
+/Of/ ((1 - X; f/ZK(dx)) o(X) — oce (x) + %2¢,,(X))zs,<(dx)d&

where M () is a square integrable martingale with second order moment of
the form S22,

The macroscopic approximation when K is large is given by the density
profile f(t,x) = u(t, x + oct), solution of

af(t,x) = (1 - %2 7/f(t,x)dx)f(t.,x)+008Xf(t,x)
+%20§Xf(t, X).
with f(0, x) = up(x).



The stationary distribution

Theorem: Gaussian case.

There is a unique positive stationary distribution, solution of

o? 11 / x?
ZF" +ocF + (1 —?—/F)F_O,
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Remark: If up = F, then for any ¢ > 0,

lim P(sup| [ Zf(dx) — Al > ) =0.
t<T
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The population follows the optimum that moves to the right at the constant
speed ocC.

The shape of the wave that follows this movement "stabilizes" to become

u(x,t) = F(x —oct).

In the Gaussian case, F has its maximum in -c in the moving reference frame.
The population is always "behind" its environment.

Optimal trait (moving)

mortality
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Stationary dynamics - Research of genetic lineages in a gradual
environment

Assume that the population is at equilibrium in the moving reference frame.
Question: what is the internal dynamics in the stationary distribution?
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= mean trait among lineages ‘
= typical lineage (heuristic formula)
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=== optimal trait
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time —

The grey background is the stationary density of individuals F. The y axis rep the phenotyp:
Z in the moving frame (z = x — ct).

The maladaptive individuals of yesterday have become more adapted today
and these phylogenies can be seen as a "trace" of past environmental
change.



The associated branching-diffusion process: the nonlinearity is frozen

We construct on the same probability space a branching-diffusion process
(Zf,t > 0), issued from the same initial condition where the nonlinearity is
fixed to A = ||F||1.

For any ¢ € C2(R),
[zt = [ o0 (a0 + M)
t _ LZ _ _gcy f 1" K
+/0 /((1 5 A) p(x) —oce'(x) + 5 (X))Zs (dx)ds.

o We assume that v¥ converges in law to F. (For example, the r.v. X} are
independent with law F).

Then
lim E( sup]/ /(p(X)ZK(dX)|2) =0.
K—+o0 t<T

We will approximate the nonlinear process by the branching-diffusion process
which has beautiful properties based on the branching property.

In particular, it's enough to consider one initial individual taking K-= 1.



An auxiliary one-dimensional process

One initial individual and K = 1.

We can easily observe (using It&é’s Formula) that for any bounded continuous
function ¢, for t > 0 and x € R,

Es, [/@(X)Z[(dx)} = Ex {exp (/ot (1 - %Yf - A) ds)so( Yr)],

where Y is the drifted Brownian motion

dY, = o(dB; — cat).

Then, mi(x) = Es, [ fz,(dx)] satisfies

me(x) :Ex[exp(/ot <1 - %YSZ —>\> ds)],

and then m € C}>°([0, T] x R).



From Feynman-Kac formula, we deduce that (m:(x),x € R,t > 0) is the

unique strong solution of

2

am = % dxm — ocdm+ (1 — % — \)m
mo(X) =1.

That implies that for any t > 0,

/mt(x)F(x)dx = /F(X)dX =\

Moreover, following Fitzsimmons-Pitman-Yor arguments using Girsanov’s

transform, one can explicitely compute m;:

(x + e "c)®

mi(x) = /1 +tanh(ot) exp < o

(1 +tanh(at)) +

) |



The historical particle system

We extend the previous formula to the historical system until a fixed
(observation) time T.

@ V7 denotes the set of individuals alive at time T.

@ letustakeie Vrand t < T.
X'(t) denotes the historical lineage of the individual i in the following
sense:
If the individual / was born at time t, then X'(t) denotes the trait of j at t.
But if the individual i was not born at time t, then X'(t) = X/(t) where j is
the most recent ancestor of i living at time t.

We write (j,t) < (i, T).

Theorem: Forany i <t < --- < th < T, forany x € R,

= Eyx {exp(/j(1f%Yszf/\)ds)go(Yfﬁ...,Y,n)}.

ievr







The spinal approach - the typical trajectory

Theorem:
For x € R and ¢ a continuous bounded function on C([0, T],R), we have

— s < = — <
Jim Ers, | g > (X, s<T) ) Es, [Z o(X], s < T)]

T ievk ieVr
= Ex[0(Ye s<T)],
where Y is an inhomogeneous Markov Process (depending on T) with
infinitesimal generator given for f € C2(R) by

Gif(x) = L(mrftf)();ﬂ)'Titi(X);)LmT,,(x)’

where L is the infinitesimal generator of the drifted Brownian Y .

The process Y describes the behavior of the phenotypic trajectory of an
individual uniformly sampled among the individuals alive at time T, in a
large population.



The biaised initial distribution

Taking s = 0, we obtain that the initial value of ¥ is not distributed according
to % F but according to the biaised distribution % mr F.

Proof: (Cf. A. Marguet).
Markov property and 1t6’s Formula applied to f( Y;)mr_:(Y?).

Using the explicit value of m:(x), we deduce thatfor0 < t < T,

v, — %&)t))%—f—ccosh(oﬁ—t))(tanh(a(T—t))—tanh(aT))

't dBs
+ocosh(a(T—z‘))/0 cosh(o(T = 9))'



@ For any t > 0, the random variable Y is a Gaussian variable.

@ Computation gives thatforany 0 <t < T,

Vo o —o(T—1) a
vt N( ce ’1+tanh(a(T—t))>

@ Then the density p(t,y) of Y; satisfies

—o(T—t)
dylogp(t,y) = 7% (1 +tanh(o(T —1))).



Time-reversion of the process: the phenotypic lineage equation to the
ancestor

We can now apply a result of Haussmann and Pardoux.

The reverse-time process of a diffusion b(t, Vt)dt + odB; is a diffusion
process whose drift is given by

b'(t,y) = —b(T —t,y) + o9y logp(T — t.y)

and the diffusion part stays unchanged.

Here we obtain that the time-reverse diffusion process of Y is the
Ornstein-Uhlenbeck process

dX; = —o Xidt + O'dB;,

which is homogeneous and independent of T !!



;\f‘* J‘Hﬂ{“ ‘M;\' \
| Mw: i

== mean trait among Imeages

=== typical lineage (heuristic formula)
=== optimal trait

=== dominant trait

trait (individuals & lineages)

time —

The grey background is the stationary density of individuals F. The y axis represents the phenotype
z in the moving frame (z =x —ct).

Dominant trait: —c.
Optimal trait: 0.
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Work in progress - The non local case

In this case, we have seen that the pde is

ohf(t,x) = /(f(t,x+ oh) — f(t,x)) G(h)dh + <1 - X; f/f(t, x)dx) f(t, x)
+Ucaxf(t, X)
with f(0, x) = up(x).

In what follows, we will denote by G, * f the operator

G, * f(x) = / f(x + oh)G(h)dh.



The stationary distribution

Theorem: (Coville-Hamel, Velleret)

Let us define the operator A for any smooth function f by
Af =f— Gy + f — Codxf + %xzf.

Then
(i) There exists a unique \ > 0 and a unique positive function ¢ € H'(R)
satisfying [ ¢ = 1 and x*¢ € L? satisfying that
Ad = Ao
In addition, the function ¢ is a smooth function.

(i) There exists a unique non zero stationary distribution F for our non local
problem if and only if
A<

Moreover, [ F=1— .



A part of the previous approach stays valid but without explicit computations.
e The auxiliary process is how

dYr=o(— cdt+/ hN(at, dh)) ,
with N a Poisson point measure on R, x R with intensity G(h)dh dt.

e Approach based on additive functionals (Dynkin) and reverse time for
general Markov processes (Reinhard-Roynette).

Let (P:) the semigroup defined by
! 1
Prp(x) = Ex [exp (/ (1 -5 Y- A) ds)¢(yt)].
0
e One can show that since F is stationary, then
PiF=F.
We deduce that the law of Y; issued from mrF is mr_¢.F.

Moreover, using reverselime technics, we obtain that the semigroup of the
reverse time process of Y satisfies
Pi(Fe)
R _ Mt \Ire
P[ » = F .
This semigroup does not depend on m;!




Thank you for your attention!




