Ergodic Optimization

Gonzalo Contreras

CIMAT Guanajuato, Mexico

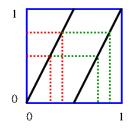
CIRM, Marseille. May, 2019.

Ergodic Optimization

イロン 不同 とくほ とくほ とう

2

 $T: [0,1] \rightarrow [0,1], \quad T(x) = 2x \mod 1.$



Each point has a neighborhood of fixed size where the inverse T^{-1} has d = 2 branches, and they are contractions $(\lambda = \frac{1}{2}$ -Lipschitz).

Ergodic Optimization

ヘロト ヘアト ヘビト ヘビト

ъ

X compact metric space.

 $T : X \to X \text{ an expanding map i.e.}$ $T \in C^{0}, \quad \exists d \in \mathbb{Z}^{+}, \quad \exists 0 < \lambda < 1, \quad \exists e_{0} > 0 \quad \text{s.t.}$ $\forall x \in X \text{ the branches of } T^{-1} \text{ are } \lambda \text{-Lipschitz, i.e.}$ $\forall x \in X \quad \exists S_{i} : B(x, e_{0}) \to X, i = 1, \dots, \ell_{x} \leq d,$

 $d(S_i(y), S_i(z)) \leq \lambda d(y, z),$

 $\begin{cases} T \circ S_i = I_{B(x,e_0)}, \\ S_i \circ T|_{B(S_i(x),\lambda e_0)} = I_{B(S_i(x),\lambda e_0)}. \end{cases}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

X compact metric space.

 $T: X \rightarrow X$ expanding map, $F \in Lip(X, \mathbb{R})$.

A maximizing measure is a *T*-invariant Borel probability μ on *X* such that

$$\int F d\mu = \max \left\{ \int F d
u \mid
u \text{ invariant Borel probability}
ight\}.$$

Theorem

If X is a compact metric space and $T : X \to X$ is an expanding map then there is an open and dense set $\mathcal{O} \subset Lip(X, \mathbb{R})$ such that for all $F \in \mathcal{O}$ there is a single F-maximizing measure and it is supported on a periodic orbit.

ヘロト 人間 とくほとくほとう

Maximizing measures are called *ground states* because if $F \ge 0$ and μ_{β} is the invariant measure satisfying

$$\mu_{\beta} = \operatorname*{argmax}_{\nu \text{ inv. measure}} \left\{ h_{\nu}(T) + \beta \int F \, d\nu \right\}$$

(the equilibrium state for β *F*)

 $(\beta = \frac{1}{\tau} =$ the inverse of the temperature)

then any limit $\lim_{\beta_k \to +\infty} \mu_{\beta_k}$ (a zero temperature limit) is a maximizing measure (a ground state).

Ergodic Optimization

<ロ> <問> <問> < 回> < 回> < □> < □> <

- Bousch, Jenkinson: There is a residual set U ⊂ C⁰(X, ℝ) s.t. F ∈ U ⇒ F has a unique maximizing measure and it has full support.
- Yuan & Hunt:

Generically periodic maximizing measures are stable. (i.e. same maximizing measures for perturbations of the potential in Hölder or Lipschitz topology.) Non-periodic maximizing measures are not stable in Hölder or Lipschitz topology.

 Contreras, Lopes, Thieullen: Generically in C^α(X, ℝ) there is a unique maximizing measure.

If $F \in C^{\alpha}(X, \mathbb{R})$, then *F* can be approximated in the C^{β} topology $\beta < \alpha$ by *G* with the maximizing measure supported on a periodic orbit.

・ロト ・ 理 ト ・ ヨ ト ・

• Bousch: Proves a similar result for Walters functions: $\forall \varepsilon > 0 \ \exists \delta > 0$

 $\forall n \in \mathbb{N}, \quad \forall x, y \in X, \quad d_n(x, y) < \delta \implies |S_n F(x) - S_n F(y)| < \varepsilon. \\ d_n(x, y) := \sup_{i=0, \dots, n} d(T^i(x), T^i(y)).$

Quas & Siefken: prove a similar result for super-continuous functions.

(functions whose local Lipschitz constant converges to 0 at a given rate: here X is a Cantor set or a shift space).

For example in a subshift of finite type (X is a Cantor set) locally constant functions have periodic maximizing measures.

But those functions are not dense in $C^{\alpha}(X, \mathbb{R})$ or $Lip(X, \mathbb{R})$. And they are not well adapted for applications to Lagrangian dynamics or twist maps with continuous phase space *X*.

Write

$$lpha:=lpha({m F}):=-\max_{\mu\in \mathcal{M}({m T})}\int {m F}\; {m d}\mu.$$
 (Mañé's critical value)

Set of maximizing measures

$$\mathbb{M}(F) := \Big\{ \mu \in \mathcal{M}(T) \Big| \int F \, d\mu = -\alpha(F) \Big\}.$$

Ergodic Optimization

ヘロト 人間 とくほとくほとう

₹ 990

Generic Uniqueness of minimizing measures

Theorem (Contreras, Lopes, Thieullen)

There is a generic set \mathcal{G} in $Lip(X, \mathbb{R})$ such that

 $\forall F \in \mathcal{G} \qquad \#\mathbb{M}(F) = 1.$

Moreover, for $F \in G$ *,* $\mu \in \mathbb{M}(F)$

 $\operatorname{supp} \mu$ is uniquely ergodic.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proof:

Enough to prove

 $\mathcal{O}(\varepsilon) := \{ F \in Lip(X, \mathbb{R}) \mid diam \, \mathbb{M}(F) < \varepsilon \}$

is open and dense.

Because then take

$$\mathcal{G} := \bigcap_{n \in \mathbb{N}^+} \mathcal{O}(\frac{1}{n})$$

will have \mathcal{G} is generic and $\mathcal{G} \subset \{F : \#\mathbb{M}(F) = 1\}.$

Open = upper semicontinuity of $\mathbb{M}(F)$.

(limits of minimizing measures are minimizing)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Density of $\mathcal{O}(\varepsilon)$.

Want to approximate any $F_0 \in Lip(X, \mathbb{R})$ by elements in $\mathcal{O}(\varepsilon)$. Let $\mathbb{F} = \{f_n\}_{n \in \mathbb{N}^+}$ be a dense set in $Lip(X, \mathbb{R}) \cap [||f||_{sup} \leq 1]$. We use $f_0 = -F_0$ the original potential.

$$\boldsymbol{d}(\boldsymbol{\mu},\boldsymbol{\nu}) = \sum_{\boldsymbol{n}\in\mathbb{N}} \frac{1}{2^n} |\boldsymbol{\mu}(\boldsymbol{f}_n) - \boldsymbol{\nu}(\boldsymbol{f}_n)|.$$

is a metric on $\mathcal{M}(T)$. Take a finite dimensional approximation of $\mathcal{M}(T)$ by projecting $\pi_{N} : \mathcal{M}(T) \to \mathbb{R}^{N+1}$ (integrals of test functions)

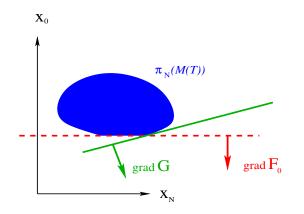
$$\pi_{\boldsymbol{N}}(\mu) := \big(-\mu(\boldsymbol{F}_0), \mu(\boldsymbol{f}_1), \dots, \mu(\boldsymbol{f}_N)\big).$$

diam
$$(\pi_N^{-1}{x}) \leq \varepsilon_N = \frac{1}{2^N} \to 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{aligned} &\alpha(F_0) = \operatorname{argmin}\{\mu(-F_0) \mid \mu \in \mathcal{M}(T)\} \\ &\mathbb{K}_N := \pi_N(\mathcal{M}(T)) \text{ is a convex subset in } \mathbb{R}^{N+1} \\ & \text{and } [x_0 = \alpha] \text{ is a supporting hyperplane for } \mathbb{K}_N. \end{aligned}$

Use your favourite argument to perturb the hyperplane so that it touches \mathbb{K}_N in a unique (exposed) point \overline{y} .



・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The new supporting hyperplane has normal vector $(1, z_1, ..., z_N)$. The touching (exposed) point is

$$\overline{y} := \pi_N(\operatorname{argmin}_{\mathcal{M}(T)} \{-G\}) = \pi_N(\mathbb{M}(G))$$
$$-G = -F_0 + \sum_{n=1}^N z_n \cdot f_n$$

Then diam $M(G) \leq \text{diam } \pi_N^{-1}(\overline{y}) \leq \varepsilon_N = \frac{1}{2^N}$. So $G \in \mathcal{O}(\varepsilon_N)$ and *G* is very near to F_0 .

ヘロト 人間 とくほ とくほ とう

3

A sub-action is a Lispchitz function $u \in Lip(X, \mathbb{R})$ such that

 $F + \alpha \leq u \circ T - u$.

Writing $G := F + \alpha - u \circ T + u$ we have

- *G* has the same maximizing measures as *F*.
- $G \leq 0$.
- For $\mu \in \mathcal{M}_{max}(F)$ we have $\int G d\mu = 0$.
- $\therefore \quad \mu \in \mathbb{M}(F) \quad \Longleftrightarrow \quad \mathsf{supp}(\mu) \subset [G = \mathbf{0}].$

If *u* exists: On the support of a maximizing measure G = 0, i.e. F + c is a coboundary.

Ergodic Optimization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If we construct a sub-action

 $\mu \in \mathbb{M}(F) \iff \operatorname{supp}(\mu) \subset [G=0]$ If $\mathbb{M}(F) = \{\mu\}$ then

 μ is the unique invariant measure in supp (μ) .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

One can construct sub-actions as "maximal profits" or "optimal values" along pre-orbits. For example

$$u(x) = \sup\left\{\sum_{k=0}^{n-1} \left\{F(T^k y) - \alpha\right\} \mid T^n(y) = x, \ y \in X\right\}$$

will be a sub-action.

Also

- Defining a "Mañé action potential".
- Using methods from "Weak KAM Theory".

▲ @ ▶ ▲ 三 ▶ ▲

글 > 글

 $\mathcal{M}(T) := \{ T \text{-invariant Borel probabilities} \}$

 $F \in Lip(X, \mathbb{R}), \qquad \mathcal{L}_{F} : Lip(X, \mathbb{R}) \to Lip(X, \mathbb{R}):$ $\mathcal{L}_{F}(u)(x) := \max_{y \in T^{-1}(x)} \{ \alpha + F(x) + u(x) \},$ where $\alpha := -\max_{\mu \in \mathcal{M}(T)} \int F \, d\mu.$

Set of maximizing measures

$$\mathbb{M}(F) := \Big\{ \mu \in \mathcal{M}(T) \Big| \int F \, d\mu = -\alpha(F) \Big\}.$$

Ergodic Optimization

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Calibrated sub-action = Fixed point of Lax Operator = Solution to Bellman equation.

 $\mathcal{L}_F(u) = u$

write

 $\overline{F} := F + \alpha + u - u \circ T.$

REMARKS:

$$\begin{aligned} & -\alpha(\overline{F}) = \max_{\mu \in \mathcal{M}(T)} \int \overline{F} \, d\mu = 0. \\ & \overline{F} \leq 0. \\ & & & \\ & &$$

ヘロト 人間 とくほとくほとう

■ のへで

Proposition

If F is Lipschitz then there exists a Lipschitz calibrated sub-action.

Proof.

- Prove that $\operatorname{Lip}(\mathcal{L}_{F}(u)) \leq \lambda (\operatorname{Lip}(u) + \operatorname{Lip}(F)).$
- 2 Then \mathcal{L}_F leaves invariant the space

$$\mathbb{E} := \left\{ u \in Lip(X, \mathbb{R}) \mid Lip(u) \leqslant \frac{\lambda \ Lip(F)}{1 - \lambda} \right\}$$

Schauder Thm. ⇒ L_F has a fixed pt. on E/{constants}.
 Prove it is a fixed point on E.

REMARKS

• If *u* is a calibrated sub-action: Every point $z \in X$ has a calibrating pre-orbit $(z_k)_{k \leq 0}$ s.t.

$$\begin{cases} T^{i}(z_{-i}) = z_{0} = z, & \forall i \ge 0; \\ u(z_{k+1}) = u(z_{k}) + \alpha + F(z_{k}), & \forall k \le -1. \end{cases}$$

Equivalently, since $T(z_k) = z_{k+1}$,

$$\overline{F}(z_k) = 0 \qquad \forall k \leq -1.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proposition

If $\mathcal{O}(\mathbf{y}) \subset \mathbf{X}$ is a periodic orbit such that for every calibrated sub-action the α -limit of any calibrating pre-orbit is in $\mathcal{O}(\mathbf{y})$ then every maximizing measure has support in $\mathcal{O}(\mathbf{y})$.

Need:

 $\begin{array}{ll} \forall \mu \in \mathbb{M}(F) & \textit{supp}(\mu) \subset \alpha \text{-limit of calibrating pre-orbits} \\ & \subset \alpha \text{-limit of orbits in } [\overline{F} = 0] \\ & \textit{enough}: & \subset \alpha \text{-limit of orbits in } \operatorname{supp}(\mu). \end{array}$

For example:

Extend *T* to an invertible dynamical system $\mathbb{T} : \mathbb{X} \to \mathbb{X}$. Lift μ to a \mathbb{T} -invariant $\overline{\mu}$. The set \mathbb{Y} of recurrent points of \mathbb{T}^{-1} in supp $(\overline{\mu})$ has total $\overline{\mu}$ -measure and projects onto a set $Y = \pi(\mathbb{Y})$ with total measure of points which are α -limits of pre-orbits in supp (μ) .

Ergodic Optimization

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

- $(x_n)_{n\in\mathbb{N}} \subset X$ is a δ -pseudo-orbit if $d(x_{n+1}, T(x_n)) \leq \delta, \quad \forall n \in \mathbb{N}.$
- ② A point $y \in X \varepsilon$ -shadows a pseudo-orbit $(x_n)_{n \in \mathbb{N}}$ if $d(T^n(y), x_n) < \varepsilon$, $\forall n \in \mathbb{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proposition (Shadowing Lemma)

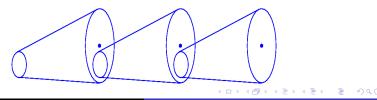
 $\begin{array}{l} \text{If } (x_k)_{k \in \mathbb{N}} \text{ is a } \delta \text{-pseudo-orbit} \\ \implies \exists y \in X \text{ whose orbit } \varepsilon \text{-shadows} (x_k) \\ \text{with } \varepsilon = \frac{\delta}{1-\lambda}. \end{array}$

If (x_k) is periodic

 \implies y is a periodic point with the same period.

Proof.

$$\begin{split} & a = \frac{\lambda \delta}{1 - \lambda}. \\ & \{y\} = \bigcap_{k=0}^{\infty} S_0 \circ \cdots \circ S_k \big(B(x_{k+1}, a) \big). \\ & \text{where the inverse branch } S_k \text{ is chosen such that } S_k(T(x_k)) = x_k. \end{split}$$



Ergodic Optimization

Theorem (Morris)

Let X be a compact metric space and $T : X \to X$ an expanding map. There is a residual set $\mathcal{G} \subset Lip(X, \mathbb{R})$ such that if $F \in \mathcal{G}$ then there is a unique *F*-maximizing measure and it has zero metric entropy.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Idea of the Proof.

 Use estimates of Bressaud & Quas to obtain a close return in supp(µ) which is not too long in time. Construct a periodic orbit L_n with it. It has an action proportional to the distance of the return.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Zero Entropy. Part I. A special periodic orbit.

Lemma

 Σ_A sub-shift of finite type with M symbols and entropy h. Then Σ_A contains an orbit of period at most $1 + M e^{1-h}$.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Proof:

k + 1 = period of shortest periodic orbit in Σ_A .

Claim

A word of length k is determined by the symbols it contains.

No periodic orbits of period $\leq k \implies$ any allowed *k*-word contains *k* distinct symbols. (a repeated symbol gives a shortest closed orbit). Suppose by contradiction $\exists u, v \text{ distinct words of length } k \text{ with the same symbols.}$ $\implies \exists \text{ symbols } a, b \text{ such that}$ consecutive $(ab) \in u \text{ and inverse order}(b \cdots a) \in v (\text{length } \leq k)$ then $(b \cdots a)(b \cdots a)(b \cdots a) \cdots$ is an allowed periodic orbit in Σ_A of period $\leq k (\Rightarrow \Leftarrow)$

<ロ> (四) (四) (三) (三) (三) (三)

All *k*-words have distinct symbols, M = #alphabet \implies at most $\binom{M}{k}$ words of length *k*. $\ell \longmapsto \#$ words of period $\ell =: W(\ell)$ is sub-multiplicative in Σ_A (not all can concatenate)

 $\implies \qquad h_{top}(\Sigma_{\mathcal{A}}) = \exp \text{ growth of periodic orbits} \\ \leqslant \inf_{\ell} \frac{1}{\ell} \log W(\ell) \leqslant \frac{1}{k} \log \binom{M}{k}.$

$$e^{h_{top} k} = e^{hk} \leqslant {\binom{M}{k}} \leqslant {\frac{M^k}{k!}} \leqslant {\left({\frac{M e}{k}} \right)^k}$$

Taking k-root

$$k \leqslant M e^{1-h}$$
.

minimal period $= k + 1 \leq 1 + M e^{1-h}$.

<ロ> (四) (四) (三) (三) (三) (三)

Bressaud & Quas where interested in how well a maximizing measure could be approximated by periodic orbits.

Let $\mu \in \mathbb{M}(T)$ be a maximizing measure and $K := \operatorname{supp}(\mu)$.

$$c(\nu, K) := \sup_{x \in \text{supp}(\nu)} d(x, K).$$

Proposition (Bressaud & Quas (2007))

$$\lim_{n\to\infty} n^k \left(\inf_{\nu\in P_n(T)} \boldsymbol{c}(\nu, K) \right) = 0$$

Ergodic Optimization

Let N > 0, $0 < \delta$ < expansivity constant for K.

G = minimal (N, δ)-generating set for K.

Let $\Sigma_A \subset G^{\mathbb{N}}$ be the sub-shift of finite type with symbols in *G* and matrix $A \in \{0, 1\}^{G \times G}$ defined by

$$A(x,y) = 1 \quad \Longleftrightarrow \quad \sup_{0 \le k < N} d(T^k(T^N x), T^k y) < \delta.$$

Apply the Lemma to the shift Σ_A (get small periodic orbit).

Use the shadowing lemma to define $\pi : \Sigma_A \rightarrow \text{neighbourhood}$ of *K*. (*N* large \implies smaller neighbourhood)

Finish the estimates.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Corollary

There are sequences of integers $m_n \in \mathbb{N}^+$ and periodic orbits $\mu_n \in P_{N_n}(T)$ with period N_n such that

$$\forall \beta \in]0,1[$$

$$\int d(x,K) \ d\mu_n(x) = o(\beta^{m_n}) \quad and \quad \lim_n \frac{\log N_n}{m_n} = 0.$$

Just algebraic manipulations from Bressaud & Quas Proposition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathbb{M}(\textit{F})$ = maximizing measures for F

 $\mathcal{E}(\gamma) := \{ F \in Lip(X, \mathbb{R}) \mid h(\mu) < 2\gamma h_{top}(T) \quad \forall \mu \in \mathbb{M}(F) \}$

 $\mathcal{O} := \{ F \in Lip(X, \mathbb{R}) \mid \#\mathbb{M}(F) = 1 \}$

Enough to prove $\forall \gamma > 0$ $\mathcal{E}(\gamma)$ is open and dense. Because then

 $\mathcal{G} := \mathcal{O} \cap \bigcap_{n \in \mathbb{N}} \mathcal{E}(\frac{1}{n})$

is the required generic set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\mathcal{E}(\gamma)$ is open:

(prove that the complement is closed using the semicontinuity of $\mathbb M$ and the semicontinuity of the entropy)

$\textcircled{2} \ \mathcal{E}(\gamma) \text{ is dense.}$

Let N_n (= period), m_n , μ_n from the Corollary,

 $L_n := \operatorname{supp}(\mu_n)$ (periodic orbit very near K and small period)

_emma

There are $0 < \theta = \theta(T) < 1$ and $K_{\gamma} > 0$ such that if $n > K_{\gamma}$, $\nu \in \mathcal{M}(T)$, $h(\nu) \ge 2\gamma h_{top}(T)$ Then $\nu(\{x \in X \mid d(x, L_n) \ge \theta^{m_n}\}) > \gamma.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Replacing *F* by $\overline{F} = F + \alpha(F) + u \circ T - u$ can assume that $F \leq 0 = \max F, F$ is Lipschitz. Then

$$F(x) \leq C d(x, K), \qquad K = \operatorname{supp}(\mu)$$

Perturb the potential *F* by

$$F_n(x) := F(x) - \beta d(x, L_n).$$

Want to show $F_n \in \mathcal{O}(\gamma)$ i.e. $\forall \nu F_n$ -maximizing $h(\nu) \leq 2\gamma h_{top}(T)$. If $h(\nu) > 2\gamma h_{top}(T)$ use the estimate of the Lemma

$$\int d(x,L_n) \, d\nu = \theta^{m_n} \, \nu([x:d(x,L_n) \ge \theta^{m_n}]) \ge \gamma \, \theta^{m_n}$$

And $F \leq Cd(x, K)$ to show that in this case ν can not be maximizing for F_n .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Since $\int d(x, L_n) d\nu \ge \gamma \theta^{m_n}$ and by the Corollary $\int d(x, K) d\mu_n(x) = o(\theta^{m_n})$ then can choose *n* such that

$$\beta \int d(x,L_n) \, d\nu > C \int d(x,K) \, d\mu_n$$

$$\int F_n \, d\nu = \int \overline{F} \, d\nu - \beta \, \int d(x, L_n) \, d\nu$$
$$< 0 - C \int d(x, K) \, d\mu_n$$
$$\leqslant \int \overline{F} \, d\mu_n = \int \overline{F}_n \, d\mu_n \leqslant -\alpha(F_n)$$

 $\implies \nu$ is not F_n -maximizing.

ヘロト ヘアト ヘビト ヘビト

3

Use a Markov partition \mathbb{P} for T of small diameter < expansivity ctant. $h(\nu) = h(\nu, \mathbb{P}) \leqslant \frac{1}{m_{\tau}} H(\nu, \mathbb{P}^{(m_n)}) \qquad \mathbb{P}^{(m_n)} = \bigvee_{k=0}^{m_n-1} T^{-k} \mathbb{P}$ $W_n := \{A \in \mathbb{P}^{(m_n)} : d(x; L_n) < \theta^{m_n} \text{ for some } x \in A\}$ Estimate entropy by

$$h(\nu) \leqslant \frac{1}{m_n} \sum_{A \in W_n} \nu(A) \log \nu(A) + \frac{1}{m_n} \sum_{A \notin W_n} \nu(A) \log \nu(A)$$

very small entropy near the periodic orbit entropy must come from W_n^c

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Then estimate $h(\nu) > 2 \gamma h_{top}(T) \Longrightarrow \nu(\lfloor | W_n^c) > \gamma$.

The Perturbation

- Original argument: Yuan & Hunt.
- Present argument: Quas & Siefken.
- Adapted to pseudo-orbits.

$$Per(T) := \bigcup_{p \in \mathbb{N}^+} Fix(T^p) = periodic points.$$

For $y \in Per(T)$:

 $\mathbb{P}_{y} := \left\{ F \in Lip(X, \mathbb{R}) \mid \exists F - \text{maxim. meas. supported on } \mathcal{O}(y) \right\}$ $\overset{\circ}{\mathbb{P}}_{y} := \text{int } \mathbb{P}_{y} \qquad \text{on } Lip(X, \mathbb{R}).$

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q @

Proposition

Let F, $u \in Lip(X, \mathbb{R})$ with $\mathcal{L}_F(u) = u$, $\overline{F} := F + \alpha(F) + u - u \circ T$, and $M \in \mathbb{N}^+$. Suppose that $\exists \delta_U \perp 0 \quad \exists p_U$ -periodic δ_U -pseudo-orbit (x:)

 $\exists \delta_k \downarrow 0 \quad \exists p_k \text{-periodic } \delta_k \text{-pseudo-orbit } (x_i)_{i=1}^{p_k} \\ in [\overline{F} = 0], \\ with \text{ at most } M \text{ jumps,}$

 γ_{k}

such that for

$$:= \min_{1 \leqslant i < j \leqslant p_k} d(x_i, x_j)$$

$$\lim_{k} \frac{\gamma_k}{\delta_k} = +\infty.$$

Then

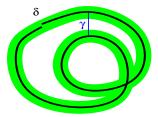
$$F \in closure\left(\bigcup_{y \in Per(T)} \overset{\circ}{\mathbb{P}}_{y}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Close the pseudo-orbit using the shadowing lemma.
- Subtract a channel: $G(x) = F(x) \varepsilon d(x, O(y))$.
- Will prove that any calibrating pre-orbit for G has α-limit = O(y).
- Each time a calibrating pre-orbit separates from $\mathcal{O}(y)$ the action of \overline{G} diminishes by a fixed amount.
- Total action of a calibrating orbit is finite \implies expends finite time far from $\mathcal{O}(y)$.
- (expansivity) $\implies \alpha$ -limit = $\mathcal{O}(\mathbf{y})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\lim_k \frac{\gamma_k}{\delta_k} = +\infty.$$



・ロット (雪) ・ (目)

We close a pseudo-orbit in $[\overline{F} = 0]$.

Size of the jumps $\delta_k \approx$ the action of the shadowing closed orbit $\mathcal{O}(\mathbf{y})$.

Distance of the approaches $(\delta_k \ll) \gamma_k \approx$ how much action is lost

$$G(x) = F(x) - \varepsilon d(x, \mathcal{O}(y))$$

when a *G*-calibrating pre-orbit separates from $\mathcal{O}(y)$.

Proof of the Perturbation Proposition

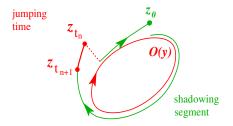
Let x_1, \ldots, x_p be a δ -pseudo-orbit in $[\overline{F} = 0]$ with at most Mjumps and minimal approach $\min_{i,j} d(x_i, x_j) \ge \gamma$. $\mathcal{O}(\mathbf{y}) = \{\mathbf{y}_i\}_{i=1}^p$ closed orbit which shadows $\{x_i\}_{i=1}^p$ Shadowing Lemma $\Longrightarrow A_{\overline{F}}(\mathcal{O}(\mathbf{y})) = \sum_{i=1}^p \overline{F}(\mathbf{y}_i) \ge -K \delta$. Perturbation $G(\mathbf{x}) = F(\mathbf{x}) - \varepsilon g(\mathbf{x}) + \beta$, $g(\mathbf{x}) := d(\mathbf{x}, \mathcal{O}(\mathbf{y}))$,

$$\beta := \alpha(\overline{F} - \varepsilon g) = -\sup_{\mu \in \mathcal{M}(T)} \int (F - \varepsilon g) \, d\mu$$
$$\beta \leqslant -A_{\overline{F}}(\mu_y) \leqslant -\frac{K\delta}{p}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

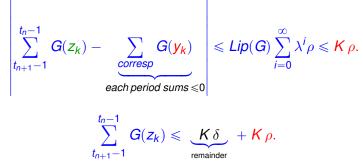
 $v = \text{Calibrated sub-action for } G: \qquad \mathcal{L}_G(v) = v.$ Let $\{z_k\}_{k \leq 0}$ be a calibrating pre-orbit for G. $0 > t_1 > t_2 > \cdots$ Jump times when the pre-orbit z_k separates from $\mathcal{O}(y)$:

 $\boldsymbol{d}(\boldsymbol{z}_{t_n}, \mathcal{O}(\boldsymbol{y})) \geq \rho, \qquad \rho \approx \delta \ll \gamma.$



<ロ> <同> <同> <三> <三> <三> <三> <三</p>

On a shadowing segment



 \leqslant one period

Ergodic Optimization

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

At the jump (when $t_{n+1} < t_n - 1$)

$$G(z_{t_{n+1}}) \leq \overline{F}(z_{t_{n+1}}) - \varepsilon \, d(z_{t_{n+1}}, \mathcal{O}(y)) + \beta$$
$$\leq 0 - \varepsilon \, \gamma + \frac{K\delta}{p}$$

When $d(z_m, \mathcal{O}(y)) < \rho$ but not the first jump also estimate $G(z_m) < 0$.

Adding:

$$\sum_{t_{n+1}}^{t_n-1} G(z_k) \leq \overbrace{-\varepsilon\gamma}^{t_n+1} + 2K\delta + K\rho, \qquad \rho \approx \delta \ll \gamma.$$

$$< b < 0.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

On a calibrating pre-orbit

$$v(z_{-N}) = v(z_0) + \sum_{k=-N}^{-1} G(z_k).$$

But **v** is (Lipschitz) continuous on $X \implies$ bounded.

Each shadowing segment adds < b < 0.

- \implies finitely many jumps.
- $\implies \text{ The } \alpha \text{-limit of the calibrating orbit } \{z_n\}$ is the periodic orbit $\mathcal{O}(\mathbf{y})$.

・同・ ・ヨ・・

æ

We prove that $\mathcal{O} := \bigcup_{y \in Per(T)} \mathbb{P}_y$ is open and dense in $Lip(X, \mathbb{R})$. It is clearly open.

• Argument by Contradiction.

Suppose it is not dense. Then there is an open subset $\emptyset \neq \mathcal{U} \subset Lip(X, \mathbb{R})$ disjoint from \mathcal{O} .

By Morris Theorem we can choose $F \in \mathcal{U}$ such that there is a unique (ergodic) *F*-maximizing measure μ and

 $h_{\mu}(T)=0.$

Ergodic Optimization

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

 $\begin{array}{l} \mu \text{ maximizing} \implies \text{for any calibrating sub-action } u, \\ & \text{supp}(\mu) \subset [\overline{F} = \mathbf{0}]. \\ \text{(here } \overline{F} = F + \alpha + u - u \circ T \text{ depends on } u\text{)} \end{array}$

 μ is ergodic \implies there is a generic point q for μ , i.e. for any continuous function $f : X \rightarrow \mathbb{R}$

$$\int f \, d\mu = \langle f \rangle(q) = \lim_{N} \frac{1}{N} \sum_{i=0}^{N-1} f(T^{i}(q)).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Since we are arguing by contradiction. By the perturbation proposition with M = #jumps = 2, there is Q > 0 and $\delta_0 > 0$ such that if $0 < \delta < \delta_0$,

- $(x_k)_{k \ge 0} \subset \mathcal{O}(q)$ is a *p*-periodic δ -pseudo-orbit
- with at most 2 jumps,
- made with elements of the positive orbit of q (which is in $[\overline{F} = 0]$). Then

$$\gamma = \min_{1 \leq i < j < p} d(x_i, x_j) < \frac{1}{2} Q \delta.$$

i.e. every closed pseudo-orbit in $\mathcal{O}(q)$ with at most 2 jumps must have an intermediate return with proportion at most $\frac{1}{2}Q$.

Main idea: This will contradict the zero entropy of μ .

・ロト ・四ト ・ヨト ・ヨト

Fix a point $w \in \text{supp}(\mu)$ for which Brin-Katok theorem holds:

$$h_{\mu}(T) = -\lim_{L \to +\infty} \frac{1}{L} \log \mu (V(w, L, \varepsilon)),$$

where $V(w, L, \varepsilon)$, $L \in \mathbb{N}$, $\varepsilon > 0$ is the dynamic ball

$$V(w,L,\varepsilon) := \{ x \in X \mid d(T^k x, T^k w) < \varepsilon, \forall k = 0, \ldots, L \}.$$

Since *T* is an expanding map, for $\varepsilon < e_0$ small we have

$$V(\boldsymbol{w},\boldsymbol{L},\varepsilon)=\boldsymbol{S}_{1}\circ\cdots\boldsymbol{S}_{L}\big(\boldsymbol{B}(\boldsymbol{T}^{L}\boldsymbol{w},\varepsilon)\big),$$

for an appropriate sequence of inverse branches S_i . Thus

 $V(\boldsymbol{w},\boldsymbol{L},\varepsilon)\subseteq \boldsymbol{B}(\boldsymbol{w},\lambda^{L}\varepsilon).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The measure of $V(w, L, \varepsilon)$ can be estimated by the proportion of the orbit of q which is spent on it.

approximating the characteristic function by a continuous fn.

If the measure of $V(w, L, \varepsilon)$ decreases exponentially with *L* it contradicts $h_{\mu}(T) = 0$.

We estimate the measure of the ball $B(w, \lambda^{L} \varepsilon) \supset V(w, L, \varepsilon)$.

Using the perturbation proposition we shall see that: Two consecutive visits of the orbit of *q* in the ball $B(w, \lambda^L \varepsilon)$ give rise to (exponentially) many intermediate returns (or approximations) which are outside the ball.

Thus the measure of the ball decreases exponentially with *L*.

ヘロン 人間 とくほど くほとう

Let N_0 be such that $2Q^{-N_0} < \delta_0$. For $N > N_0$ let $0 \le t_1^N < t_2^N < \cdots$ be all the Q^{-N} returns to w, i.e.

$$\{t_1^N, t_2^N, \dots\} = \{n \in \mathbb{N} \mid d(T^n q, w) \leq Q^{-N}\}.$$

q =Generic point. w = Brin-Katok point.

Propositior

For any
$$\ell \ge 1$$
, $t_{\ell+1}^N - t_{\ell}^N \ge \sqrt{2}^{N-N_0-1}$

From this

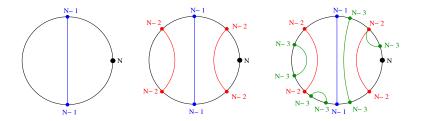
$$\mu(B(\boldsymbol{w}, \boldsymbol{Q}^{-N})) \leq \frac{1}{\sqrt{2}^{N-N_0-1}}.$$

And then $\mu(V(w, L, \varepsilon)) \leq \mu(B(w, \lambda^{L}\varepsilon))$ decreases exponentially with *L*. This contradicts the zero entropy.

Ergodic Optimization

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

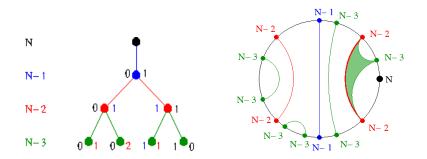
Inductive process



A cascade of approaches implies by the inductive process

Ergodic Optimization

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



An example of a distribution of returns implied by the perturbation lemma and the tree representing it.

ヘロト 人間 とくほとくほとう

æ

Want to estimate the length of an orbit segment with a return of size Q^{-N} and show that it grows exponentially with *N*.

2 ways of counting:

- Count black nodes = when the end point of a new approach was not counted before.
- Count branches of the tree using

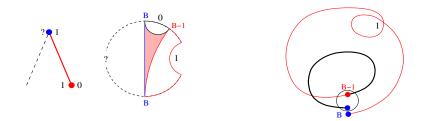
Lemma

If $K = [\overline{F} = 0]$ has no periodic points then $\exists \delta_0 > 0 \ \forall \delta \in [0, \delta_0[$ s.t. any pseudo-orbit in K with ≤ 2 jumps has length at least 100.

length of the pseudo orbits are \ge 100, don't care much if we counted the endpoints.

Ergodic Optimization

ヘロト ヘアト ヘビト ヘビト



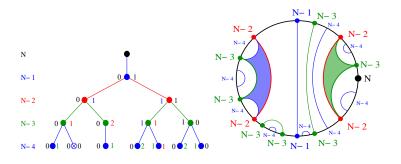
The black approach is a B - 1 approach. But the red approach is also a B - 1 approach because the implied approach is of size $\frac{1}{2}Q^{-B+1}$ and

$$\frac{1}{2}Q^{-B+1} + Q^{-B} < Q^{-B+1}.$$

So we draw the red line and shadow the triangle.

The two "sides" of the triangle are new closed pseudo-orbits.

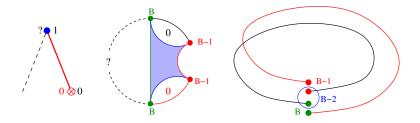
(日)



$$t_{\ell+1}^N - t_{\ell}^N \ge \# \{ \text{ black nodes in the tree } \}.$$

 \bullet = black node, \otimes = white node.

Ergodic Optimization



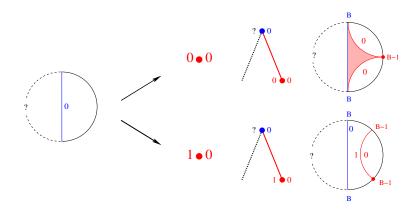
When both endpoints of the new B - 2 approach are endpoints of previous approaches. Then the four endpoints are B - 2 approaches because

$$\frac{1}{2}Q^{-B+2} + Q^{-B+1} < Q^{-B+2}$$
$$\frac{1}{2}Q^{-B+2} + Q^{-B} < Q^{-B+2}$$

We draw both lines and shadow the rectangle.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🕨 🗆 프

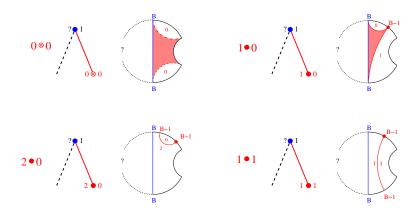


Possible nodes ending a branch with a label 0,

i.e. child pseudo-orbits of a periodic 1-pseudo-orbit with only one jump.

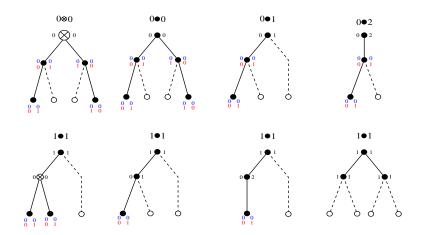
• • • • • • • • •

프 🕨 🛛 프



All possible nodes ending a branch with a label 1,

i.e. child specifications of a periodic 1-specification with two jumps. A white dot $0 \otimes 0$ or a $2 \bullet 0$ (3-jump) is always followed by at least one approach with a 0 (1-jump) which re-starts the duplication process.



Possible 2-steps in the tree. They have:

- At least two black nodes in levels N 1, N 2.
- At least two ending branches at level N 2.

 \implies there is duplication of points every two levels: exponential growth with rate $\sqrt{2}$.

Ergodic Optimization

э

- The process continues as long as $Q^{-M} < \delta_0$, i.e. $N_0 < M < N$.
- The number of nodes duplicates every 2 steps in the tree.

#{ black nodes }
$$\ge 2^{\frac{N-N_0-1}{2}} = \sqrt{2}^{N-N_0-1}$$
.

ヘロト 人間 とくほ とくほ とう

E DQC