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Expanding map example

T : r0,1s Ñ r0,1s, T pxq “ 2x mod 1.

Each point has a neighborhood of fixed size where the inverse
T´1 has d “ 2 branches, and they are contractions
(λ “ 1

2 -Lipschitz).
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Expanding map

X compact metric space.

T : X Ñ X an expanding map i.e.
T P C0, Dd P Z`, D0 ă λ ă 1, De0 ą 0 s.t.
@x P X the branches of T´1 are λ-Lipschitz, i.e.
@x P X DSi : Bpx ,e0q Ñ X , i “ 1, . . . , `x ď d ,

d
`

Sipyq,Sipzq
˘

ď λdpy , zq,

#

T ˝ Si “ IBpx ,e0q
,

Si ˝ T |BpSi pxq, λe0q
“ IBpSi pxq, λe0q

.
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Main Theorem

X compact metric space.
T : X Ñ X expanding map, F P LippX ,Rq.
A maximizing measure is a T -invariant Borel probability µ on X
such that

ż

F dµ “ max
!

ż

F dν
ˇ

ˇ

ˇ
ν invariant Borel probability

)

.

Theorem
If X is a compact metric space and T : X Ñ X is an expanding
map then there is an open and dense set O Ă LippX ,Rq such
that for all F P O there is a single F-maximizing measure and it
is supported on a periodic orbit.

link to the proof 49
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Ground states

Maximizing measures are called ground states because
if F ě 0 and µβ is the invariant measure satisfying

µβ “ argmax
ν inv. measure

"

hνpT q ` β
ż

F dν
*

(the equilibrium state for β F )
(β “ 1

τ
“ the inverse of the temperature)

then any limit lim
βkÑ`8

µβk (a zero temperature limit)

is a maximizing measure (a ground state).
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Bousch, Jenkinson: There is a residual set U Ă C0pX ,Rq
s.t. F P U ùñ F has a unique maximizing measure and
it has full support.
Yuan & Hunt:
Generically periodic maximizing measures are stable.
(i.e. same maximizing measures for perturbations of the
potential in Hölder or Lipschitz topology.)
Non-periodic maximizing measures are not stable in
Hölder or Lipschitz topology.
Contreras, Lopes, Thieullen:
Generically in CαpX ,Rq there is a unique maximizing
measure.
If F P CαpX ,Rq, then F can be approximated in the Cβ

topology β ă α by G with the maximizing measure
supported on a periodic orbit.
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Bousch: Proves a similar result for Walters functions:
@ε ą 0 Dδ ą 0

@n P N, @x , y P X , dnpx , yq ă δ ùñ |SnF pxq ´ SnF pyq| ă ε.

dnpx , yq :“ sup
i“0,...,n

d
`

T ipxq,T ipyq
˘

.

Quas & Siefken: prove a similar result for super-continuous
functions.
(functions whose local Lipschitz constant converges to 0 at
a given rate: here X is a Cantor set or a shift space).
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For example in a subshift of finite type (X is a Cantor set)
locally constant functions have periodic maximizing measures.

But those functions are not dense in CαpX ,Rq or LippX ,Rq.
And they are not well adapted for applications to Lagrangian
dynamics or twist maps with continuous phase space X .
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Write

α :“ αpF q :“ ´ max
µPMpT q

ż

F dµ. (Mañé’s critical value)

Set of maximizing measures

MpF q :“
!

µ PMpT q
ˇ

ˇ

ˇ

ż

F dµ “ ´αpF q
)

.
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Generic Uniqueness of maximizing measures

Theorem (Contreras, Lopes, Thieullen)

There is a generic set G in LippX ,Rq such that

@F P G #MpF q “ 1.

Moreover, for F P G, µ PMpF q

suppµ is uniquely ergodic.
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Proof:

Enough to prove

Opεq :“ tF P LippX ,Rq | diamMpF q ă εu

is open and dense.

Because then take
G :“

č

nPN`
Op1

n q

will have G is generic and G Ă tF : #MpF q “ 1u.

Open = upper semicontinuity of MpF q.
(limits of minimizing measures are minimizing)
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Density of Opεq.

Want to approximate any F0 P LippX ,Rq by elements in Opεq.

Let F “ tfnunPN` be a dense set in LippX ,Rq X r}f }sup ď 1s.
We use f0 “ ´F0 the original potential.

dpµ, νq “
ÿ

nPN

1
2n |µpfnq ´ νpfnq|.

is a metric on MpT q.
Take a finite dimensional approximation of MpT q by projecting
πN : MpT q Ñ RN`1 (integrals of test functions)

πNpµq :“
`

´ µpF0q, µpf1q, . . . , µpfNq
˘

.

diampπ´1
N txuq ď εN “

1
2N Ñ 0.
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αpF0q “ argmintµp´F0q | µ PMpT q u
KN :“ πNpMpT qq is a convex subset in RN`1

and rx0 “ αs is a supporting hyperplane for KN .

Use your favourite argument to perturb the hyperplane so that it
touches KN in a unique (exposed) point y .

Fgrad
0grad G

π
N

(M(T))

x
N

x0
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The new supporting hyperplane has normal vector
p1, z1, . . . , zNq. The touching (exposed) point is

y :“πNpargminMpT qt´Guq “ πNpMpGqq

´G “´ F0 `
řN

n“1 zn ¨ fn

Then diam MpGq ď diamπ´1
N pyq ď εN “

1
2N .

So G P OpεNq and G is very near to F0. l
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Sub-actions = Revelations

A sub-action is a Lispchitz function u P LippX ,Rq such that

F ` α ď u ˝ T ´ u.

Writing G :“ F ` α´ u ˝ T ` u we have

G has the same maximizing measures as F .
G ď 0.
For µ PMmaxpF q we have

ş

G dµ “ 0.

6 µ PMpF q ðñ supppµq Ă rG “ 0s.

If u exists: On the support of a maximizing measure G “ 0,
i.e. F ` c is a coboundary.
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Generic unique ergodicity

If we construct a sub-action

µ PMpF q ðñ supppµq Ă rG “ 0s

If MpF q “ tµu then

µ is the unique invariant measure in supppµq.
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One can construct sub-actions as “maximal profits” or “optimal
values” along pre-orbits. For example

upxq “ sup
!

n´1
ÿ

k“0

 

F pT kyq ´ α
(

ˇ

ˇ

ˇ
T npyq “ x , y P X

)

will be a sub-action.

Also
Defining a “Mañé action potential”.
Using methods from “Weak KAM Theory”.
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Lax Operator

MpT q :“ tT -invariant Borel probabilities u

F P LippX ,Rq, LF : LippX ,Rq Ñ LippX ,Rq:

LF puqpxq :“ max
yPT´1pxq

tα` F pxq ` upxq u,

where α :“ ´ max
µPMpT q

ż

F dµ.

Set of maximizing measures

MpF q :“
!

µ PMpT q
ˇ

ˇ

ˇ

ż

F dµ “ ´αpF q
)

.
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Calibrated sub-action

Calibrated sub-action = Fixed point of Lax Operator
= Solution to Bellman equation.

LF puq “ u

write
F :“ F ` α` u ´ u ˝ T .

REMARKS:

1 ´αpF q “ max
µPMpT q

ż

F dµ “ 0.

2 F ď 0.
3 MpF q “MpF q “

!

µ PMpT q
ˇ

ˇ

ˇ
supppµq Ă rF “ 0 s

)

.
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Proposition
If F is Lipschitz then
there exists a Lipschitz calibrated sub-action.

Proof.
1 Prove that Lip

`

LF puq
˘

ď λ
`

Lippuq ` LippF q
˘

.
2 Then LF leaves invariant the space

E :“
!

u P LippX ,Rq
ˇ

ˇ Lippuq ď
λ LippF q

1´ λ

)

.

3 E{{constants} is compact & convex.
LF is continuous on E.

Schauder Thm. ùñ LF has a fixed pt. on E{{constants}.
4 Prove it is a fixed point on E.
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REMARKS

1 If u is a calibrated sub-action:
Every point z P X has a calibrating pre-orbit pzk qkď0 s.t.

#

T ipz´iq “ z0 “ z, @i ě 0;

upzk`1q “ upzk q ` α` F pzk q, @k ď ´1.

Equivalently, since T pzk q “ zk`1,

F pzk q “ 0 @k ď ´1.
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α-limits

Proposition

If Opyq Ă X is a periodic orbit such that for every calibrated
sub-action the α-limit of any calibrating pre-orbit is in Opyq then
every maximizing measure has support in Opyq. Ñ3

Need:

@µ PMpF q supppµq Ă α-limit of calibrating pre-orbits

Ă α-limit of orbits in rF “ 0s
enough : Ă α-limit of orbits in supppµq.

For example:

Extend T to an invertible dynamical system T : XÑ X. Lift µ to a T-invariant µ. The set Y of recurrent points of
T´1 in supppµq has total µ-measure and projects onto a set Y “ πpYq with total measure of points which are
α-limits of pre-orbits in supppµq.
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Shadowing Lemma

Definition
1 pxnqnPN Ă X is a δ-pseudo-orbit if

d
`

xn`1,T pxnq
˘

ď δ, @n P N.
2 A point y P X ε-shadows a pseudo-orbit pxnqnPN if

d
`

T npyq, xn
˘

ă ε, @n P N.
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Proposition (Shadowing Lemma)

If pxk qkPN is a δ-pseudo-orbit
ùñ Dy P X whose orbit ε-shadows pxk q

with ε “ δ
1´λ .

If pxk q is periodic
ùñ y is a periodic point with the same period.

Proof.

a “ λ δ
1´λ .

tyu “
Ş8

k“0 S0 ˝ ¨ ¨ ¨ ˝ Sk
`

Bpxk`1,aq
˘

.
where the inverse branch Sk is chosen such that Sk pT pxk qq “ xk .
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Survey

2 survey articles in Ergodic Optimization by

Oliver Jenkinson.

survey in optimization of Lyapunov exponents by

Djairo Bochi
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Zero entropy

Theorem (Morris)
Let X be a compact metric space and T : X Ñ X an expanding
map. There is a residual set G Ă LippX ,Rq such that if F P G
then there is a unique F-maximizing measure and it has
zero metric entropy.
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Idea of the Proof.
1 Use estimates of Bressaud & Quas to obtain a close return

in supppµq which is not too long in time.
Construct a periodic orbit Ln with it. It has an action
proportional to the distance of the return.

2 Use fnpxq :“ f pxq ´ εdpx ,Lnq

If a measure ν is nearby the closed orbit Ln, then it has
small entropy.
If it is far from Ln then it is not minimizing for the perturbed
function fn.
Those fn form a dense set.

Link to the perturbation 40
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Zero Entropy. Part I. A special periodic orbit.

Lemma
ΣA sub-shift of finite type with M symbols and entropy h.
Then
ΣA contains an orbit of period at most 1`M e1´h.
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Proof:

k ` 1 “ period of shortest periodic orbit in ΣA.

Claim
A word of length k is determined by the symbols it contains.

No periodic orbits of period ď k ùñ any allowed k -word
contains k distinct symbols. (a repeated symbol gives a shortest closed orbit).

Suppose by contradiction
D u, v distinct words of length k with the same symbols.
ùñ D symbols a, b such that
consecutive pabq P u and inverse orderpb ¨ ¨ ¨ aq P v (length ď k )
then pb ¨ ¨ ¨ aqpb ¨ ¨ ¨ aqpb ¨ ¨ ¨ aq ¨ ¨ ¨ is an allowed periodic orbit in
ΣA of period ď k (ñð)
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All k -words have distinct symbols, M “ #alphabet

ùñ at most
ˆ

M
k

˙

words of length k .

` ÞÝÑ #words of period ` “: W p`q is sub-multiplicative in ΣA
( not all can concatenate)

ùñ htoppΣAq “ exp growth of periodic orbits

ď inf
`

1
` log W p`q ď

1
k

log
ˆ

M
k

˙

.

ehtop k “ ehk ď

ˆ

M
k

˙

ď
Mk

k !
ď

ˆ

M e
k

˙k

Taking k -root
k ď M e1´h.

minimal period “ k ` 1 ď 1`M e1´h.
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Bressaud & Quas where interested in how well a maximizing
measure could be approximated by periodic orbits.

Let µ PMpT q be a maximizing measure and K :“ supppµq.

cpν,K q :“ sup
xPsupppνq

dpx ,K q.

Proposition (Bressaud & Quas (2007))

@k P N lim
nÑ8

nk
ˆ

inf
νPPnpT q

cpν,K q
˙

“ 0
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Sketch of proof

Let N ą 0, 0 ă δ ă expansivity constant for K .

G “ minimal pN, δq-generating set for K .

Let ΣA Ă GN be the sub-shift of finite type with symbols in G
and matrix A P t0,1uGˆG defined by

Apx , yq “ 1 ðñ sup
0ďkăN

dpT k pT Nxq,T kyq ă δ.

Apply the Lemma to the shift ΣA (get small periodic orbit).

Use the shadowing lemma to define π : ΣA Ñ neighbourhood
of K . ( N largeùñ smaller neighbourhood)

Finish the estimates.
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Corollary

There are sequences of integers mn P N` and periodic orbits
µn P PNnpT q with period Nn such that

@β Ps0,1r
ż

dpx ,K q dµnpxq “ opβmnq and lim
n

log Nn

mn
“ 0.

K “ suppµ, µ PMpT q.

Just algebraic manipulations from Bressaud & Quas
Proposition.
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Zero Entropy: Part II.

MpF q = maximizing measures for F

Epγq :“ tF P LippX ,Rq | hpµq ă 2 γ htoppT q @µ PMpF q u

O :“ tF P LippX ,Rq | #MpF q “ 1 u

Enough to prove @γ ą 0 Epγq is open and dense.
Because then

G :“ O X
č

nPN
Ep1

n q

is the required generic set.
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1 Epγq is open:
(prove that the complement is closed using the semicontinuity of M and
the semicontinuity of the entropy)

2 Epγq is dense.

Let Nn (= period), mn, µn from the Corollary,

Ln :“ supppµnq (periodic orbit very near K and small period)

Lemma
There are 0 ă θ “ θpT q ă 1 and Kγ ą 0 such that if
n ą Kγ , ν PMpT q, hpνq ě 2γ htoppT q
Then

νpt x P X | dpx ,Lnq ě θmnuq ą γ.
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Lemma ùñ density of Epγq

Replacing F by F “ F ` αpF q ` u ˝ T ´ u can assume that
F ď 0 “ max F , F is Lipschitz. Then

F pxq ď C dpx ,K q, K “ supppµq

Perturb the potential F by

Fnpxq :“ F pxq ´ β dpx ,Lnq.

Want to show Fn P Opγq i.e. @ν P MpFnq hpνq ď 2γ htoppTq.

If hpνq ą 2γ htoppT q use the estimate of the Lemma
ż

dpx ,Lnqdν “ θmn νprx : dpx ,Lnq ě θmnsq ě γ θmn

And F ď Cdpx ,K q to show that in this case ν can not be
maximizing for Fn.
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Since
ş

dpx ,Lnqdν ě γ θmn

and by the Corollary 1
ş

dpx ,K q dµnpxq “ opθmnq

we can choose n such that

β

ż

dpx ,Lnqdν ą C
ż

dpx ,K qdµn

ż

Fn dν “
ż

F dν ´ β
ż

dpx ,Lnqdν

ă 0´ C
ż

dpx ,K qdµn

ď

ż

F dµn “

ż

F n dµn ď ´αpFnq.

ùñ ν is not Fn-maximizing.
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Proof of the Lemma

Use a Markov partition P for T of small diameter ă expansivity ctant.

hpνq “ hpν,Pq ď 1
mn

Hpν,Ppmnqq Ppmnq “
Žmn´1

k“0 T´kP

Wn :“ tA P Ppmnq : dpx ; Lnq ă θmn for some x P A u

Estimate entropy by

hpνq ď
1

mn

ÿ

APWn

νpAq log νpAq `
1

mn

ÿ

ARWn

νpAq log νpAq

very small entropy near the periodic orbit entropy must come from W c
n

Then estimate hpνq ą 2 γ htoppT q ùñ νp
Ť

W c
n q ą γ.
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The Perturbation

Original argument: Yuan & Hunt.
Present argument: Quas & Siefken.
Adapted to pseudo-orbits.

PerpT q :“
ď

pPN`
FixpT pq “ periodic points.

For y P PerpT q:

Py :“
 

F P LippX ,Rq
ˇ

ˇ DF ´maxim. meas. supported on Opyq
(

˝

Py :“ int Py on LippX ,Rq i.e. Opyq is stably the maximizing measure.
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Proposition

Let F , u P LippX ,Rq with LF puq “ u,
F :“ F ` αpF q ` u ´ u ˝ T , and M P N`.

Suppose that
Dδk Ó 0 Dpk -periodic δk -pseudo-orbit pxiq

pk
i“1

in rF “ 0s,
with at most M jumps,

such that for γk :“ min
1ďiăjďpk

dpxi , xjq,

lim
k

γk

δk
“ `8.

Then

F P closure
´

Ť

yPPerpT q

˝

Py

¯

.
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Idea of the Proof:

1 Close the pseudo-orbit using the shadowing lemma.
2 Subtract a channel: Gpxq “ F pxq ´ εdpx ,Opyqq.
3 Will prove that any calibrating pre-orbit for G

has α-limit “ Opyq. Ñ23

4 Each time a calibrating pre-orbit separates from Opyq the
action of G diminishes by a fixed amount.

5 Total action of a calibrating orbit is finite
ùñ expends finite time far from Opyq.

6 (expansivity) ùñ α-limit “ Opyq.
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limn
γn
δn
“ `8.

δ
γ

We close a pseudo-orbit in rF “ 0s.

Size of the jumps δn « the action of the shadowing closed orbit
Opyq.

Distance of the approaches pδn !qγn « how much action is lost

Gpxq “ F pxq ´ εdpx ,Opyqq

when a G-calibrating pre-orbit separates from Opyq.

Ergodic Optimization



Proof of the Perturbation Proposition

Let x1, . . . , xp be a δ-pseudo-orbit in rF “ 0s with at most M
jumps and minimal approach mini,j dpxi , xjq ě γ.

Opyq “ tyiu
p
i“1 closed orbit which shadows txiu

p
i“1.

Shadowing Lemma ùñ AF pOpyqq “
řp

i“1 F pyiq ě ´K δ.

Perturbation Gpxq “ F pxq ´ εgpxq ` β, gpxq :“ dpx ,Opyqq,

β : “ αpF ´ εgq “ ´ sup
µPMpT q

ż

pF ´ εgq dµ

β ď ´AF pµy q ď ´
K δ
p
. (on supp µy : g ” 0)
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v “ Calibrated sub-action for G: LGpvq “ v .

Let tzkukď0 be a calibrating pre-orbit for G.

0 ą t1 ą t2 ą ¨ ¨ ¨ Jump times when the pre-orbit zk separates
from Opyq:

dpztn ,Opyqq ě ρ, ρ « δ ! γ.

z

tn
ztime

0

t n+1

jumping z

O(y)

segment

shadowing
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On a shadowing segment
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tn´1
ÿ

tn`1´1

Gpzk q ´
ÿ

corresp
Gpyk q

loooooomoooooon

each period sumsď0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď LippGq
8
ÿ

i“0

λiρ ď K ρ.

tn´1
ÿ

tn`1´1

Gpzk q ď K δ
loomoon

remainder
ď one period

` K ρ.
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At the jump (when tn`1 ă tn ´ 1)

Gpztn`1q ď F pztn`1q ´ εdpztn`1 ,Opyqq ` β
ď 0´ ε γ ` Kδ

p

When dpzm,Opyqq ă ρ but not the first jump
also estimate Gpzmq ă 0.

Adding:

tn´1
ÿ

tn`1

Gpzk q ď ´εγ ` 2K δ ` Kρ, ρ « δ ! γ.

ă b ă 0.
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On a calibrating pre-orbit

vpz´Nq “ vpz0q `

´1
ÿ

k“´N

Gpzk q.

But v is (Lipschitz) continuous on X ùñ bounded.

Each shadowing segment adds ă b ă 0.

ùñ finitely many jumps.

ùñ The α-limit of the calibrating orbit tznu

is the periodic orbit Opyq.
l

Back to zero entropy 29
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Proof of the Main Theorem

We prove that O :“
Ť

yPPerpT q

˝

Py is open and dense in
LippX ,Rq. It is clearly open.

Argument by Contradiction.

Suppose it is not dense. Then there is an open subset
H ‰ U Ă LippX ,Rq disjoint from O.

By Morris Theorem we can choose F P U such that there is a
unique (ergodic) F -maximizing measure µ and

hµpT q “ 0.
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µ maximizing ùñ for any calibrating sub-action u,
supppµq Ă rF “ 0s.

(here F “ F ` α` u ´ u ˝ T depends on u)

µ is ergodic ùñ there is a generic point q for µ,
i.e. for any continuous function f : X Ñ R

ż

f dµ “ xf ypqq “ lim
N

1
N

N´1
ÿ

i“0

f pT ipqqq.
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Many returns

Since we are arguing by contradiction.
By the perturbation proposition with M “ #jumps “ 2, there is
Q ą 0 and δ0 ą 0 such that if 0 ă δ ă δ0,

pxk qkě0 Ă Opqq is a p-periodic δ-pseudo-orbit
with at most 2 jumps,
made with elements of the positive orbit of q (which is in rF “ 0s).

Then
γ “ min

1ďiăjăp
dpxi , xjq ă

1
2Q δ.

i.e. every closed pseudo-orbit in Opqq with at most 2 jumps
must have an intermediate return with proportion at most 1

2Q.

Main idea: This will contradict the zero entropy of µ.
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Fix a point w P supppµq for which Brin-Katok theorem holds:

hµpT q “ ´ lim
LÑ`8

1
L

logµ
`

V pw ,L, εq
˘

,

where V pw ,L, εq, L P N, ε ą 0 is the dynamic ball

V pw ,L, εq :“
 

x P X
ˇ

ˇ dpT kx ,T kwq ă ε, @k “ 0, . . . ,L u.

Since T is an expanding map, for ε ă e0 small we have

V pw ,L, εq “ S1 ˝ ¨ ¨ ¨SL
`

BpT Lw , εq
˘

,

for an appropriate sequence of inverse branches Si .
Thus

V pw ,L, εq Ď Bpw , λLεq.
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Main idea:

The measure of V pw ,L, εq can be estimated by the proportion
of the orbit of q which is spent on it.
approximating the characteristic function by a continuous fn.

If the measure of V pw ,L, εq decreases exponentially with L it
contradicts hµpT q “ 0.

We estimate the measure of the ball Bpw , λLεq Ą V pw ,L, εq.

Using the perturbation proposition we shall see that: Two
consecutive visits of the orbit of q in the ball Bpw , λLεq
give rise to (exponentially) many intermediate returns
(or approximations) which are outside the ball.

Thus the measure of the ball decreases exponentially with L.
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Let N0 be such that 2Q´N0 ă δ0.
For N ą N0 let 0 ď tN

1 ă tN
2 ă ¨ ¨ ¨ be all the Q´N returns to w ,

i.e.
 

tN
1 , t

N
2 , . . .

(

“
 

n P N
ˇ

ˇ dpT nq,wq ď Q´N (

.

q “Generic point. w “ Brin-Katok point.

Proposition

For any ` ě 1, tN
``1 ´ tN

` ě
?

2
N´N0´1

.

From this

µ
`

Bpw ,Q´Nq
˘

ď
1

?
2

N´N0´1 .

And then µ
`

V pw ,L, εq
˘

ď µ
`

Bpw , λLεq
˘

decreases
exponentially with L.
This contradicts the zero entropy.
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Inductive process

N− 2

N− 1

N− 3

N− 3

N− 3

N− 3

N− 3

N− 3 

N− 3

N− 2

N− 2
N− 2

N− 1

N

N− 1

N− 2

N− 2

N− 2

N− 2

N− 1

N

N− 1

N− 1

N

A cascade of approaches implies by the inductive process
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An example of a distribution of returns implied by the perturbation lemma
and the tree representing it.
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Want to estimate the length of an orbit segment with a return of
size Q´N and show that it grows exponentially with N.

2 ways of counting:
Count black nodes = when the end point of a new
approach was not counted before.
Count branches of the tree using

Lemma

If K“ rF “ 0s has no periodic points then Dδ0 ą 0 @δ P r0, δ0r

s.t. any pseudo-orbit in K with ď 2 jumps has length at least
100.
length of the pseudo orbits areě 100, don’t care much if we counted the endpoints.
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The triangle

1
1

B

B−11

1

?

B 0

B

B−1

0

?

The black approach is a B ´ 1 approach. But the red approach is also a
B ´ 1 approach because the implied approach is of size 1

2 Q´B`1 and

1
2 Q´B`1

`Q´B
ă Q´B`1.

So we draw the red line and shadow the triangle.

The two “sides” of the triangle are new closed pseudo-orbits.
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00 1 1 0 2

1

11 0 2 01N− 4

N− 3

N− 2

N− 1

N

10

0 1 1

1 012010

1

00

N− 1

N− 3

N− 4

N− 4

N− 3

N− 3

N− 2

N− 4

N− 3  

N− 4

N− 4
N− 4

N− 4

N− 4

N− 4

N

N− 1

N− 2

N− 2
N− 2

N− 3

N− 3

N− 3

tN
``1 ´ tN

` ě #t black nodes in the tree u.

 “ black node, b “ white node.
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The square

0

B

B−1

B−1 B−1

B−2
0

B

?

B

1

?

0

0

When both endpoints of the new B ´ 2 approach are endpoints of previous
approaches. Then the four endpoints are B ´ 2 approaches because

1
2 Q´B`2

`Q´B`1
ă Q´B`2

1
2 Q´B`2

`Q´B
ă Q´B`2.

We draw both lines and shadow the rectangle.
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1

0

0

B

B

B

B−1

B−1

B−1

B

0

0

0

?

0

0

1

0

0

0

0

0

1

? 0

?

?

?

Possible nodes ending a branch with a label 0,
i.e. child pseudo-orbits of a periodic 1-pseudo-orbit with only one jump.
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1 1

B−1

1

1

0 1

0

02

B−1

0

0 0 0

11

? 1

B

B

B−1

B−1

0

B

B

?

1

0

?

2

2

B−1

B

B

11

? 1

B

B

?

?

?

?

0

1

0

0

All possible nodes ending a branch with a label 1,
i.e. child specifications of a periodic 1-specification with two jumps.
A white dot 0b 0 or a 2 0 (3-jump) is always followed by at least one
approach with a 0 (1-jump) which re-starts the duplication process.
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0

10

0

1

0 0 0
1 0

00
10

00
10

0

0

0

0 0

0 0

1 1

0

0

0

0 0

0

0
1

1

0
0

0 2

0 2

1
0
0

0

1 1

1 1

0 2 1 1

1 1

1 1

1 1

0 1

0 0

0

0
1

1

0
0

10

1 1 1 1

10

1 1

1
0
0

0

00
01

00
10

0

1

0

0

0 0
1 0

00
01

00

Possible 2-steps in the tree. They have:

At least two black nodes in levels N ´ 1, N ´ 2.

At least two ending branches at level N ´ 2.

ùñ there is duplication of points every two levels: exponential growth with rate
?

2.
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The process continues as long as Q´M ă δ0, i.e.
N0 ă M ă N.

The number of nodes duplicates every 2 steps in the tree.

#t black nodes u ě 2
N´N0´1

2 “
?

2
N´N0´1

.
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