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Shub's entropy conjecture

M a compact manifold,
f: MO acC® map,
htop topological entropy of f,

fo i Ho(M) O,
p spectral radius of f,.
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Shub's entropy conjecture

M a compact manifold,
f: MO acC® map,
htop topological entropy of f,

fo : Ho(M) O,
p spectral radius of f,.

Entropy Conjecture (Shub)

fCt,
htop = log p.

Theorem (Yomdin)

The conjecture holds true for any C*° map.
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Volume growth

(M, || - ||) compact C*° Riemannian manifold,
C> disc o : (0,1)k — M, i.e. a C* map
with ||d"o|| < 400 for all r € N.
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Volume growth

(M, || - ||) compact C*° Riemannian manifold,
C> disc o : (0,1)k — M, i.e. a C* map
with ||d"o|| < 400 for all r € N.

Volume growth of o :

1
v(o) = limsup . log volx(f" o o),

_ 1
= limsup — log
n N (0,1

y INde(£" 0 o) dt,

)

Global volume growth :

v = sup v(o).
g

fCl,

logp < wv.
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Volume growth of o at scale ¢ > 0 :

1
v¥*(o,€) = limsup = log suApzvolk(f 0 0lo-1B,(x,6))s
n IS

1
= limsup — log sup/ |AKde(f" 0 o) dt,
n n XEM Jo—1B,(x,e)

with By ( = [ f¥B(ffx.e) for x € M,

0<I<n
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Volume growth of o at scale ¢ > 0 :

1
v¥*(o,€) = limsup = log suApzvolk(f 0 0lo-1B,(x,6))s
n IS

1
= limsup — log sup/ |AKde(f" 0 o) dt,
n n XEM Jo—1B,(x,e)

with By ( = [ f¥B(ffx.e) for x € M,

0<I<n

Local volume growth :

hY
v* = lim sup v*(o,€)
e—=0 o



v S htop + V*.
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v S htop + V*.

M compact set of f-invariant probas,
h(v) metric entropy of v € M

Theorem (Newhouse)

fCu,

° htop <v,
° Vu e M, limsup,_,, h(v) < h(u) + v*.




Theorem (Yomdin)

f C™,

6/21



Theorem (Yomdin)

f C™,

v =0.

Proof of Entropy Conjecture for C* systems :

log p < v < hiop + v = hiop.
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Theorem (Yomdin)

f C™,

v =0.

Proof of Entropy Conjecture for C* systems :

log p < v < hiop + v = hiop.

f C™,

@ htop = v,

o Yu e M, limsup,_,, h(v) < h(u). In particular there exists
an equilibrium measure w.r.t. any C° potential.
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Finite smoothness

f: MO acC" map with +00 > r > 1, d = dim(M),
o:(0,1)k = M a C" disc, i.e. a C" map with ||d"o| < +oc.
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Finite smoothness

f: MO acC" map with +00 > r > 1, d = dim(M),
o:(0,1)k = M a C" disc, i.e. a C" map with ||d"o| < +oc.

€M, xT () =1limy L [log®||def"|| dpu(x),
R(f) = lim, L log™ ||df"|],

o limsup,_,, h(v) < h(u) + w.

These upperbounds are essentially sharp. Moreover there are C"
examples without maximal measures (Misiurewicz, Buzzi).
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C" example with v* # 0 : f : R? () given by 0) with A > 1

A

(0 1) — R2,
> tt2’+1sm (1/t))

-

o N1’ flonB(0,1))
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C" example with v* # 0 : f : R? O given by

RZ
t, t>*lsin(1/t))

=

o N1’ flenB(0,1))

Yen(py = x,2;, 1 A" ~ 1 and

~ 1/xp disc. branches in f"(c N By(0,1))

log(1/xp)  log A
n 2r+1

v*(o,1) > lim
n
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C" example with v* £ 0 : f : R? (9 given by

)\0 S\) with A >1
(0 1) — R2
t2r+1sm (1/t)) " x=0.

R

o N1’ flenB(0,1))

log A
—2r+1°

vi(o) >
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Algebraic RL

B the unit euclidean ball in R,
P:(0,1)k = R with P = (Py,---,Pgq) € RIXy, -, Xu],
s = max; deg P;,
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Algebraic RL

B the unit euclidean ball in RY,

P:(0,1)k — R? with P = (P, ,Pg) € RI[Xq,- -+, X],
s = max; deg P;,

r €N, for a C" disc ¢ : (0,1)k — RY,

we let [jof|, := maxq<, [[d9¢],

rep. of (0,1)% is a C* map from (0, 1) to itself.
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Algebraic RL
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B the unit euclidean ball in RY,

P:(0,1)k — R? with P = (P, ,Pg) € RI[Xq,- -+, X],
s = max; deg P;,

r €N, for a C" disc ¢ : (0,1)k — RY,

we let [jof|, := maxq<, [[d9¢],

rep. of (0,1)% is a C* map from (0, 1) to itself.

Lemma (Gromov)

There exists a family © = {0} of rep. of (0,1) s.t.
0 Useo Im(0) = P1(B),
Q@ VocO, |0, <1and|Pof|,<1,
Q 10 < € with € = &(k,d,r,s).




Polynomial Estimate of &

Lemma (B.-Liao-Yang, Binyamini-Novikov)

There exists R € R[X, Y], s.t.
C(k,d,r,s) = Rkq(r,s).
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Polynomial Estimate of &

Lemma (B.-Liao-Yang, Binyamini-Novikov)

There exists R € R[X, Y], s.t.
C(k,d,r,s) = Rkq(r,s).

Theorem (Yomdin, B.-Liao-Yang)

There is an explicit (essentially sharp) rate of convergence of

lime_osup, v*(o,€) =0 for C°*° maps f and o in a given

ultradifferentiable class, e.g. in the analytic case

log(| log €])
|loge|

Ve >0, supv*(o,e) < O(|ldf])
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s:(0,1)k = R? a C" disc with r € N*.

There exists a family © = {0} of rep. of (0,1) s.t.

o Upeo Im(8) D s71(B),
e V0O, |0, <1and|sod| <1,

o 40 < D max(||d"s||,1)" with® = D(k,d,r).
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s:(0,1)k = R? a C" disc with r € N*.

There exists a family © = {0} of rep. of (0,1) s.t.
o Upeo Im(8) D s71(B),

e V0O, |0, <1and|sod| <1,

o 40 < D max(||d"s||,1)" with® = D(k,d,r).

Proof : We may assume ||d"s|| <1 : consider k-subcubes C of
(0, 1)k of size |C| = max(||d"s|, 1)71/' covering (0,1)% and
Yc 1 (0,1)% — C affine parametrization of C, then
[d"(s o o)l = [C]"[[d"s]| < 1...
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5:(0,1)k = R9 a C" disc with r € N*.,

There exists a family © = {0} of rep. of (0,1) s.t.
o Upeo Im(8) D s71(B),

e V0O, |0, <1and|sod| <1,

o 40 < D max(||d"s||,1)" with® = D(k,d,r).

Proof : We may assume ||d"s|| <1 : consider k-subcubes C of
(0, 1)k of size |C| = max(||d"s|, 1)71/' covering (0,1)% and
Yc 1 (0,1)% — C affine parametrization of C, then
ld"(s o ve) | = |CI[ld"s]| < 1.

If ||[d"s]| <1, let P be the (r — 1)-Lagrange polynomial of s at
xo € (0,1)F and © = {0} as in the Algebraic RL for £, then

o s 1(B) C P71(2B) = Upeo Im(9),

o llso 0]l < |Podll, + (s — P)obll, < € = €(k,d. ).
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DRL for non autonomous C" dynamical systems

F = (fm)men+ family of C" maps from B to RY with fy = Idg,
fm =fpo---ofy from By to RY with

Bm = No<i<m f~'B dynamical ball,

5:(0,1)k = R9 a C" disc.
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5:(0,1)k = R9 a C" disc.

Lemma

For any m € N* there exists ©,, = {6, family of rep. of (0,1)*
satisfying :

o Uy, co,, Im(0m) D s 1(Bn),
o V0, €O, V0 < m, ||f10509 |- <1,

o 10, < ®Mmax(||d"s||,1)" Hmax Ifillr, 1) é-
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DRL for non autonomous C" dynamical systems

F = (fm)men+ family of C" maps from B to RY with fy = Idg,
fm =fpo---ofy from By to RY with

Bm = No<i<m f~'B dynamical ball,

5:(0,1)k = R9 a C" disc.

Lemma

For any m € N* there exists ©,, = {6, family of rep. of (0,1)*
satisfying :

o Uy, co,, Im(0m) D s 1(Bn),
o V0, €O, V0 < m, ||f10509 |- <1,

o 10, < ®Mmax(||d"s||,1)" Hmax Ifillr, 1) é-

Proof : By induction. For each 0, € ©,, let ©(0,,) be the family
of rep. obtained when applying the above Lemma to f™ o5 0 0,.
Take ©pt1 ={0mo 0| 0n €O, 0 €O(0n)}.
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® = (¢dm)men family of a-Holder maps from B to R
with sup,, |¢m|a < 1 for some 0 < o < 1,

qu) = 27;61 d)l (¢] fl.
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® = (¢dm)men family of a-Holder maps from B to R
with sup,, |¢m|a < 1 for some 0 < o < 1,

Spd = 27;)1 ¢y of!.

For any m € N* there exists ©,, = {0,,} family of rep. of (0,1)k
satisfying :

° Up,co, Im(fm) D 5 H(Bm),
oV, cO,V0<I<m, |[ffosolyl, <1,
@ VO0m €O, |SmPosobnyla <1,

m—1
k
r

o 10, < m/*D™max (||d"s|,1)¢ [] max (lIfill,, 1)* .
1=0
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® = (¢dm)men family of a-Holder maps from B to R
with sup,, |¢m|a < 1 for some 0 < o < 1,
qu) = 27;61 d)l (¢] fl.

Lemma

For any m € N* there exists ©,, = {0} family of rep. of (0,1)*
satisfying :

° Up,ce,, Im(0m) > 57 (Bn),

o Vl,eO, V0O I < m, Hf’osonH, <1,

@ VO0m €O, |SmPosobnyla <1,

P K
® 10, < m/oD™max (||d"s|, 1) [ max(|Ifill, 1)’
1=0

Proof : Let 0/ be the rep. of the previous Lemma, then
|proflosod |o<|piallf os08,|¢ <1, thus

|Sm® o506 |, < m. Take finally 6, = 6/, 0 thc with |C| = m~ /.



DRL for C* systems

f: MO acC*>® map,
o:(0,1)k = M a C™ disc,
x e M.
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DRL for C* systems

f: MO acC*>® map,
o:(0,1)k = M a C™ disc,
x e M.

Vv >0, de = ¢(f,v) and C = C(f,0,7) > 0 s.t.

For any n € N* there exists ©, = {0,} family of rep. of (0,1)¥
satisfying :

> Uo,,ee,, Im(6,) D 01 Bn(x, €),
o V0,€0,Y0<I<n, |[df cgob,)| <1,
e 10, < Ce".
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DRL for C* systems

f: MO acC*>® map,
o:(0,1)k = M a C™ disc,
x e M.

Vv >0, de = ¢(f,v) and C = C(f,0,7) > 0 s.t.

For any n € N* there exists ©, = {0,} family of rep. of (0,1)¥
satisfying :

> Uo,,ee,, Im(6,) D 01 Bn(x, €),
o V0,€0,Y0<I<n, |[df cgob,)| <1,
e 10, < Ce".

Proof of Yomdin's theorem :

supv*(o,€) <~ and then v* = 0.
g
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¢ : M — R a a-Holder potential with 0 < a < 1,
Sn =Y 1= pof,
Vy >0, Je = ¢(f, ¢,7) and C = C(f,¢,0,7) > 0 s.t.

Lemma

For any n € N* there exists ©, = {0,} family of rep. of (0, 1)k
satisfying :
°® Ug,co, Im(fn) O o 1Bn(x,€),
o V0, cO0,Y0<I<n, ||dflocob,)| <1,
e V0, € ©,, Vt,s € Im(0,), |Sppoo(t) — Sppoo(s)| <1,
e {0, < Ce".

v

Remark : Third item may be seen as a weak Bowen property for ¢ :

Je > 0dC > 0 s.t.
Vn € NVy € By(x,€), |Snd(x) — Snip(y)| < C.



Local dynamics of a C* system (f, M) with ¢ : M — R a

a-Holder potential

M=R?/79, x € RY and x € RY/Z fixed,
S =X+ e from RY to RY/7Z9,
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Local dynamics of a C* system (f, M) with ¢ : M — R a
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M=R?/79, x € RY and x € RY/Z fixed,
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o:(0,1)k = M a C* disc with Im(c) C B(x, 2¢),
5 = (q)[)%)*l oo : (0, 1)k — R,
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Local dynamics of a C* system (f, M) with ¢ : M — R a

a-Holder potential

M=R?/79, x € RY and x € RY/Z fixed,

¢ =X+ e from RY to R?/Z9,
o:(0,1)k = M a C* disc with Im(c) C B(x, 2¢),
§ = (q)[)%)*l oo : (0, 1)k — R,

F = (fm)m with fp, = (w;p(mﬂ);) o fP o Yfms,
q> = (¢m)m Wlth Qbm = Zi;é ¢ o fk o w?‘pm?y

Vs > 1, sup||d*f| = O(e™)

and sup |pm|a = O(€) uniformly in x.
m
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Proof of DRL for f : M O C* and ¢ : M — R «a-Hdolder :
Choose r, p, e w.r.t. small error term ~v > 0 s.t.

o r € N with ||df||¥/" < /2,
e p € N with DLP < /2,
@ ¢ > 0 with 2e max(||dfP||,1) < 1, ||fm|lr < ||dfP| and
|omla < 1 forall m € N with F = (f,)m and (¢m)m as above.
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Proof of DRL for f : M O C* and ¢ : M — R «a-Hdolder :

Choose r, p, e w.r.t. small error term ~v > 0 s.t.
o r € N with ||df||¥/" < /2,
e p € N with DLP < /2,
e ¢ > 0 with 2e max(||dfP|,1) < 1, |[fm|l, < ||dfP|| and
|¢mla < 1 for all m e N with F = (f)m and (¢m)m as above.

For n = pm, we have
BI(X,€) C 45 (Bn(F)) and
Snp = Sm® o (V).
Let (©m(F)),, be the families of rep. given by DRL for n.a. C"

systems applied to F. The family ©), = {0, = 0,,, 0y € O n(F)}
satisfies DRL for f :

m—1
10/, < m/e@™ [T max (|Ifll, 1)7 .
1=0
< m*/*D™ max (||df[|,1)"" ,
< Ce"".



Asymptotic h-expansiveness of C*° systems

(X, T) top. system, i.e. (X, d) compact metric space
and T : X O continuous,

neN, >0 KCX,

ra(0, K) = min ¢ #E;, U Bn(x,0) D K
x€E;s
Tail entropy of T :

1
h* = lim lim li —1 6, B, .
= lim lim lim sup p ogfgg rn( (x,¢€))
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Asymptotic h-expansiveness of C*° systems

(X, T) top. system, i.e. (X, d) compact metric space
and T : X O continuous,

neN,6>0 KCX,
ra(0, K) = min ¢ #E;, U Bn(x,0) D K

x€E;s
Tail entropy of T :

1
h* = lim lim I|msup—log sup rp (9, Ba(x, €)) .

e—06—0 n xeX

Theorem (Misiurewicz)

V€ M, limsup h(v) < h(u) + h*.

V=l
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(X, T) is said to be asymptotically h-expansive when h* = 0.
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(X, T) is said to be asymptotically h-expansive when h* = 0.
Theorem (Buzzi)

Any C* system is asymptotically h-expansive.
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(X, T) is said to be asymptotically h-expansive when h* = 0.
Theorem (Buzzi)

Any C* system is asymptotically h-expansive.

Proof : With the notations of DRL, take o = #%. If Fs is 0 dense
in (0,1)% then Es = Uy <o 0n (Fs) is 6-dense for the distance dj,
in By(x, €) with ¥x,y € M, dy(x,y) = maxo<k<n d(f¥x, fky).
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(X, T) is said to be asymptotically h-expansive when h* = 0.

Theorem (Buzzi)

Any C* system is asymptotically h-expansive.

Proof : With the notations of DRL, take o = #%. If Fs is 0 dense
in (0,1)% then Es = Uy <o 0n (Fs) is 6-dense for the distance dj,
in By(x, €) with ¥x,y € M, dy(x,y) = maxo<k<n d(f¥x, fky).
Therefore
V9 >0, rn(6,Bn(x,€)) <O, x 4Fs,
< Ce’"F;s

and < .



DRL for C* Cocycles

f: MO acC*>® map,
7V — M a C* Riemannian vector bundle over M,
F : V O a C* semi-invertible bundle morphism with mo F = f o,

SF : S(V) © associated sphere bundle morphism,

¢ :S(V) — R a a-Holder potential with 0 < a < 1,
M:(0,1)k = S(V)acC>®disc, o =mor,

x e M.
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DRL for C* Cocycles

f: MO acC*>® map,
7V — M a C* Riemannian vector bundle over M,
F : V O a C* semi-invertible bundle morphism with mo F = f o,

SF : S(V) © associated sphere bundle morphism,

¢ :S(V) — R a a-Holder potential with 0 < a < 1,
M:(0,1)k = S(V)acC>®disc, o =mor,

x e M.

Vv >0, de = ¢(F,¢,v) and C = C(F,¢,I,7v) > 0 s.t.

Lemma

For any n € N* there exists ©, = {0,} family of rep. of (0,1)k
satisfying :

o Ug,co, Im(0s) D o 1Bf(x,e),

e Vh,c0,V0< < n, ||d(SF’OF09,,) | <1,

o VO, €O, Vt,s € Im(0,), |Snd(l(t)) — Sho(T(s))| <1,

e 1O, < Ce".
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For v >0 and x € M there exist € = &(y) and C = C(vy) constant
s.t. we have for all n € N and for all 0 < € < € :

rS(F) (e,w_lB,f(X, 6)) < Ce™".
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For v >0 and x € M there exist € = &(y) and C = C(vy) constant
s.t. we have for all n € N and for all 0 < € < € :

rS(F) (e,w_lB,f(X, 6)) < Ce™".

Proof : v > 0 fixed,

o Sacksteder-Shub : Let F = {S(A;)}ien with A; € GL(R®*1),
Ve >0VneN, rf(€,S¢) < Can®,
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For v >0 and x € M there exist € = &(y) and C = C(vy) constant
s.t. we have for all n € N and for all 0 < € < € :

rS(F) (E,W_IB;(X, 6)) < Ce™".

Proof : v > 0 fixed,
o Sacksteder-Shub : Let F = {S(A;)}ien with A; € GL(R®*1),
Ve >0VneN, rf(€,S¢) < Can®,
@ Bowen : Ve’ > 03¢ = €(y,¢') >03C = C(v,€) > 0s.t.
Ve < &Vn € N, sup,cp ral) (¢,771Bf(x,€)) < Cen/2,
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For v >0 and x € M there exist € = &(y) and C = C(vy) constant
s.t. we have for all n € N and for all 0 < € < € :

rS(F) (e,w_lB,f(x, 6)) < Ce™".

Proof : v > 0 fixed,
o Sacksteder-Shub : Let F = {S(A;)}ien with A; € GL(R®*1),
Ve >0VneN, rf(€,S¢) < Can®,
@ Bowen : Ve’ > 03¢ = €(y,¢') >03C = C(v,€) > 0s.t.
Ve < &Vn € N, sup,cp ral) (¢,771Bf(x,€)) < Cen/2,
e Buzzi : Take ¢ = €(y) > 0 s.t.
v6 >0, limsup, log supycs(v) ro(F) <5, BE(F)(y, e’)) <v/2.
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