
BEYOND BOWEN LECTURE 5: UNIQUENESS OF
EQUILIBRIUM STATES (CONTINUED); MIXING PROPERTIES

DANIEL J. THOMPSON

Recap of lecture 4, and introduction to lecture 5.

Last time, we introduced our preliminaries on the geodesic flow on a rank 1
non-positive curvature manifold, stated our main results, and described how to
obtain a decomposition for the space of orbit segments using a function λ which
measures curvature of horospheres. Today, we go into more detail on precisely what
hypotheses must be verified to obtain uniqueness of the equilibrium state.

It is well known that a unique equilibrium state must be ergodic. We discuss
how to improve ergodicity to much stronger mixing properties: the Kolmogorov
K-property and the Bernoulli property.

1. General theorem for uniqueness of equilibrium states

We now rigorously state the abstract theorem from [CT16] that we use to prove
our uniqueness results.

Theorem 1.1: Uniqueness of equilibrium states beyond Bowen
(Climenhaga-T.)

Let (X,F) be a flow on a compact metric space, and ϕ : X → R be a
continuous potential function. Suppose that P⊥exp(ϕ) < P (ϕ) and X × [0,∞)
admits a decomposition (P ,G,S) with the following properties:

(I) G has specification;
(II) ϕ has the Bowen property on G;

(III) P ([P ] ∪ [S], ϕ) < P (ϕ).

Then (X,F , ϕ) has a unique equilibrium state µϕ.

Many of the ideas and definitions needed to understand what this theorem says
will be familiar from earlier lectures. So, I will emphasize the main novel points.
For completeness, all the definitions in the above statement follow in §1.1.

The first point we should discuss is the expansivity condition P⊥exp(ϕ) < P (ϕ).
The notion of entropy of obstructions to expansivity for discrete-time maps were
introduced previously. This definition is for flows, and also incorporates a potential
ϕ. It captures the topological pressure of points with ‘non-expansive behavior’ in
the sense of flows.
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Given a potential ϕ, the pressure of obstructions to expansivity is P⊥exp(ϕ) :=

limε→0 P
⊥
exp(ϕ, ε), where

P⊥exp(ϕ, ε) = sup
µ∈Me(F)

{
hµ(f1) +

∫
ϕdµ : µ(NE(ε,F)) = 1

}
,

where NE(ε,F) is the non-expansive set for the flow (at scale ε). For an expansive
map, the set of points that stay close to x is by definition only the point x itself.

For an expansive flow, the set of points that stay close to a point x for all time
is an orbit segment of x. Our set of non-expansive points for a flow is defined
accordingly. For x ∈ X and ε > 0, we let the bi-infinite Bowen ball be

Γε(x) = {y ∈ X : d(ftx, fty) ≤ ε for all t ∈ R}.
The set of non-expansive points at scale ε is

NE(ε,F) := {x ∈ X | Γε(x) 6⊂ f[−s,s](x) for any s > 0},
where f[a,b](x) = {ftx : a ≤ t ≤ b}.

The other major new ingredient is the regularity assumption on ϕ. We say that
ϕ : X → R has the Bowen property on C ⊂ X × [0,∞) if there are ε,K > 0 such
that for all (x, t) ∈ C and y ∈ Bt(x, ε), we have |Φ(x, t) − Φ(y, t)| ≤ K, where

Φ(x, t) =
∫ t

0
ϕ(fsx) ds.

If ϕ has the Bowen property on C = X × [0,∞), then our definition agrees with
the original definition of Bowen.

If (X,F) is uniformly hyperbolic, a standard argument based on exponential
expansion/contraction and the local product structure shows that any Hölder con-
tinuous ϕ is Bowen on X × [0,∞).

We can prove the Bowen property on G for Hölder continuous ϕ using essentially
the same argument.

We also show that the geometric potential ϕu is Bowen on G. This is one of the
hardest parts of the analysis of [BCFT18], and relies on detailed estimates involving
the Riccati equation.

Finally, we point out two things which do NOT matter for us. First, the reader
might be curious about the notation [P ], which we chose to be reminiscent of the
integer part. We needed to consider [P ] instead of P for an abstract decomposition
for a step in the proof that requires a passage from continuous to discrete time. How-
ever, this distinction is irrelevant for the decomposition considered here (or indeed
any λ-decomposition). Second, the reader might be wondering about questions of
coarse scale, which were emphasized and used very effectively in Vaughn’s lectures.
Issues of coarse scale do not arise here. We ask for, and obtain, the specification
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property at arbitrarily small scales. This removes a great deal of technicality from
the analysis.

1.1. All the definitions for the abstract theorem (Optional). For complete-
ness, we collect all the definitions used in Theorem 1.1 more formally. Given a
flow (X,F), we think of X × [0,∞) as the space of finite-length orbit segments by
identifying (x, t) with {fs(x) : 0 ≤ s < t}. Given C ⊂ X × [0,∞) and t ≥ 0 we let
Ct = {x ∈ X : (x, t) ∈ C}. The partition function associated to C is

Λ(C, ϕ, δ, t) = sup

{∑
x∈E

eΦ(x,t) : E ⊂ Ct is (t, δ)-separated

}
.

The pressure of ϕ on C is

P (C, ϕ) = lim
δ→0

lim sup
t→∞

1

t
log Λ(C, ϕ, δ, t).

For C = ∅ we then define P (∅, ϕ) = −∞.

A collection of orbit segments C ⊂ X × [0,∞) has specification at scale ρ > 0
if there exists τ = τ(ρ) such that for every (x1, t1), . . . , (xN , tN) ∈ C there exist
a point y ∈ X and times τ1, . . . , τN−1 ∈ [0, τ ] such that for s0 = τ0 = 0 and

sj =
∑j

i=1 ti +
∑j−1

i=1 τi, we have

fsj−1+τj−1
(y) ∈ Btj(xj, ρ)

for every j ∈ {1, . . . , N}. A collection C ⊂ X × [0,∞) has specification if it has
specification at all scales. If C = X × [0,∞) has specification, then we say the flow
has specification.

We prove a stronger version of this property for the collection C defined in Lecture
4, in which the conclusion that ‘there exist a point y and times τ1, . . . , τN−1 ∈ [0, τ ]’
is replaced with the conclusion that ‘for every collection of times τ1, . . . , τN−1 with
τi ≥ τ for all i, there exists a point y’. That is, we are able to take all the transition
times to be exactly τ , or any length at least τ that we choose.

A decomposition for X × [0,∞) consists of three collections P ,G,S ⊂ X × [0,∞)
for which there exist three functions p, g, s : X× [0,∞)→ [0,∞) such that for every
(x, t) ∈ X × [0,∞), the values p = p(x, t), g = g(x, t), and s = s(x, t) satisfy
t = p+ g + s, and

(x, p) ∈ P , (fp(x), g) ∈ G, (fp+g(x), s) ∈ S.
The conditions we are interested in depend only on the collections (P ,G,S) rather

than the functions p, g, s. However, we work with a fixed choice of (p, g, s) for the
proof of the abstract theorem to apply.

For a collection P , we define

[P ] := {(x, n) ∈ X × N : (f−sx, n+ s+ t) ∈ P for some s, t ∈ [0, 1]}
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and similarly for [S]. The reason that in general we control the pressure of [P ]∪ [S]
rather than the collection P ∪ S is a consequence of a technical step in the proof
of the abstract result in [CT16] that required a passage from continuous to discrete
time. This distinction does not matter for us because for a λ-decomposition we can
show by a simple argument that for all ε > 0, P ([B(η)], ϕ) ≤ P (B(η + ε), ϕ).

2. Kolmogorov property for equilibrium states

Now we discuss the Kolmogorov property for equilibrium states. The following
result is recent work, and not on the arXiv yet (I am happy to share an early version
of the manuscript on request).

Theorem 2.1: K property (Call-T.)

Let (gt) be the geodesic flow over a closed rank 1 manifold M and let
ϕ : T 1M → R be ϕ = qϕu or be Hölder continuous. If P (Sing, ϕ) < P (ϕ),
then the unique equilibrium state µϕ has the Kolmogorov property.

Note that when Dim(M) = 2, it is already known that µϕ is Bernoulli by applying
the work of Ledrappier-Lima-Sarig [LLS16] which uses countable state symbolic
dynamics for 3-dimensional flows.

Mixing for µKBM was already known in all dimensions by Babillot [Bab02]. In
higher dimensions, the K-property is a new result even for the MME µKBM .

We recall the hierarchy of mixing properties (this is an “express train” version of
the hierarchy):

Bernoulli ⇒ K ⇒ mixing of all orders ⇒ mixing ⇒ weak mixing ⇒ ergodic

The K property has a few equivalent formulations. It has a nice characterization
in terms of entropy as follows: We say µ has the K property if any non-trivial
partition ξ (i.e. ξ 6= {∅, X} mod 0 measure sets) has positive entropy h(µ, ξ) > 0.
The Pinsker σ-algebra for an invariant measure µ is essentially the biggest σ-algebra
with entropy 0. Thus, µ has the K property if and only if the Pinsker σ-algebra for
µ is trivial.

The implications above are not ‘if and only if”s in general. However, in smooth
settings with some hyperbolicity, a classic strategy for proving the Bernoulli prop-
erty is to move up the hierarchy, establishing K, and then proving that K im-
plies Bernoulli. This approach was notably carried out by Ornstein and Weiss
[OW73, OW98], Pesin [Pes77], and Chernov and Haskell [CH96]. In particular, a
major success of Pesin theory is his proof that that Liouville measure restricted to
the regular set is Bernoulli.
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It is natural for us to follow the same approach1. I won’t say much about this
because this is the part of the project we are still writing up, but we think it is safe
to announce our result at least in the MME case; I will be cautious about claiming
the result for equilibrium states, but I can certainly say that this is the goal of our
project and that we believe we are on track to announce it soon.

Theorem 2.2: Bernoulli property (Call-T.)

Let (gt) be the geodesic flow over a closed rank 1 manifold M . The unique
measure of maximal entropy µKBM is Bernoulli.

3. Tools to prove Theorem 2.1

Our main tool is a fantastic result of Ledrappier [Led77], which has been ‘redis-
covered’ in the last couple of years. The proof is about one page long, and gives
an insightful criteria for the K property in terms of thermodynamic formalism. The
original result is for discrete-time systems. We state here a version of it for flows2.
The idea is to consider the product flow (X ×X,F × F), i.e. the flow (fs × fs)s∈R
given by

(fs × fs)(x, y) = (fsx, fsy) for s ∈ R.

Theorem 3.1: Criteria for K property (After Ledrappier)

Let (X,F) be a flow such that ft is asymptotically entropy expansive for all
t 6= 0, and let ϕ be a continuous function on X. Let (X ×X,F × F) be the
product of two copies of (X,F).

We define the function Φ : X ×X → R by Φ(x1, x2) = ϕ(x1) + ϕ(x2).

If Φ has a unique equilibrium measure inM(X ×X,F ×F), then the unique
equilibrium measure for ϕ in M(X,F) has the Kolmogorov property.

The system (X,F , ϕ) must have a unique equilibrium state because of the follow-
ing simple lemma.

Lemma 3.2. Let µ be an equilibrium state for (X,F , ϕ). Then µ× µ is an equilib-
rium state for (X ×X,F × F ,Φ).

Proof. Observe that
hµ×µ(f1 × f1) = hµ(f1) + hµ(f1)

1Thanks to Omri Sarig, Todd Fisher, and Ali Tahzibi for encouraging us to not stop at K!!
2The proof of the flow version requires some adaptions from the discrete-time case; it can also

be deduced from the discrete-time result via a half-page proof.
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and ∫
Φ d(µ× µ) =

∫
ϕdµ+

∫
ϕdµ.

Therefore, hµ×µ(f1 × f1) +
∫

Φ d(µ× µ) = 2P (X,F , ϕ) = P (X ×X,F ×F ,Φ). �

Thus if µ, ν are distinct equilibrium states for (X,F , ϕ), then µ×µ and ν× ν are
both equilibrium states for Φ. If Φ has a unique equilibrium state, then this means
that µ × µ = ν × ν and hence µ = ν; thus, we get uniqueness of the equilibrium
state downstairs, and we see that if Φ has a unique equilibrium state, it must have
the form µ× µ where µ is the unique equilibrium state for ϕ.

We sketch the main idea of Ledrappier’s result. By the argument above, if Φ
has a unique equilibrium state, then so does ϕ. Write µ for this measure. As we
observed, µ×µ is an equilibrium state for Φ (the unique one, by assumption). Now
assume that µ is not K. Then µ has a non-trivial Pinsker σ-algebra. This can be
used to define another equilibrium state for Φ. Contradiction.

Strategy of proof of Theorem 2.1. Given Ledrappier’s result, and the general
thrust of these lectures, the strategy for proving the K property is now clear. We
want to show that the product system of two copies of the geodesic flow has a unique
equilibrium state for the class of potentials under consideration.

So let’s find a decomposition for the product system.

Problem: Lifting decompositions to products in general does not work well. One
fact we do have in our favor is that if G has good properties, then so does G × G.
However, we need G × G to arise in a decomposition for (X × X,F × F). For
the decompositions we defined for our symbolic examples, this does not look at all
promising. Exercise: Try to do it for S-gap shifts. You’ll see the issue.

Idea: Work with a nice class of decompositions that DOES behave well under
products. We claim that the class of λ-decompositions is such a class. We used
λ-decompositions already in most of our applications: Mañé examples, partially hy-
perbolic diffeos with 1D center, and geodesic flow on rank one non-positive curvature
manifolds. The decomposition used to study geodesic flow on surfaces with no focal
points by [CKP18] is also a λ-decomposition.

We state the definition of an ‘abstract’ λ-decomposition precisely. Let X be a
compact metric space, F : X → X a continuous flow, and ϕ : X → R a continuous
potential. Let λ : X → [0,∞) be a bounded lower semicontinuous function and

η > 0. Let B(η) = {(x, t) | 1
t

∫ t
0
λ(fs(x)) ds ≤ η} and

G(η) = {(x, t) | 1

ρ

∫ ρ

0

λ(fs(x)) ds ≥ η and
1

ρ

∫ ρ

0

λ(f−sft(x)) ds ≥ η for ρ ∈ [0, t]}.

Let P = S = B(η), and let G = G(η). We define a decomposition (P ,G,S) as
follows. Given an orbit segment (x, t) ∈ X × [0,∞), we decompose (x, t) by taking
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v ft(v)

∈ P
∈ Sfp(v)

ft−s(v)

⇓
∈ G

average(λ) ≥ η

average(λ) < η

Figure 1. Decomposing an orbit segment (again).

the longest initial segment in P as the prefix, and the longest terminal segment
which lies in S as the suffix. The good core is what is left over. We say that a
decomposition (P ,G,S) defined in this way is a λ-decomposition (with constant η).
We ask that the function λ is lower semi-continuous since this allows both continuous
functions as well as indicator functions of open sets.

In order to show that (X ×X,F ×F) has a unique equilibrium state, we need to
find a decomposition for the product system. When (P ,G,S) is a λ-decomposition,

we are able to do this by defining λ̃ : X ×X → [0,∞) as

λ̃(x, y) = λ(x)λ(y).

This function inherits lower semicontinuity from λ, and we consider λ̃-decompositions
for (X ×X,F × F). That is, for η > 0, we let

B̃(η) = {(x, y, t) | 1

t

∫ t

0

λ̃(fsx, fsy) ds ≤ η},

and we let

G̃(η) = {(x, y, t) | 1

ρ

∫ ρ

0

λ̃(fsx, fsy) ds ≥ η,
1

ρ

∫ ρ

0

λ̃(ft−sx, ft−sy) ds ≥ η for ρ ∈ [0, t]}.

The collections P̃ = S̃ = B̃(η), and G̃ = G̃(η) define a λ̃-decomposition (P̃ , G̃, S̃).

The λ̃-decomposition ensures that λ is uniformly positive in both coordinates for
an orbit segment in G̃. This means that the arguments for specification and the
Bowen property carry over to G̃.

But how big are P̃ and S̃? If λ = 0 on one of the coordinates, then anything is
allowed on the other. Roughly, we can show that:

P (P̃ ∪ S̃, ϕ) ≈ P (ϕ) + P (P ∪ S).



8 DANIEL J. THOMPSON

Recall that P (Φ) = 2P (ϕ). Thus, if we have P (P ∪ S) < P (ϕ), then we expect to
be able to obtain the estimate P (P̃ ∪ S̃, ϕ) < P (Φ). This is the strategy we carry
out in our setting.

3.1. Expansivity issues. Unfortunately, specification and regularity are not the
whole story in the flow case. In fact, it is dealing with continuous time, and related
expansivity issues that are the difficult point in our analysis.

Recall that for flows we define

NE(ε,F) := {x ∈ X | Γε(x) 6⊂ orbit segment }.
For a products of flows, the set Γε(x, y) always contains f[−s,s]x × f[−s,s]x. That

is, we are considering a flow with a 2-dimensional center. The theory presented at
the start of this lecture does not apply directly. We have to build a new theory that
controls

NE×(ε) := {(x, y) ∈ X ×X | Γε(x, y) 6⊂ f[−s,s](x)× f[−s,s](y) for any s > 0}.

There are no new difficulties with counting estimates, but serious issues arise
when we build adapted partitions. In the discrete time case, our adapted partition
elements look like pixels and can be used to approximate sets. In the flow case, our
adapted partition elements approach a small piece of orbit, so look like thin cigars.
Collections of partition elements can thus be used to approximate flow-invariant
sets. In the ‘product of flows’ case, the best we can do is approximate sets invariant
under fs × ft for all s, t ∈ R. This creates new technical obstacles that must be
overcome in our uniqueness proof. In particular, to run our ergodicity proof, we
need to be able to approximate sets which are invariant only under fs × fs for all
s ∈ R. This is a fundamental additional difficulty.

We get round this by proving weak mixing for µ using a lower joint Gibbs estimate
which gives a kind of partial mixing for sets which are flowed out by a small time
interval. This can be used to prove weak mixing of µ by a spectral argument. This
is equivalent to the desired ergodicity of µ× µ.

3.2. Finally. We anticipate that our results on K and Bernoulli for geodesic flow
in non-positive curvature will be available on the arXiv later this Summer. Ben Call
also has results which abstract our technique for obtaining the K-property in both
the discrete-time and continuous-time cases. This will provide convenient verifiable
conditions for the K property for systems admitting λ-decompositions beyond the
geodesic flow in nonpositive curvature. These results, and their application to many
of the other systems admitting λ-decompositions discussed in these lectures, are in
progress and will be announced a little further down the road.
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systems, Vol. II—Warsaw, Soc. Math. France, Paris, 1977, pp. 251–272. Astérisque,
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