III. Equidistribution of periodic points for \mathcal{C}^{∞} surface diffeomorphisms

David Burguet

Luminy, May 22, 2019

(X, f) a topological system,

 h_{top} topological entropy,

 $\forall n\in\mathbb{N},\ \mathrm{Per}_n:=\left\{x\in X,\ f^nx=x\right\}.$

(X, f) a topological system,

 h_{top} topological entropy,

$$\forall n \in \mathbb{N}, \ \operatorname{Per}_n := \{x \in X, \ f^n x = x\}.$$

Fact

(X, f) expansive, then

$$h_{top} \geq \limsup_{n} \frac{1}{n} \log \sharp \operatorname{Per}_{n}.$$

Theorem (Bowen)

(X, f) expansive with specification,

 $\phi:X o\mathbb{R}$ a continuous potential with the Bowen property,

then
$$P_{top}(\phi) = \lim_{n} \frac{1}{n} \log \sum_{x \in \operatorname{Per}_{n}} e^{S_{n}\phi(x)}.$$

Moreover there is a unique equilibrium measure μ_{ϕ} satisfying

$$\mu_{\phi} = \lim_{n} \frac{\displaystyle\sum_{x \in \operatorname{Per}_{n}} e^{\mathcal{S}_{n}\phi(x)} \delta_{x}}{\displaystyle\sum_{x \in \operatorname{Per}_{n}} e^{\mathcal{S}_{n}\phi(x)}}.$$

Theorem (Bowen)

(X, f) expansive with specification,

 $\phi:X o\mathbb{R}$ a continuous potential with the Bowen property,

then
$$P_{top}(\phi) = \lim_{n} \frac{1}{n} \log \sum_{x \in \text{Per}_n} e^{S_n \phi(x)}.$$

Moreover there is a unique equilibrium measure μ_{ϕ} satisfying

$$\mu_{\phi} = \lim_{n} \frac{\displaystyle\sum_{x \in \operatorname{Per}_{n}} e^{\mathcal{S}_{n}\phi(x)} \delta_{x}}{\displaystyle\sum_{x \in \operatorname{Per}_{n}} e^{\mathcal{S}_{n}\phi(x)}}.$$

A topologically mixing uniformly hyperbolic system with a Hölder potential satisfies the above assumptions. In particular periodic points are equidistributed along the unique maximal measure.

Periodic growth for surface diffeos

M a compact surface, $f:M\circlearrowleft {\rm diffeo}\ \mathcal{C}^1,$ any $\mu\in\mathcal{M}$ ergodic with $h(\mu)>0$ is hyperbolic,

Theorem (Katok)

$$f: M \circlearrowleft \mathcal{C}^{1+}$$
 ,

$$h_{top} \leq \limsup_{n} \frac{1}{n} \sharp \log \operatorname{Per}_{n}.$$

Does the equality hold? Is the periodic growth $\limsup_{n} \frac{1}{n} \sharp \log \operatorname{Per}_n$ even finite?

Densely...

Theorem (Artin-Mazur, Kaloshin)

For any $1 \le r \le +\infty$, there is a C^r dense set of diffeos s.t.

$$\limsup_n \frac{1}{n} \sharp \log \mathrm{Per}_n < +\infty$$

Densely...

Theorem (Artin-Mazur, Kaloshin)

For any $1 \le r \le +\infty$, there is a C^r dense set of diffeos s.t.

$$\limsup_{n} \frac{1}{n} \sharp \log \operatorname{Per}_{n} < +\infty$$

but not generically.

Theorem (Gonchenko-Turaev-Shilnikov, Kaloshin)

For any $2 \le r \le +\infty$, there is a \mathcal{C}^r open set \mathcal{N} of diffeos s.t. generically in \mathcal{N}

$$\limsup_{n} \frac{1}{n} \sharp \log \operatorname{Per}_{n} = +\infty$$

 $\begin{aligned} &x \in \mathrm{Per}_n, \ |\chi|(x) = \max_{i=1,2} \left(|\chi_1(x)|, |\chi_2(x)| \right) \\ &\text{with } \chi_i(x) \ i=1,2 \ \text{the Lyapunov exponents at } x, \\ &\forall \delta > 0, \ \mathrm{Per}_n^\delta := \left\{ x \in M, \ f^n x = x \ \text{saddle and } |\chi|(x) > \delta \right\}, \\ &0 < \delta < h_{top}. \end{aligned}$

$$\begin{aligned} &x\in \mathrm{Per}_n, \ |\chi|(x)= \max_{i=1,2} \left(|\chi_1(x)|, |\chi_2(x)|\right) \\ &\text{with } \chi_i(x) \ i=1,2 \ \text{the Lyapunov exponents at } x, \\ &\forall \delta>0, \ \mathrm{Per}_n^\delta:=\left\{x\in M, \ f^nx=x \ \text{saddle and } |\chi|(x)>\delta\right\}, \\ &0<\delta< h_{ton}. \end{aligned}$$

Theorem (Katok)

$$f \mathcal{C}^{1+}$$
,

$$h_{top} \leq \limsup_{n} \frac{1}{n} \log \sharp \operatorname{Per}_{n}^{\delta}.$$

 $x \in \operatorname{Per}_n$, $|\chi|(x) = \max_{i=1,2} (|\chi_1(x)|, |\chi_2(x)|)$ with $\chi_i(x)$ i=1,2 the Lyapunov exponents at x,

$$\forall \delta > 0$$
, $\operatorname{Per}_n^{\delta} := \{ x \in M, \ f^n x = x \text{ saddle and } |\chi|(x) > \delta \}$,

 $0 < \delta < h_{top}$.

Theorem (Katok)

f \mathcal{C}^{1+} ,

$$h_{top} \leq \limsup_{n} \frac{1}{n} \log \sharp \operatorname{Per}_{n}^{\delta}.$$

$$\phi$$
 Hölder and small, i.e. $P_{top}(\phi) > \|\phi\|_{\infty}$, $S_n \phi = \sum_{l=0}^{n-1} \phi \circ f^l$, $0 < \delta < P_{top}(\phi) - \|\phi\|_{\infty}$.

Theorem (Gelfert-Wolf)

$$f$$
 \mathcal{C}^{1+} ,

$$P_{top}(\phi) \leq \limsup_{n} \frac{1}{n} \log \sum_{x \in \operatorname{Per}_{n}^{\delta}} e^{S_{n}\phi(x)}.$$

·) \((·

Theorem

$$f \mathcal{C}^{\infty}$$
,

$$P_{top}(\phi) = \limsup_{n} \frac{1}{n} \log \sum_{x \in \operatorname{Per}_{n}^{\delta}} e^{S_{n}\phi(x)}.$$

$$Moreover \ any \ \mu = \lim_{k} \frac{\sum_{x \in \operatorname{Per}_{n_{k}}^{\delta}} e^{S_{n_{k}}\phi(x)} \delta_{x}}{\sum_{x \in \operatorname{Per}_{n_{k}}^{\delta}} e^{S_{n_{k}}\phi(x)}}$$

$$with \lim_{k} \frac{1}{n_{k}} \log \sum_{x \in \operatorname{Per}_{n_{k}}^{\delta}} e^{S_{n_{k}}\phi(x)} = P_{top}(\phi),$$

is an equilibrium measure w.r.t. ϕ .

Theorem (Sarig)

$$f \ \mathcal{C}^{1+}, \ \exists p \in \mathbb{N}^* \ \exists C > 0,$$

$$\liminf_{p|n} e^{-nP_{top}(\phi)} \sum_{x \in \operatorname{Per}_n^{\delta}} e^{S_n\phi(x)} > C.$$

Theorem (Buzzi, Crovisier, Sarig)

 $f \mathcal{C}^{\infty}$,

- topologically transitive, then there exists a unique equilibrium measure μ_{ϕ} w.r.t. ϕ ,
- topologically mixing, then $\exists C > 0$, $\liminf_n e^{-nP_{top}(\phi)} \sum_{x \in \operatorname{Per}_n^{\delta}} e^{S_n\phi(x)} > C$.

$\mathsf{Theorem}$

f \mathcal{C}^{∞} topologically mixing,

then
$$\lim_n \frac{1}{n} \log \sum_{x \in \operatorname{Per}_n^{\delta}} e^{S_n \phi(x)} = P_{top}(\phi) \text{ and}$$

$$\mu_{\phi} = \lim_n \frac{\sum_{x \in \operatorname{Per}_n^{\delta}} e^{S_n \phi(x)} \delta_x}{\sum_{x \in \operatorname{Per}_n^{\delta}} e^{S_n \phi(x)}}.$$

Tail periodic growth

(X, T) topological system, $\mathcal{P} = (\mathcal{P}_n)_{n \in \mathbb{N}}$ with $\mathcal{P}_n \subset \operatorname{Per}_n$,

Definition

• P-growth

$$g_{\mathcal{P}} := \limsup_{n} \frac{1}{n} \log \sharp \mathcal{P}_{n},$$

• tail P-growth

$$g_{\mathcal{P}}^* := \lim_{\epsilon o 0} g_{\mathcal{P}}^*(\epsilon)$$

with

$$g_{\mathcal{P}}^*(\epsilon) := \limsup_n \frac{1}{n} \sup_{x \in X} \log \sharp B_n(x, \epsilon) \cap \mathcal{P}_n.$$

Any $\mu = \lim_k \frac{1}{\sharp \mathcal{P}_{n_k}} \sum_{\mathbf{x} \in \mathcal{P}_k} \delta_{\mathbf{x}}$ with $\lim_k \frac{1}{n_k} \log \sharp \mathcal{P}_{n_k} = g_{\mathcal{P}}$ satisfies

$$h(\mu) \geq g_{\mathcal{P}} - g_{\mathcal{P}}^*$$
.

In particular $h_{top} \geq g_{\mathcal{P}} - g_{\mathcal{P}}^*$.

Any
$$\mu = \lim_k \frac{1}{\sharp \mathcal{P}_{n_k}} \sum_{x \in \mathcal{P}_{n_k}} \delta_x$$
 with $\lim_k \frac{1}{n_k} \log \sharp \mathcal{P}_{n_k} = g_{\mathcal{P}}$ satisfies

$$h(\mu) \geq g_{\mathcal{P}} - g_{\mathcal{P}}^*$$
.

In particular $h_{top} \geq g_{\mathcal{P}} - g_{\mathcal{P}}^*$.

<u>Proof</u>: Denote $\mu_n := \frac{1}{\mathbb{H}\mathcal{P}_n} \sum_{x \in \mathcal{P}_n} \delta_x$ for all n.

Let P partition with diameter $< \epsilon$, $Q_n > P^n$ s.t.

 $\forall n \forall A \in Q_n, \ \sharp A \cap \mathcal{P}_n \leq 1.$

$$\forall I \leq n, \qquad \frac{1}{I} H_{\mu_n}(P^I) \geq \frac{1}{n} H_{\mu_n}(P^n),$$

$$\geq \frac{1}{n} \left(H_{\mu_n}(Q_n) - H_{\mu_n}(Q_n | P^n) \right),$$

$$\geq \frac{1}{n} \log \sharp \mathcal{P}_n - \sup_{x \in X} \log \sharp \mathcal{P}_n \cap B_n(x, \epsilon),$$

$$h(\mu, P) \leftarrow_I \frac{1}{I} H_{\mu}(P^I) \geq g_{\mathcal{P}} - g_{\mathcal{P}}^*(\epsilon).$$

← ← □ → ← 를 → ← 를 → ♡ Q C

$$\begin{split} f &: M \circlearrowleft \text{ a } \mathcal{C}^1 \text{ surface diffeo,} \\ g^*_\delta &= g^*_{\operatorname{Per}^\delta} \text{ with } \operatorname{Per}^\delta = (\operatorname{Per}^\delta_n)_n. \end{split}$$

Theorem (Kaloshin)

For $f C^2$,

$$\forall \delta > 0, \ g^*_\delta < +\infty.$$

 $f:M\circlearrowleft a\ \mathcal{C}^1$ surface diffeo, $g^*_\delta=g^*_{\operatorname{Per}^\delta}$ with $\operatorname{Per}^\delta=(\operatorname{Per}^\delta_n)_n$.

Theorem (Kaloshin)

For $f C^2$,

$$\forall \delta > 0, \ g_{\delta}^* < +\infty.$$

Main Theorem

For $f \mathcal{C}^{\infty}$.

$$\forall \delta > 0, \ g_{\delta}^* = 0.$$

Explicit (sharp?) upperbound of g_{δ}^* for f C^r with $r < +\infty$ in terms of r, δ and ||df||.

Bounded distorsion lemma for interval maps

f a \mathcal{C}^{∞} interval map, $\delta > 0$ lower bound of the Lyapunov exponent, $x \in M$ center of the dynamical ball.

Lemma

For $\gamma > 0$ and $x \in M$ there exist

- $\epsilon = \epsilon(\gamma)$ radius of the dynamical ball,
- $C = C(\gamma)$ constant,
- $\Theta_n = \Theta_n(\gamma, x) = \{\theta_n\}$ families of rep. of (0, 1),

s.t. we have for all $n \in \mathbb{N}$

- $\bigcup_{\theta_n \in \Theta_n} \operatorname{Im}(\theta_n) \supset \{t \in B_n(x, \epsilon), |(f^n)'(t)| \ge e^{n\delta}\},$
- $\forall \theta_n \in \Theta_n, \ \forall t, s \in \operatorname{Im}(\theta_n), \ |\log |(f^n)'(t)| \log |(f^n)'(s)|| \leq 1$,
- $\sharp \Theta_n \leq Ce^{\gamma n}$.

On $\operatorname{Im}(\theta_n)$ the map f^n is expanding, so that there exists at most one point in $\operatorname{Im}(\theta_n) \cap \operatorname{Per}_n$ for each $\theta_n \in \mathcal{F}_n$, therefore

$$g_{\delta}^*(\epsilon) \leq \gamma$$
, then $g_{\delta}^* = 0$.

Theorem

Main Theorem and its corollaries also hold for C^{∞} interval maps.

On $\operatorname{Im}(\theta_n)$ the map f^n is expanding, so that there exists at most one point in $\operatorname{Im}(\theta_n) \cap \operatorname{Per}_n$ for each $\theta_n \in \mathcal{F}_n$, therefore

$$g_{\delta}^*(\epsilon) \leq \gamma$$
, then $g_{\delta}^* = 0$.

Theorem

Main Theorem and its corollaries also hold for C^{∞} interval maps.

Strategy of the proof for surface diffeos :

- define elementary fⁿ-hyperbolic pieces as an analogous of fⁿ-expanding intervals,
- cover a given dynamical ball of length *n* by a exponentially small number of such pieces.

Reduction

$$M=\mathbb{R}^2/\mathbb{Z}^2$$
, $e_u(x),e_s(x)\in \mathbb{S}(\mathbb{R}^2)$ generating the u/s space at $x\in \operatorname{Per}_n^\delta$,

Fact

There exists
$$\alpha = \alpha(\delta) \in]0, \pi/2[$$
 s.t.

$$\forall x \in \operatorname{Per}_n^{\delta}, \ \max_{0 \le k < n} \angle e_u(x), e_s(x) > \alpha.$$

Reduction

$$M=\mathbb{R}^2/\mathbb{Z}^2$$
, $e_u(x),e_s(x)\in \mathbb{S}(\mathbb{R}^2)$ generating the u/s space at $x\in \operatorname{Per}_n^\delta$,

Fact

There exists $\alpha = \alpha(\delta) \in]0, \pi/2[$ s.t.

$$\forall x \in \operatorname{Per}_n^{\delta}, \ \max_{0 \leq k < n} \angle e_u(x), e_s(x) > \alpha.$$

 $\mathfrak{C}=(\mathfrak{C}_{s},\mathfrak{C}_{u})$ is called a lpha-bicone if \mathfrak{C}_{s} and \mathfrak{C}_{u} cones with

$$\angle \mathfrak{C}_u, \angle \mathfrak{C}_s < \alpha/2 \text{ and } \angle (\mathfrak{C}_s, \mathfrak{C}_u) > \alpha/2,$$

Let $\mathfrak{F}=\{\mathfrak{C}\}$ be a family of α -bicones with $\sharp\mathfrak{F}\leq C/\alpha^2$ s.t.

$$\forall v, w \in \mathbb{S}(\mathbb{R}^2) \text{ with } \angle v, w > \alpha,$$

 $\exists \mathfrak{C} \in \mathfrak{F} \text{ with } v \in \mathfrak{C}_s \text{ and } w \in \mathfrak{C}_u.$

For any α -bicone $\mathfrak C$ we let

$$\operatorname{Per}_n^\delta(\mathfrak{C})=\{x\in\operatorname{Per}_n^\delta \text{ with } e_{u/s}(x)\in\mathfrak{C}_{u/s}\}.$$

Then we have

$$\forall \epsilon > 0, \ \sup_{x \in M} \sharp \mathrm{Per}_n^{\delta} \cap B_n(x, \epsilon) \leq \tfrac{nC}{\alpha(\delta)^2} \sup_{\mathfrak{C}, x \in \mathrm{Per}_n^{\delta}(\mathfrak{C})} \sharp \mathrm{Per}_n^{\delta}(\mathfrak{C}) \cap B_n(x, 2\epsilon).$$

Therefore it is enough to estimate $\sharp \operatorname{Per}_n^{\delta}(\mathfrak{C}) \cap B_n(x, 2\epsilon)$ for a fixed α -bicone \mathfrak{C} and for $x \in \operatorname{Per}_n^{\delta}(\mathfrak{C})$.

Hyperbolic Hexagons

1. Hyperbolic structure : *n*-hyperbolic sets.

 $\overline{\mathcal{F}_n = (\mathsf{f}_0, \cdots, \mathsf{f}_{n-1})}$ with $\mathsf{f}_I : B \to \mathbb{R}^2$ \mathcal{C}^{∞} (applied to local dynamics at $x \in \mathrm{Per}_n^{\delta}(\mathfrak{C})$),

 $\mathfrak{C}_{s/u}$ constant cone fields on $B \subset \mathbb{R}^2$ centered at (1,0) and (0,1), $U_n \subset B_n$ is said (δ,n) -hyperbolic when there are two \mathcal{C}^{∞} unit vector fields e_n^s and e_n^u on U_n contracted and expanded by df^n s.t.

- $ullet e_n^{s/u}, df^n(e_{s/u}) \in \mathfrak{C}_{e_n^{s/u}},$
- $\left|\log \|d\mathbf{f}^n\left(\mathbf{e}_n^{s/u}\right)\|\right| > \frac{n\delta}{2}$.

We can assume $e_n^u = (0,1)$.

2. Accessibility condition: hexagons.

 $H_n \subset U_n$ is a *n-hyperbolic hexagon* when any two points in U_n may be joined by s/u-paths with the same orientations, i.e.

$$\forall x, y \in H_n, \ \exists \alpha = \alpha_{x,y} : [0,1] \to H_n \text{ continuous s.t.}$$

 $\exists \epsilon_{s/u} \in \{\pm 1\}$ and P finite partition into intervals of [0,1] with $\forall I \in P, \ \alpha \in \mathcal{C}^1(I)$ and $\forall t \in I, \alpha'(t) \in \epsilon_{s/u} \mathbb{R}^+ e_n^{s/u}$.

Let H_n be a n-hyperbolic hexagon, then for large n,

 $\sharp \operatorname{Per}_n \cap H_n < 1.$

Let H_n be a n-hyperbolic hexagon, then for large n,

$$\sharp \operatorname{Per}_n \cap H_n < 1.$$

Proof: For $x, y \in H_n$, let

$$extstyle v_{ extstyle s/u} = \sum_{\substack{I \in P, \ lpha_{ extstyle x,y} |_{I} \in \mathbb{R} es_{/u}}} \int_{I} lpha_{ extstyle x,y}'(t) \, dt \in \mathfrak{C}_{ extstyle s/u}$$

and

$$w_{s/u} = \sum_{\substack{I \in P, \\ \alpha'_{x,y}|_{I} \in \mathbb{R}e_{s/u}}} \int_{I} d_{\alpha_{x,y}(t)} \mathsf{f}^{n}(\alpha'_{x,y}(t)) \, dt \in \mathfrak{C}_{s/u}$$

But $||w_s|| \ll ||v_s||$, $||v_u|| \ll ||w_u||$ for large n and $\angle(\mathfrak{C}_s, \mathfrak{C}_u) > \alpha/2$ so that

$$w_u - w_s \neq v_u - v_s,$$

$$| | | | |$$

$$f^n x - f^n y \neq x - y$$

Algebraic properties of reparametrizations

A map
$$\phi=(\phi^1,\cdots,\phi^k):(0,1)^k$$
 \circlearrowleft is semi-algebraic:
$$\forall i\,\exists Q_i\in\mathbb{R}[X_1,\cdots,X_{k+1}]\setminus\{0\}\text{ s.t.}$$

$$\forall x\in(0,1)^k,\,\,Q_i(x,\phi^i(x))=0.$$

The degree of ϕ is $deg(\phi) = max_i min_{Q_i} deg(Q_i)$.

Algebraic properties of reparametrizations

A map
$$\phi=(\phi^1,\cdots,\phi^k):(0,1)^k\circlearrowleft$$
 is semi-algebraic:
$$\forall i\,\exists\, Q_i\in\mathbb{R}[X_1,\cdots,X_{k+1}]\setminus\{0\}\text{ s.t.}$$

$$\forall x\in(0,1)^k,\,\,Q_i(x,\phi^i(x))=0.$$

The degree of ϕ is $deg(\phi) = max_i min_{Q_i} deg(Q_i)$.

Lemma (Algebraic RL)

B the unit euclidean ball in \mathbb{R}^d , $P: (0,1)^k \to \mathbb{R}^d$ with $P = (P_1, \dots, P_d) \in \mathbb{R}^d[X_1, \dots, X_k]$, $s = \max_i \deg P_i, \ r \in \mathbb{N}$,

There exists a family $\Theta = \{\theta\}$ of semi-algebraic rep. of $(0,1)^k$ s.t.

- $\bullet \bigcup_{\theta \in \Theta} \operatorname{Im}(\theta) = P^{-1}(B),$
- $\forall \theta \in \Theta, \|\theta\|_r, \|P \circ \theta\|_r, \leq 1$,
- $\sharp \Theta$, $\max_{\theta \in \Theta} \deg(\theta) \leq \mathfrak{C} = \mathfrak{C}(k, d, r, s)$.

$$heta_1,\cdots, heta_m:(0,1)^k o (0,1)^k$$
 semi-algebraic maps, then

$$\deg(\theta_m \circ \cdots \theta_1) \leq \prod_{i=1}^m \deg(\theta_i)^k.$$

 $\theta_1, \cdots, \theta_m : (0,1)^k \to (0,1)^k$ semi-algebraic maps, then

$$\deg(\theta_m \circ \cdots \theta_1) \leq \prod_{i=1}^m \deg(\theta_i)^k.$$

<u>Proof</u>: k = 1, m = 2, $(Q_i)_{i=1,2}$ vanishing polynomials of $(\theta_i)_{i=1,2}$. Eliminate the variable Y in

$$\begin{cases} Q_1(X, Y) = 0, \\ Q_2(Y, Z) = 0. \end{cases}$$

For $x \in (0,1)^k$ this system has $(x,\theta_1(x),\theta_2\circ\theta_1(x))$ as a solution, therefore $\mathrm{Res}_Y(Q_1,Q_2)$ vanishes at $(x,\theta_2\circ\theta_1(x))=0$. Finally $\deg(\mathrm{Res}_Y(Q_1,Q_2))\leq \deg(Q_1)\times \deg(Q_2)$.

 $\theta_1, \cdots, \theta_m : (0,1)^k \to (0,1)^k$ semi-algebraic maps, then

$$\deg(\theta_m\circ\cdots\theta_1)\leq\prod_{i=1}^m\deg(\theta_i)^k.$$

<u>Proof</u>: k = 1, m = 2, $(Q_i)_{i=1,2}$ vanishing polynomials of $(\theta_i)_{i=1,2}$. Eliminate the variable Y in

$$\begin{cases} Q_1(X, Y) = 0, \\ Q_2(Y, Z) = 0. \end{cases}$$

For $x \in (0,1)^k$ this system has $(x,\theta_1(x),\theta_2\circ\theta_1(x))$ as a solution, therefore $\mathrm{Res}_Y(Q_1,Q_2)$ vanishes at $(x,\theta_2\circ\theta_1(x))=0$. Finally $\deg(\mathrm{Res}_Y(Q_1,Q_2))\leq \deg(Q_1)\times \deg(Q_2)$.

In the conclusion of DRL, we also have

• $\max_{\theta_n \in \Theta_n} \deg(\theta_n) \leq Ce^{\gamma n}$.

740

DRL for cocycles

We apply DRL for the derivative cocycle $\mathbb{S}_2(df)$ acting on $\mathbb{S}_2(\mathbb{R}^2) = \{(z, v, w), z \in \mathbb{R}^2, v, w \in \mathbb{S}(T_z\mathbb{R}^2) \simeq \mathbb{S}^1\}.$

Lemma

For $\gamma>0$ there exist $\epsilon=\epsilon(\gamma)$, $C=C(\gamma,\delta)$ and $\Theta_n=\Theta_n(\gamma)=\{\theta_n\}$ families of s.a. maps from $[0,1]^2\times[0,1]\times[0,1]$ to $\mathbb{S}_2(\mathbb{R}^2)$, s.t. we have for all $n\in\mathbb{N}$:

- $\bullet \ \forall \theta_n \in \Theta_n, \ \theta_n(t,s_1,s_2) = \left(\theta_n^1(t),\theta_n^2(t,s_1),\theta_n^3(t,s_2)\right),$
- $\bigcup_{\theta_n \in \Theta_n} \operatorname{Im}(\theta_n^1) \supset B_n(0, \epsilon)$,
- $\forall \theta_n \in \Theta_n$, $\|d(\mathbb{S}_2(df^n \circ \theta_n))\| \leq \alpha/2$,
- $\forall \theta_n \in \Theta_n \ \forall t, t' \in [0, 1]^2, s_i, s_i' \in [0, 1], i = 2, 3$ $\left| \log \|d_{\theta_n^1(t)} f^n(\theta_n^i(t, s_i))\| - \log \|d_{\theta_n^1(t)} f^n(\theta_n^i(t', s_i'))\| \right| \le 1,$
- $\sharp \Theta_n$, $\max_{\theta_n \in \Theta_n} \deg(\theta_n) \leq Ce^{\gamma n}$.

(n, δ) -hyperbolic s.a. set

$$\Theta_n':=\{\theta_n\in\Theta_n,\ \exists x\in\mathrm{Per}_{\mathcal{F}_n}^\delta(\mathfrak{C})\ \text{s.t.}\ (x,e_s(x),e_u(x))\in\mathrm{Im}(\theta_n)\},$$

For $\theta_n \in \Theta_n'$ the set $\theta_n^1([0,1]^2)$ is endowed with a (n,δ) -hyperbolic structure by letting

$$\begin{array}{lcl} e_s(\theta_n^1(t)) & = & \theta_n^2(t,0), \\ e_u(\theta_n^1(t)) & = & \theta_n^3(t,0). \end{array}$$

Covering (n, δ) -hyperbolic s.a. set by hexagons

Lemma

There is a universal polynomial P, such that any $\theta_n^1([0,1])^2$ may be partitioned into $P(\deg(\theta_n))$ hexagons.

Proof: Elimination.

