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0 1
Each point has a neighborhood of fixed size where the inverse

T-' has d = 2 branches, and they are contractions
(A = J-Lipschitz).
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X compact metric space.

T : X — X an expanding map i.e.

TeC® 3dezZ*, I0<A<1, Jg >0 sit.
Vx € X the branches of T~ are A-Lipschitz, i.e.
Vxe X 3S;:B(x,e) — X,i=1,...,0x <d,

d(Si(y), Si(z)) < Ad(y, 2),

T o S; = Ipx,e)s
Si o Tla(si(x), rep) = IB(S/(x), ren)-
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X compact metric space.

T : X — X expanding map, F € Lip(X,R).

A maximizing measure is a T-invariant Borel probability ;» on X
such that

JF dp = max { J F dv ‘ v invariant Borel probability }

If X is a compact metric space and T : X — X is an expanding
map then there is an open and dense set O c Lip(X,R) such
that for all F € O there is a single F-maximizing measure and it
is supported on a periodic orbit.

link to the proof 49
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Maximizing measures are called ground states because
if F > 0 and 1z is the invariant measure satisfying

pp = argmax {hy<T)+ﬂdeV}

v inv. measure

(the equilibrium state for 5 F)

(B = 1? = the inverse of the temperature)

then any limit lim 5, (a zero temperature limit)
Bx—+0

is @ maximizing measure (a ground state).
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@ Bousch, Jenkinson: There is a residual set ¢/ = C°(X,R)
s.t. F e Y = F has a unique maximizing measure and
it has full support.

@ Yuan & Hunt:
Generically periodic maximizing measures are stable.
(i.e. same maximizing measures for perturbations of the
potential in Hélder or Lipschitz topology.)
Non-periodic maximizing measures are not stable in
Holder or Lipschitz topology.

@ Contreras, Lopes, Thieullen:
Generically in C*(X,R) there is a unique maximizing
measure.
If F e C*(X,R), then F can be approximated in the C”
topology < « by G with the maximizing measure
supported on a periodic orbit.
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@ Bousch: Proves a similar result for Walters functions:
Ve>036>0

Vne N, Vx,yeX, dnx,y) <o = |SpF(x)— SpF(y)| <e.
dn(x.y) == sup d(T'(x), T'(y)).
i

=0,...,n
@ Quas & Siefken: prove a similar result for super-continuous

functions.
(functions whose local Lipschitz constant converges to 0 at
a given rate: here X is a Cantor set or a shift space).
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For example in a subshift of finite type (X is a Cantor set)
locally constant functions have periodic maximizing measures.

But those functions are not dense in C*(X,R) or Lip(X,R).

And they are not well adapted for applications to Lagrangian
dynamics or twist maps with continuous phase space X.
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Write

o= Oé( = — maxX J‘F d,u (Mafé’s critical value)
HeEM(T

Set of maximizing measures

M(F) := {,L e M(T) ] de,L — —a(F) }
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There is a generic set G in Lip(X,R) such that

VFeg #M(F) = 1.
Moreover, for F € G, ju € M(F)

supp i Is uniquely ergodic.
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Enough to prove
O(e) :={F € Lip(X,R) | diamM(F) < &}
is open and dense.
Because then take
G:= () 0%
neN+

will have G is generic and G < {F : #M(F) = 1}.

Open = upper semicontinuity of M(F).

(limits of minimizing measures are minimizing)
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Density of O(e).

Want to approximate any Fy € Lip(X,R) by elements in O(e).
Let F = {fo}nen+ be adense setin Lip(X,R) n [|f]g,, < 1].
We use fy = —Fq the original potential.

d(,v) = 3] o [h) = v(f)].

neN

is a metric on M(T).
Take a finite dimensional approximation of M(T) by projecting
v : M(T) — RN*1 (integrals of test functions)

(k) = (= p(Fo), u(Fr), - s ).

diam(my'{x}) < ey = Jv — 0.

Ergodic Optimization



a(Fo) = argmin{ u(~Fo) | e M(T) )
Ky := mn(M(T)) is a convex subset in RN+1
and [xo = «] is a supporting hyperplane for Ky.

Use your favourite argument to perturb the hyperplane so that it
touches Ky in a unique (exposed) point y.

Xo

T (M(T))
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The new supporting hyperplane has normal vector
(1,2,...,2n). The touching (exposed) point is

y :=mn(argmin m{—G}) = nn(M(G))
~G=—Fo+ XN 120 fn

Then diam M(G) < diam 7y (V) < en = 5.

So Ge O(ey) and Gis very nearto Fp. [
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A sub-action is a Lispchitz function u € Lip(X,R) such that
F+a<uoT-—u.
Writing G:= F + o —uo T + uwe have
@ G has the same maximizing measures as F.
e GkO.
@ For ju € Mmax(F) we have { Gdu = 0.
peM(F) <= supp(u)c[G=0].

If u exists: On the support of a maximizing measure G = 0,
i.e. F + cis acoboundary.
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Generic unique ergodicity

If we construct a sub-action
peM(F) <= supp(p) c|[G=0]
If M(F) = {u} then

w is the unique invariant measure in supp(u).
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One can construct sub-actions as “maximal profits” or “optimal
values” along pre-orbits. For example

n—1
u(x) = sup{ 2 {F(Tky) —a} ‘ T"(y)=x, ye X}
k=0

will be a sub-action.

Also
@ Defining a “Mané action potential”.
@ Using methods from “Weak KAM Theory”.
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M(T) := { T-invariant Borel probabilities }

Felip(X,R),  Lf:Lip(X,R) — Lip(X,R):

Lr(u)(x):= max {a+ F(x)+ u(x)},
yeT=1(x)
where «:= — max JF du.
neM(T)

Set of maximizing measures

M(F) = { e M(T) | deu - —a(F)}.
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Calibrated sub-action = Fixed point of Lax Operator
= Solution to Bellman equation.

Lr(u)=u

write
F=F+a+u—uoT.
REMARKS:
—a(F) = Fdp=

® - may [Fan-o
@ F<oO
@ M(F) =M(F) = { e M(T) | supp(n) = [F = 0]}
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If F is Lipschitz then
there exists a Lipschitz calibrated sub-action.

@ Prove that Lip (£r(u)) < A (Lip(u) + Lip(F)).
© Then Lr leaves invariant the space

E = {u e Lip(X,R) | Lip(u) < A1L'_p(f) }

() IE/{constants) IS compact & convex.
LF is continuous on .
Schauder Thm. = LF has a fixed pt. on E/;constants}-

© Prove it is a fixed point on E.

Ol

4
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@ If uis a calibrated sub-action:
Every point z € X has a calibrating pre-orbit (zx)x<o S.t.

T(z_) =2 = 2, Vi=0;
u(zx1) = u(zg) + o + F(zk), Vk < —1.

Equivalently, since T(zx) = zx. 1,

F(zk)=0 Vk<*1.
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If O(y) = X is a periodic orbit such that for every calibrated
sub-action the «-limit of any calibrating pre-orbit is in O(y) then
every maximizing measure has supportin O(y). —s

Need:

Ve M(F) supp(p) < a-limit of calibrating pre-orbits

c a-limit of orbits in [F = 0]
enough : < a-limit of orbits in supp(u).

For example:

Extend T to an invertible dynamical system T : X — X. Lift x to a T-invariant 7z. The set Y of recurrent points of
T Vin supp(z) has total z-measure and projects onto a set Y = «(Y) with total measure of points which are
a-limits of pre-orbits in supp ().
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Definition

Q@ (Xn)nen < Xis a §-pseudo-orbit if
d(Xp+1, T(Xn)) <94, VneN.

@ A point y € X e-shadows a pseudo-orbit (Xp)nen if
d(T"(y),xn) <&, VYneN.
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If (Xk)ken IS @ 0-pseudo-orbit
= dy € X whose orbit c-shadows (x)

i &
withe = 5.

If (xx) is periodic
— y Is a periodic point with the same period.

)

_ A
a - m.
0]
{y} =Nik—oSoo---0Sk(B (Xk+1,a))
where the inverse branch Sy is chosen such that Sk T X = Xk- D

BT
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2 survey articles in Ergodic Optimization by

Oliver Jenkinson.

survey in optimization of Lyapunov exponents by

Djairo Bochi
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Let X be a compact metric space and T : X — X an expanding
map. There is a residual set G — Lip(X,R) such thatif F € G
then there is a unique F-maximizing measure and it has

zero metric entropy.
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Idea of the Proof.

@ Use estimates of Bressaud & Quas to obtain a close return
in supp(n) which is not too long in time.
Construct a periodic orbit L, with it. It has an action
proportional to the distance of the return.

Q Use fy(x) := f(x) —ed(x, Lp)
If a measure v is nearby the closed orbit Ly, then it has
small entropy.
If it is far from L, then it is not minimizing for the perturbed
function f,.
Those f, form a dense set.

Link to the perturbation 40
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A special periodic orbit.

Y 4 sub-shift of finite type with M symbols and entropy h.
Then
Y 4 contains an orbit of period at most1 + M e'~—".
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k + 1 = period of shortest periodic orbit in ¥ 4.

A word of length k is determined by the symbols it contains.

No periodic orbits of period < k = any allowed k-word
contains k distinct symbols. (arepeated symbol gives a shortest closed orbit).
Suppose by contradiction

3 u, v distinct words of length k with the same symbols.

= 34 symbols a, b such that

consecutive (ab) € u and inverse order(b- - - a) € v (length < k)
then (b---a)(b---a)(b---a)--- is an allowed periodic orbit in
Y 4 of period < k (=<)
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All k-words have distinct symbols, M = #alphabet
— at most <A:> words of length k.
¢ — #words of period ¢ =: W(¢) is sub-multiplicative in 4

( not all can concatenate)
— htop(Xa) = exp growth of periodic orbits

: 1 M
1 )
< n2f 7log W(l) < K log (k) :

M MK Me\ X
hiop Kk Shk
e’ =e <(k)gk!<<k>

Taking k-root
k<Me' ™"

minimal period = k+1<1+Me'™". O
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Bressaud & Quas where interested in how well a maximizing
measure could be approximated by periodic orbits.

Let € M(T) be a maximizing measure and K := supp(u).

c(v,K):= sup d(x,K).

xesupp(v)

VkeN lim nk< inf_ c(v, K)) =0

n—oo vePp(T)
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Let N >0, 0 < J < expansivity constant for K.

G = minimal (N, ¢)-generating set for K.

Let ¥4 = G be the sub-shift of finite type with symbols in G
and matrix A € {0, 1}6*C defined by

Ax,y)=1 < sup d(TK(T"x), Tky) <.
0<k<N

Apply the Lemma to the shift 4 (get small periodic orbit).

Use the shadowing lemma to define 7 : ¥ 4 — neighbourhood

Of K ( N large = smaller neighbourhood)

Finish the estimates.
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There are sequences of integers m, € N* and periodic orbits
wn € Py, (T) with period Ny, such that

VB €]0, 1]

logN, 0

fd(x, K) dun(x) = o(8™) and Iirr7n

Mmp

K=suppu,  peM(T).

Just algebraic manipulations from Bressaud & Quas
Proposition.
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M(F) = maximizing measures for F
E(y) :={F e Lip(X,R) | h(n) <27 hiop(T) vy € M(F) ]

O :={Felip(X,R) | #M(F)=1}

Enough to prove Vy >0  &(v) is open and dense.
Because then

G=0n (&)

neN

is the required generic set.
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Q £(v) is open:
(prove that the complement is closed using the semicontinuity of M and
the semicontinuity of the entropy)

©Q &(v) is dense.

Let Nj =perio), Mp, un from the Corollary,

Ln = Supp(/j,n) (periodic orbit very near K and small period)

There are0 <6 = 6(T) < 1 and K, > 0 such that if
n>K, veM(T), h(v)=2yhg(T)
Then

v({xe X |d(x,Ln) = 0™}) > .
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Replacing F by F = F 4+ «(F) + uo T — u can assume that
F <0 =maxF, Fis Lipschitz. Then

F(X) < Cd(Xv K)7 K = Supp(,u)
Perturb the potential F by
Fn(x) := F(x) — 8d(x,Lp).

Want to show Fp € O(v) i.e. Vv € M(Fp) h(v) < 2 hyp(T).
If h(v) > 27 hip(T) use the estimate of the Lemma

Jd(X, Ly)ydv =60 v([x:d(x,Ly) =0™]) =~0™

And F < Cd(x, K) to show that in this case v can not be
maximizing for Fp.
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Since §d(x,Ly) dv =~6™
and by the Corollary 1 {d(x, K) dpun(x) = o(8™)
we can choose n such that

B f d(x,Ly) dv > C J d(x, K) dyn

andu = JFdI/ - B Jd(X, L) dv
<0—CJd(X,K) dpn

= v is not F,-maximizing. O
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Use a Markov partition P for T of small diameter < expansivity ctant.
h(v) = h(v,P) < minH(y, P(mn)) PO™) = \/ T Tk

W, = {AePU™) : d(x;L,) < 6™ for some x € A}

Estimate entropy by

1 1
h(v) < — > v(A) logv(A) + — > v(A) logv(A)
mn mn
Ae Wn A¢ Wn
very small entropy near the periodic orbit entropy must come from W,f

Then estimate h(v) > 2 hyp(T) = v(|J WS) > 7.
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@ Original argument: Yuan & Hunt.
@ Present argument: Quas & Siefken.
@ Adapted to pseudo-orbits.

Per(T) := |_J Fix(TP) = periodic points.
peN+

Fory e Per(T):
Py := { F € Lip(X,R) | 3F — maxim. meas. supported on O(y) }

o
Py = int ]P)y on Llp(X, R) i.e. O(y) is stably the maximizing measure.
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Let F, ue Lip(X,R) with Lg(u) = u,
F:=F+a(F)+u—uoT,andMeN*.

Suppose that
36k | 0 3 p-periodic 5 -pseudo-orbit (x;)7%,
in [F = 0],
with at most M jumps,
such that for Y= min d(x;, X)),
1<i<j<px
. Ok
lim—=— = .
|,r(n 5k +00
Then

Fe closure(UyePe,(T) Py>.
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@ Close the pseudo-orbit using the shadowing lemma.
@ Subtract a channel: G(x) = F(x) —ed(x,O(y)).

© Will prove that any calibrating pre-orbit for G
has a-limit = O(y). -2

© Each time a calibrating pre-orbit separates from O(y) the
action of G diminishes by a fixed amount.

© Total action of a calibrating orbit is finite
— expends finite time far from O(y).

Q (expansivity) = a-limit = O(y).
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We close a pseudo-orbit in [F = 0].

Size of the jumps §, ~ the action of the shadowing closed orbit
o).
Distance of the approaches (0, <)y, ~ how much action is lost

G(x) = F(x) —ed(x,0(y))

when a G-calibrating pre-orbit separates from O(y).
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Let xi,..., X, be a 5-pseudo-orbit in [F = 0] with at most M
jumps and minimal approach min; ; d(x;, x;) = 7.

O(y) = {yi}Y_, closed orbit which shadows {x;}"_,.
Shadowing Lemma = Az(O(y)) = 35, F(y;) = —K 6.
Perturbation G(x) = F(x) — eg(x) + 3, g(x) :=d(x,0(y)),

B:=a(F—eg9)=— sup [(F—eg)dp
neM(T)
K¢
6 < —Af(/,ty) < *? (on supp py: g = 0)
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v = Calibrated sub-action for G: Lg(v) =v.
Let {zx} k<o be a calibrating pre-orbit for G.

0>t > >--- Jump times when the pre-orbit z, separates
from O(y):
d(z;,,0y)) = p, prI<.

jumping Zy
time b

ztn+l

shadowing
segment
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On a shadowing segment

th—1

o)
Gz - D) G | <Lip(G)Y Np<Kp.
thy1—1 corresp i=0

—— —
each period sums <0

th—1
Y Gz < Kb +Kp.

thyq1—1 remainder
< one period
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At the jJump whent, 1 <t —1)

?(ztn.m) —€ d(zfn+1 ) O(y)) + 6
0 Ké

When d(z;, O(y)) < p but not the first jump
also estimate G(z) < 0.

Adding:
th—1

3 G(zk)<+2K5+Kp, pa <.

th41
<b<0.
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On a calibrating pre-orbit
v(z_n) = v(Zp) Z G(zk).

But v is (Lipschitz) continuous on X = bounded.
Each shadowing segment adds < b < 0.
— finitely many jumps.

—  The a-limit of the calibrating orbit {z,}
is the periodic orbit O(y).
O

Back to zero entropy 29
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We prove that O := | cper(7) Py is open and dense in
Lip(X,R). Itis clearly open.

@ Argument by Contradiction.

Suppose it is not dense. Then there is an open subset
g # U < Lip(X,R) disjoint from O.

By Morris Theorem we can choose F € U such that there is a
unique (ergodic) F-maximizing measure y and

h,(T) = 0.
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p maximizing = for any calibrating sub-action v,
B supp(u) < [F = 0].
(here F = F+a+ u—uo T depends on u)

u is ergodic = there is a generic point q for p,
i.e. for any continuous function 7 : X — R

[ran-naa 2
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Since we are arguing by contradiction.
By the perturbation proposition with M = #jumps = 2, there is
Q > 0and dg > O such thatif 0 < § < o,

@ (Xk)k=0 < O(Qq) is a p-periodic 4-pseudo-orbit

@ with at most 2 jumps,

@ made with elements of the positive orbit of g whicnhisin [F = o).

Then

v=_min d(x,x) < Q6.
1<i<j<p

i.e. every closed pseudo-orbit in O(q) with at most 2 jumps
must have an intermediate return with proportion at most %Q.

Main idea: This will contradict the zero entropy of L.

Ergodic Optimization



Fix a point w € supp(u) for which Brin-Katok theorem holds:

. 1
LETOC Z |Og M(V(W* L7 E))?

where V(w, L,e), Le N, ¢ > 0 is the dynamic ball

h,,(T) -

V(w,Le) = {xeX|d(Tx, T"w) < ¢, ¥k =0,...,L}.

Since T is an expanding map, for e < ey small we have
V(w,Le)=Syo0---S(B(Ttw,e)),

for an appropriate sequence of inverse branches S;.
Thus
V(w,Le) < B(w,\e).

Ergodic Optimization



The measure of V(w, L, ) can be estimated by the proportion
of the orbit of g which is spent on it.

approximating the characteristic function by a continuous fn.

If the measure of V(w, L, <) decreases exponentially with L it
contradicts h,(T) = 0.

We estimate the measure of the ball B(w, \e) o V(w, L, ¢).

Using the perturbation proposition we shall see that: Two
consecutive visits of the orbit of g in the ball B(w, \e)
give rise to (exponentially) many intermediate returns

(or approximations) which are outside the ball.

Thus the measure of the ball decreases exponentially with L.
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Let Np be such that 2Q M < §,.
For N> Nglet0 < tN <t < ... be all the QN returns to w,
i.e.

(Nt} ={neN|d(T"q,w)<Q "N}

q =Generic point. w = Brin-Katok point.

Forany¢>1, N, —tN> v2h e,

From this
1

\/EN7N0—1 :

And then 1(V(w. L)) < pu(B(w, A\te)) decreases
exponentially with L.
This contradicts the zero entropy.
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A cascade of approaches implies by the inductive process
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N-2 N-2
N
N-3 N-3
N-1 N
N-3
N-2
N-2
N3 N-2
N-3 0® o 18 8y N-3y_ N-3

An example of a distribution of returns implied by the perturbation lemma
and the tree representing it.
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Want to estimate the length of an orbit segment with a return of
size QN and show that it grows exponentially with N.
2 ways of counting:

@ Count black nodes = when the end point of a new
approach was not counted before.

@ Count branches of the tree using

If K= [F = 0] has no periodic points then 35 > 0 V¢ € [0, 5o[
s.t. any pseudo-orbit in K with < 2 jumps has length at least
100.

length of the pseudo orbits are = 100, don’t care much if we counted the endpoints.
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\ B ‘g

B

The black approach is a B — 1 approach. But the red approach is also a
B — 1 approach because the implied approach is of size %Q*B“ and

Qo f<q
So we draw the red line and shadow the triangle.

The two “sides” of the triangle are new closed pseudo-orbits.
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tN . — tN > #{ black nodes in the tree }.

@ = black node, ® = white node.




When both endpoints of the new B — 2 approach are endpoints of previous
approaches. Then the four endpoints are B — 2 approaches because

%Q—B+2 + QfB#»T < Q—B+2
QP20 ® <@t

We draw both lines and shadow the rectangle.
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790
O0e0 ? B-1
/ : 0®0
2 B
2
\ B
\ . B-1
le0 ?
B-1
B

Possible nodes ending a branch with a label 0,
i.e. child pseudo-orbits of a periodic 1-pseudo-orbit with only one jump.

Ergodic Optimization



UJ
w

All possible nodes ending a branch with a label 1,
i.e. child specifications of a periodic 1-specification with two jumps.

A white dot 0 ® 0 or a 2 @ 0 (3-jump) is always followed by at least one
approach with a 0 (1-jump) which re-starts the duplication process.
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A 0g 0
' ofnl
' \
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Possible 2-steps in the tree. They have:

@ At least two black nodes inlevels N —1, N — 2.
@ At least two ending branches at level N — 2.

— there is duplication of points every two levels: exponential growth with rate /2.
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@ The process continues as long as QM < 4y, i.e.
No <M < N.

@ The number of nodes duplicates every 2 steps in the tree.

#{black nodes } > 2" 2 = v2" 7",
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