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(X, f) a topological system,
htop topological entropy,

VneN, Per,:={x e X, f"x=x}.
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(X, f) a topological system,

htop topological entropy,

VneN, Per,:={x e X, f"x=x}.

(X, f) expansive, then

1
htop = limsup — log #Per,.
n n
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Theorem (Bowen)

(X, f) expansive with specification,
¢ : X — R a continuous potential with the Bowen property,

1 .
then  Peop(®) = lim  log > et
xe Perp,

Moreover there is a unique equilibrium measure py satisfying

T S5,

— lim x€Perp,
He = 1IN Z eSnd(x)

xEPer,
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Theorem (Bowen)

(X, f) expansive with specification,
¢ : X — R a continuous potential with the Bowen property,

.1
then P,_L,,p(qﬁ):|.,r7n;|og Z eSnd(x)_
xe Perp,

Moreover there is a unique equilibrium measure py satisfying

T S5,

x€Perp,

$ Sl '

xEPer,

Mo = I|,r1n

A topologically mixing uniformly hyperbolic system with a Holder
potential satisfies the above assumptions. In particular periodic
points are equidistributed along the unique maximal measure.
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Periodic growth for surface diffeos

M a compact surface, f : M ¢ diffeo C?,
any pu € M ergodic with h(u) > 0 is hyperbolic,

Theorem (Katok)
f: Mo CH,

1
htop < limsup ;tt log Per, .
n

Does the equality hold ?
Is the periodic growth limsup,, %j:t log Per,, even finite?
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Densely...

Theorem (Artin-Mazur, Kaloshin)

For any 1 < r < +o0, there is a C" dense set of diffeos s.t.

1
lim sup ;jj log Per, < +o0
n
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Densely...

Theorem (Artin-Mazur, Kaloshin)

For any 1 < r < +o0, there is a C" dense set of diffeos s.t.

1
lim sup Eﬁ log Per, < +o0
n

but not generically.

Theorem (Gonchenko-Turaev-Shilnikov, Kaloshin)

For any 2 < r < +o0, there is a C" open set N of diffeos s.t.
generically in N

1
lim sup —f log Per,, = +00
n n




x € Perp, [x|(x) = maxj=12 (Ix1(x)l; [x2(x)[)
with x;(x) i = 1,2 the Lyapunov exponents at x,

V6 > 0, Perd := {x € M, f"x = x saddle and |x|(x) > 6},
0 <6 < hiop.
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x € Perp, [x|(x) = maxj=12 (Ix1(x)l; [x2(x)[)
with x;(x) i = 1,2 the Lyapunov exponents at x,

V6 > 0, Perd := {x € M, f"x = x saddle and |x|(x) > 6},
0 <6 < hiop.

Theorem (Katok)

f C1+,
htop < lim sup IogﬁPer

¢ Holder and small, i.e. Pop(p) > ||6]]o.

Snep = Z gbofl
0<6<Ptop() @] oo-

Theorem (Gelfert-Wolf)

fclt,
Ptop(¢) < lim sup Iog Z e5n9(x).

xe Perd




Theorem
f C,

. 1 B
Ptop(9) = I|mnsup . log Z eSnd(x)
x€ Per‘,s7

Z es"k é(x) 5)(

xEPergk

z eS"k #(x)

)
xePer,

Moreover any p = lim
k

1
with lim —-log 3 5 %) = Piop(9),
x€ Per‘,s,k

is an equilibrium measure w.r.t. ¢.

7/24



Theorem (Sarig)
f C'*, 3p e N*3C > 0,

liminfe="Per(®) ™ @500 > .

pln

xe Per?

Theorem (Buzzi, Crovisier, Sarig)
fC*>,
e topologically transitive, then
there exists a unique equilibrium measure jiy w.r.t. ¢,

@ topologically mixing, then
3C > 0, liminf, e="Prer(¢) Z e¢(x) < .

xe Peri
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f C* topologically mixing,
.1 X
then I|,r7n . log Z eSnd(x) Piop(¢) and

xe Per?

Z RO

— lim x€EPer?
Ko = 1IN Z eSnd(x)

5
xEPer;,

9/24



Tail periodic growth

(X, T) topological system,
P = (Pn)nen with P, C Pery,

e P-growth

1
gp = limsup — log tP,,
n n

o tail P-growth
* : I *
gp ‘= 6"'5 é?ﬁ>(€)

with 1
gp(€) := limsup = sup log #B,(x, €) N Pp.
n  NxeXx
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Lemma

Any 1 = limy ﬁ > by with limy = log #P,, = gp satisfies
XEPn,

h(n) > gp — gp-

In particular hiop > gp — gp.
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Lemma

Any i = limy ﬁp Z 0x with Ilmk = Iog §Pn, = gp satisfies
XEPn,

h(n) > gp — gp-

In particular hiop > gp — gp.

Proof : Denote u, := ﬁ%n erpn Oy for all n.
Let P partition with diameter < ¢, @, = P" s.t.
VI‘IVA 6 Qn; ﬁAmPn S ].

1
VI<n, o SHu(PY) > S H, (P7),

>

(Hun(Qn) = Hyu, (Qnl P7)) 5

log P, — sup log P, N By(x, €),
xeX

v
SI=s Ik

1 *
h(:ua P) | 7HM(PI) > gp — gP(E)'



f: MO aCl surface diffeo,
85 = &p,o With Per’ = (Per?),.

Theorem (Kaloshin)

For f C?,
V6 >0, g5 < +oo.
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f: MO aCl surface diffeo,
85 = &p,o With Per’ = (Per?),.

Theorem (Kaloshin)

For f C?,
V6 >0, g5 < +oo.

Main Theorem
For f C®°,

| A

V6 >0, g5 =0.

v

Explicit (sharp ?) upperbound of g5 for f C" with r < 400 in terms
of r, ¢ and ||df]|.
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Bounded distorsion lemma for interval maps

f a C* interval map,
0 > 0 lower bound of the Lyapunov exponent,
x € M center of the dynamical ball.

Lemma
For v > 0 and x € M there exist

@ ¢ = ¢(7y) radius of the dynamical ball,
e C = C(v) constant,
@ O, =0,(v,x) ={60n} families of rep. of (0,1),
s.t. we have for all n € N
° UG,,G@,, Im(6,) O {t € Ba(x,¢€), |(fn)/(t)| > ené}'
e V0, € ©,, Vt,s € Im(0,), |log|(f")(t)] —log|(f")(s)|| <1,
e 10, < Ce".
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On Im(6,) the map f" is expanding, so that there exists at most
one point in Im(#,) N Per, for each 6, € F,, therefore

g5 (e) <, then g = 0.

Main Theorem and its corollaries also hold for C*° interval maps. \
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On Im(6,) the map f" is expanding, so that there exists at most
one point in Im(#,) N Per, for each 6, € F,, therefore

g5 (e) <, then g = 0.

Main Theorem and its corollaries also hold for C*° interval maps. \

Strategy of the proof for surface diffeos :

o define elementary f"-hyperbolic pieces as an analogous of
f"-expanding intervals,

@ cover a given dynamical ball of length n by a exponentially
small number of such pieces.
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M =R?/72,
eu(x), es(x) € S(R?) generating the u/s space at x € Per?,

There exists « = o(d) €]0,7/2] s.t.
Vx € Perd, maxo<k<n Zeu(x), es(x) > av.
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M =R?/72,
eu(x), es(x) € S(R?) generating the u/s space at x € Per?,

There exists « = o(d) €]0,7/2] s.t.
Vx € Perd, maxo<k<n Zeu(x), es(x) > av.

¢ = (¢, €,) is called a a-bicone if €5 and €, cones with
/€y, /€ < )2 and (€, E,) > a2,
Let § = {€} be a family of a-bicones with #F < C/a? s.t.
Vv, w € S(R?) with Zv,w > a,

d¢ € §with ve s and w e &,
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For any a-bicone € we let
Per?(€) = {x € Per? with euss(x) € €y}

Then we have

Ve > 0, sup fPerdNB,(x,¢) < a’('éc)Q sup  #Perd(€)NB,(x, 2e).
xeM € x€Per(€)

Therefore it is enough to estimate #Per®(€) N B,(x, 2¢) for a fixed
a-bicone € and for x € Perd(€).



Hyperbolic Hexagons

1. Hyperbolic structure : n-hyperbolic sets.

Fn=(fo, - ,fo_1) with f; : B — R? C* (applied to local
dynamics at x € Per?(¢)),

¢/, constant cone fields on B C R? centered at (1,0) and (0, 1),
U, C By, is said (6, n)-hyperbolic when there are two C* unit
vector fields e; and e on U, contracted and expanded by df" s.t.

° e;/”, df"(es,) € € sy,
log || df" (e,s,/”> H’ > "7‘5.

We can assume e = (0,1).
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2. Accessibility condition : hexagons.

H, C U, is a n-hyperbolic hexagon when any two points in U, may
be joined by s/u-paths with the same orientations, i.e.

Vx,y € Hn, Jae = oy 1 [0,1] = H, continuous s.t.
Jey, € {£1} and P finite partition into intervals of [0, 1]with
Vi€ P, acCi(l)andVt € I,d/(t) € ey, RV el".




Let H, be a n-hyperbolic hexagon, then for large n,

gPer, N H, < 1.
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Let H, be a n-hyperbolic hexagon, then for large n,

fPer, N H, < 1.

Proof : For x,y € H,, let

Vs/u = Z /a;7y(t) dt € Qts/u

IepP,
a;,thRes/u

and
Wy, = Y /Idax,y(t)f"(a;,y(f)) dt € &,

1eP,
a, ,li€Res,

But ||ws|| < |[vs|, [|vull < ||wyl| for large n and £(&s,&,) > a/2
so that
Wy — Ws #  Vy— Vs,
I I
f' —f"y £ x—y



Algebraic properties of reparametrizations

A map ¢ = (¢!, ,¢X) : (0,1)% O is semi-algebraic :
VidQ; € R[Xl, <o ,Xk+1] \ {0} s.t.

¥x € (0,1)%, Qi(x,¢'(x)) = 0.
The degree of ¢ is deg(¢) = max; ming, deg(Q;).
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Algebraic properties of reparametrizations
A map ¢ = (¢!, ,¢X) : (0,1)% O is semi-algebraic :
VidQ; € R[Xl, oo ,Xk+1] \ {0} s.t.

Vx € (0,1)%, Qi(x,4'(x)) =0.
The degree of ¢ is deg(¢) = max; ming, deg(Q;).
Lemma (Algebraic RL)

B the unit euclidean ball in R,

P:(0,1)%k = RY with P = (Py,--- ,Py) € RI[Xy, -+, X,

s = max;deg Pj, r € N,

There exists a family © = {0} of semi-algebraic rep. of (0,1)* s.t.
° Upeo Im(0) = P~1(B),
o ¥ €O, 6P ool <1,
o 0, maxgco deg() < € = €&(k,d,r,s).
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01, ,0m: (0,1)k = (0,1)* semi-algebraic maps, then

deg(fm o ---01) < Hdeg
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01, ,0m: (0,1)k = (0,1)* semi-algebraic maps, then

deg(f0mo---01) < Hdeg

Proof : k =1, m =2, (Qj)i=1,2 vanishing polynomials of (;)i=1 2.
Eliminate the variable Y in

Qi(X,Y)=0,
@(Y,Z)=0.

For x € (0, 1) this system has (x, 61(x), 62 o 61(x)) as a solution,
therefore Resy (Q1, Q2) vanishes at (x, 62 0 01(x)) = 0. Finally
deg(Resy (Q1, Q2)) < deg(Q1) x deg(Q2).
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01, ,0m: (0,1)k = (0,1)* semi-algebraic maps, then

deg(f0mo---01) < Hdeg

Proof : k =1, m =2, (Qj)i=1,2 vanishing polynomials of (;)i=1 2.
Eliminate the variable Y in

Qi(X,Y)=0,
@(Y,Z)=0.

For x € (0, 1) this system has (x, 61(x), 62 o 61(x)) as a solution,
therefore Resy (Q1, Q2) vanishes at (x, 62 0 01(x)) = 0. Finally
deg(Resy (Q1, Q2)) < deg(Q1) x deg(Q2).

In the conclusion of DRL, we also have J

@ maxy,co, deg(f,) < Ce".




DRL for cocycles

We apply DRL for the derivative cocycle S(df) acting on
S2(R?) = {(z,v,w), z€ R? v, w € S(T,R?) ~ S'}.
Lemma

For v > 0 there exist e = ¢(y), C = C(~,9) and
©p = On(y) = {0,} families of s.a. maps from
[0,1]% x [0,1] x [0, 1] to S3(R?), s.t. we have for all n € N :

o Vb, € Op, O,(t,51,5) = (65(t),02(t, 51),03(t, s2)),
° Uone@n Im(6}) O B,(0,¢),
o V0,€ 0, |d(Sadf"0b,)| <a/2,
o V0, €0,V t €[0,1%s,s €[0,1],i =2,3
|log [|ds 1) " (67(t, 57)) | — log [l sy f"(Oh (' s < 1,
@ £On, maxg,co, deg(fn) < Ce?".
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(n, d)-hyperbolic s.a. set

o, :={0,€0, Ixe Per‘}n((’l) s.t. (x, es(x), ey(x)) € Im(6n)},

For 6, € ©, the set 01([0, 1]?) is endowed with a (n, §)-hyperbolic
structure by letting

es(5(t)) = 05(t,0),
eu(0n(t)) = 65(t,0).
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Covering (n, §)-hyperbolic s.a. set by hexagons

There is a universal polynomial P, such that any 0%([0,1])? may be
partitioned into P(deg(6,)) hexagons.

Proof : Elimination. OJ
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