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Rescue vs Doom
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Can the Doomed be Rescued by Evolution?
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“Measuring the probability of rescue is not that straightforward. First, one
must choose the time period over which populations can be said to be either

doomed or rescued.”(2013)



Population Size

Time to Doom
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Questions

What is the distribution of time to extinction for evolving
populations?

How does this distribution depend on genetic diversity and
abundances?

How does adaptive evolution affect the longevity of
populations headed to extinction?



Adaptive Evolution & Time to Extinction

Evolution, 49(1), 1995, pp. 201-207

WHEN DOES EVOLUTION BY NATURAL SELECTION PREVENT
EXTINCTION?
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Basic Model of Demography & Evolution

» G clones
» Xi(t) > 0 is density of clone j at time t (i =1,...G)
» Each X; an independent continuous branching diffusion

» Genotype i characterized by intrinsic growth rate r; &
reproductive variance v;

» Genotype dynamics described by stochastic differential
equation and initial condition

dX; = ri X;dt ++/ v; X;dW;

X,(O) = X



Genetically Uniform Populations

» Population monomorphic for genotype with growth & variance
parameters g = (r, v)

» Dynamics: dX = rXdt +v'vXdW

> Initial density X(0) = x

» P(extinct at time t) = [f(t; g)]”

» Genotypic Risk Function:

—2r/[v(l—e )] ifr#0

nflteg) = {—2/(vt) if r=0.



Conditional Mean Time to Extinction: No Evolution
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Extinction Time Percentiles: No Evolution
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Extinction Time Percentiles: No Evolution
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Genotypic Risk Functions, f(t;g)
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“Maladaptive” Landscapes

t=5 t=10

00 05 10 15 2.0 25 3.0

=50

00 05 10 15 20 25 3.0

-1.0

-0.5 0.0 0.5 1.0

15



f(t;g), per capita P(extinction)
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Polymorphic Populations
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Genotypes: g = (ri, vj)
Initial densities: X;(0) = x;

Genotypic risk functions:

—2[’,'/ [V,' (]. — e_r"t)]

Inf(t; gi) = {—2/(v-t)

P(extinct at time t) = H/G:1 [F(t; &)

ifr,-7é0
ifr,-:O.
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Three Types of Change

Polymorphic analysis key result: abundance, genetic diversity, vital
rates have distinct effects

1. Genetic Diversity
— change diversity without changing total abundance or individual vital rates
— e.g., mutation

2. Vital Rates

— changes in environment that enhance or impair survival & reproduction

3. Abundance

— supplementation

— removal

18



 PNAS

Three types of rescue can avert extinction in a
changing environment
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1. Change Genetic Diversity

|”

Genetically uniform “ancestral” population
— density x
— growth parametersrand v

Substitution/Mutation

— replace x* individuals with mutant genotype

Hufbauer et al. Tribolium experiments
— ancestralr<0
— “mutant” r*>0
— small populations: x" =1
— large populations: x* =3



change in median time to extinction

Impact of Novel Mutation
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2. Impact of Abrupt Environment Change
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3. Impacts of Abundance Change

Supplementation: add density y; of genotype with growth parameters
rrandv;,i=1,..,G
— Hufbauer et al.:
r*>0
y* =1 (small populations)
y* = 3 (large populations)

— Conservation/management goal: ensure Pr(extinction) no more than ¢ at time 7

Removal: remove density z; of genotype with growth parameters
rrandv;,i=1,.,G

— disease management goal: ensure Pr(eradicate) at least g at time 7



Deliberate Supplementation or Removal

» Change densities and/or frequencies of genotypes to achieve
management goals

» Conservation: P(extinct before time 7) < ¢
> Pest/Pathogen: P(extinct before time 7) > ¢

» “management gap”: S(¢,7,x) = log ¢ — Zlel xjlog f(7; &)
» Additions (y1, y2, ..., Yyc) satisfy

G
> yilog f(7; &) = S(¢,7,x) <0
i=1

» Removals (z1, 2z, .. ., zg) satisfy

G
> zillogf(r; &)l = S(¢,7,%) >0
i=1
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Spatially-structured Gene Drives & Parasite “Doom’

Drive Endonuclease Genes .
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Godfray et al. BMC Biology (2017) 15:81

Engineered gene drive eradication effective in well-mixed systems
Real world has spatial structure

More opportunities for resistance, but cause for concern?

Yes, perhaps more than expected

Model and analysis details: Steve Krone’s Thursday presentation
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Summary of General Findings

Process-based theoretical framework for predicting time to extinction of
evolving populations

— useful for basic and applied biology (human health, agriculture, conservation)
Genetic abundances and diversity both affect persistence

— impacts are distinct but cannot be cleanly separated
Genotypic risk functions define “maladaptive” landscape
Prediction: Impact of adaptive evolution on time to extinction is small

— larger in demographically benign than in harsh conditions

Spatial structure can undermine parasite eradication by gene drive cargo

— use models to explore strategies that mitigate gene drive failure
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