
BEYOND BOWEN’S SPECIFICATION PROPERTY LECTURE 4:
GEODESIC FLOWS IN NONPOSITIVE CURVATURE

DANIEL J. THOMPSON

Recap of week 1 talks, and introduction to week 2.

We recall some of the highlights of Vaughn Climenhaga’s talks from Week 1.
Vaughn’s talks focused on the theory for measures of maximal entropy (MME).
In particular, he presented Bowen’s approach to the uniqueness of the measure of
maximal entropy, and the recent extensions of this approach. He showed how new
developments in the theory apply to a wide class of systems including β-shifts,
partially hyperbolic DA systems, certain billiards, and the class of geodesic flows
with no conjugate points on Riemannian surfaces. A key idea is the notion of a
decomposition of the space of orbit segments, and some of the applications rely on
being able to carry out the specification approach at a coarse scale.

For Week 2, the theory we will discuss is in some ways more general, and in some
ways more focused. The additional generality is that we will discuss the theory of
uniqueness of equilibrium states rather than just uniqueness of MME. The new focus
is that all week we will consider the setting of geodesic flow on a closed manifold
of nonpositive curvature. This is often considered to be the primary class of non-
uniformly hyperbolic flows in the dynamics literature. In order to study this class,
we will need to introduce tools and techniques that apply in far greater generally.
However, our goal of studying geodesic flow in non-positive curvature is our main
motivation, and this informs our choice of exposition.

DISCLAIMER: While we include some references, these notes make no attempt
to give a complete account of the current literature in the field, which is vibrant
and continually growing. These are preliminary notes, and we sometimes adopt
a conversational writing style. I hope that the informal style will be helpful for
current purposes; I invite the reader to look at our original papers [CT16, BCFT18]
for a more careful and precise account. I also disclaim that these notes have not
yet been proofread to the level of a research paper, and some sections were typed
up while “Flying the Friendly Skies” as United Airlines calls it. All six lectures will
be polished up later into one coherent document with typos fixed and exposition
streamlined. If you notice any typos in this write-up, or see some prose that is
confusing, please do not hesitate to let me know.
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1. Geodesic flow in nonpositive curvature

We collect some geometric preliminaries 1. For more details, we recommend recent
works [BCFT18, GS14], and more classical references [Bal95, Ebe01, Ebe96] Let
M = (Mn, g) be a closed connected C∞ Riemannian manifold with nonpositive
sectional curvature and dimension n, and (gt)t∈R denote the geodesic flow on the
unit tangent bundle X = T 1M . The geodesic flow is defined by picking a point and
a direction (i.e. an element of T 1M), and walking at unit speed along the geodesic
determined by that data. Geodesic flows are of central importance in the theory
of dynamical systems, and encode many important features of the geometry and
topology of the underlying manifold M . There is a natural volume measure on X
called the Liouville measure. We denote it µL. Locally, µL is the product of the
Riemannian volume on M and Haar measure on the unit sphere of dimension n−1.

For purposes of exposition, we will often think about the surface case n = 2,
although our approach applies in higher dimension too. We can think about a
genus 2 torus with an embedded flat cylinder, and negative curvature elsewhere, as
a first example. We could also think about the example of a genus 2 torus where the
curvature vanishes around a single closed geodesic, and is strictly negative elsewhere.
Of course, much more complex examples exist. Another important example to keep
in mind is the Gromov example in dimension 3.

The geodesic flow in nonpositive curvature is a primary example of non-uniform
hyperbolicity. Morally, the difficult phenomenon that one has to deal with here is
the co-existence of high complexity (roughly corresponding to negative curvature)
and low complexity dynamical behavior (roughly corresponding to zero curvature)
in the same system. We split up the phase space according to this dichotomy. That
is, we decompose the unit tangent bundle as

T 1M = Reg t Sing,

where v ∈ Sing if there exists a parallel orthogonal Jacobi field (defined below), and
v ∈ Reg otherwise.

In the surface case, let K be the Gauss curvature, and for v ∈ T 1M , let π(v)
be its footpoint in M . We have the following nice and understandable criteria for
v ∈ Sing:

In Dim(M) = 2, v ∈ Sing if and only if K(π(gtv)) = 0 for all t ∈ R.

That is, Sing is the set of v for which the corresponding geodesic γv experi-
ences 0 curvature for all time. For v to belong to Reg, all that is required is that
K(π(gtv)) < 0 for SOME t. We can see that v ∈ Reg may experience arbitrarily
weak expansion/contraction because the geodesic can be arranged to experience 0
curvature for a long time (e.g. wrapping round an embedded flat cylinder) before
hitting any negative curvature.

1Some of the definitions are taken verbatim from [BCFT18] for notational consistency.
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The set Sing is closed and flow-invariant, while the set Reg is open and dense in
T 1M . We say M is rank 1 if Reg 6= ∅, and we assume throughout that M is rank 1.
Rank 1 is the typical situation (as demonstrated by the higher rank rigidity theorem
of Ballmann, Burns-Spatzier). The rank 1 condition is easy to understand in the
surface case. It is equivalent to asking that the genus of M is at least 2; essentially
all that is ruled out is the flat torus.

1.1. Invariant foliations. TX has invariant subbundles Es and Eu which integrate
to stable and unstable foliations W s and W u. We must be a little careful in defining
them: we cannot ask that W s(v) is the set of points so that d(ftv, ftw) → 0 as
t → ∞ like we can in the uniformly hyperbolic setting. We must instead allow
points that stay bounded distance apart in all forward time. However, this does not
work as the definition of W s because it does not distinguish the stable from the flow
direction. To do things properly, there are two approaches:

Local approach: Use stable and unstable orthogonal Jacobi fields to define Es

and Eu locally (see §1.2).

Global approach: Use the boundary at infinity of M̃ and Busemann functions
to define stable and unstable horospheres Hs and Hu.

Hs(v) can be constructed as follows. Take a circle of radius r around frv. Take
the limit of these circles as r → ∞. This defines Hs(v). Then W s(v) is the vector
field of inward facing normal unit vectors along Hs(v). The unstable horosphere is
constructed analogously. We can define Es(v) = TW s(v) and Eu(v) = TW u(v).

More precisely, given v ∈ T 1M , stable and unstable horospheres Hs
v and Hu

v can
be constructed in the universal cover as follows. For Hs

v , we consider the set of
points in M̃ at distance r from grv, that is

Sr(v,+) = {x ∈ M̃ : dM̃(x, grv) = r},
and we take the limit of Sr(v,+) as r → ∞. This defines a hypersurface which
contains the point πv. The stable horosphere Hs

v is the projection to M (from M̃)
of this hypersurface. The stable manifold W s

v is the normal unit vector field to Hs
v

on the same side as v. For Hu
v , we consider the set of points in M̃ at distance r

from g−rv, that is

Sr(v,−) = {x ∈ M̃ : dM̃(x, g−rv) = r},
and we take the limit of Sr(v,−) as r →∞. The projection toM of this hypersurface
is the stable horosphere Hu

v . The unstable manifold W u
v is the normal unit vector

field to Hu
v on the same side as v. The horospheres are C2 manifolds, and we can

define the stable and unstable subspaces Es
v , E

u
v ⊂ TvT

1
M to be the tangent spaces

of W s
v ,W

u
v respectively. The bundles Es, Eu, which are both globally defined in this

way, are respectively called the stable and unstable bundles. The bundles Es, Eu

are invariant, and depend continuously on v, see [Ebe01, GW99].

On Reg, the subbundles yield the expected splitting Es ⊕ Eu ⊕ E0.
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Finally, we define a function which is of great importance in thermodynamic
formalism. The geometric potential, is the function which measures infinitesimal
volume growth in the unstable distribution:

ϕu(v) = − lim
t→0

1

t
log det(dft|Euv ) = − d

dt

∣∣∣
t=0

log det(dft|Euv ).

The potential ϕu is continuous and globally defined. When M has dimension 2, the
function ϕu is Hölder along unstable leaves [GW99]. It is not known whether ϕu

is Hölder along stable leaves. In higher dimensions, it is not known whether ϕu is
Hölder continuous on either stable or unstable leaves; an advantage of our approach
is that we sidestep the question of Hölder regularity for ϕu.

1.2. Jacobi fields and local construction of stables/unstables (optional).
A Jacobi field along a geodesic γ is a vector field along γ satisfying

(1.1) J ′′(t) +R(J(t), γ̇(t))γ̇(t) = 0,

where R is the Riemannian curvature tensor on M and ′ represents covariant differ-
entiation along γ. Equivalently, a Jacobi field is obtained by taking a one-parameter
family of geodesics and differentiating in the parameter coordinate.

We often want to remove variations through geodesics in the flow direction from
consideration. If J(t) is a Jacobi field along a geodesic γ and both J(t0) and J ′(t0)
are orthogonal to γ̇(t0) for some t0, then J(t) and J ′(t) are orthogonal to γ̇(t) for
all t. Such a Jacobi field is an orthogonal Jacobi field.

A Jacobi field J(t) along a geodesic γ is parallel at t0 if J ′(t0) = 0. A Jacobi field
J(t) is parallel if it is parallel for all t ∈ R.

We write J (γ) for the space of orthogonal Jacobi fields for γ; given v ∈ T 1M
there is a natural isomorphism ξ 7→ Jξ between TvT

1M and J (γv), which has the
property that

(1.2) ‖dft(ξ)‖2 = ‖Jξ(t)‖2 + ‖J ′ξ(t)‖2.

An orthogonal Jacobi field J along a geodesic γ is stable if ‖J(t)‖ is bounded for
t ≥ 0, and unstable if it is bounded for t ≤ 0. The stable and the unstable Jacobi
fields each form linear subspaces of J (γ), which we denote by J s(γ) and J u(γ),
respectively. The corresponding stable and unstable subbundles of TT 1M are

Eu(v) = {ξ ∈ Tv(T 1M) : Jξ ∈ J u(γv)},
Es(v) = {ξ ∈ Tv(T 1M) : Jξ ∈ J s(γv)}.

The bundle Ec is spanned by the vector field V that generates the flow F . We
also write Ecu = Ec ⊕ Eu and Ecs = Ec ⊕ Es. The subbundles have the following
properties (see [Ebe01] for details):

• dim(Eu) = dim(Es) = n− 1, and dim(Ec) = 1;
• the subbundles are invariant under the geodesic flow;



BEYOND BOWEN’S SPECIFICATION PROPERTY LECTURE 4 5

• the subbundles depend continuously on v, see [Ebe01, GW99];
• Eu and Es are both orthogonal to Ec;
• Eu and Es intersect non-trivially if and only if v ∈ Sing;
• Eσ is integrable to a foliation W σ for each σ ∈ {u, s, cs, cu}.

It is proved in [Bal82, Theorem 3.7] that the foliation W s is minimal in the sense
that W s(v) is dense in T 1M for every v ∈ T 1M . Analogously, the foliation W u is
also minimal.

2. Pressure and equilibrium states for flows

2.1. Topological Pressure. Let X be a compact metric space, F = (ft) a contin-
uous flow on X, and ϕ : X → R a continuous function. We denote the space of F -
invariant probability measures on X byM(F), and note thatM(F) =

⋂
t∈RM(ft).

We denote the space of ergodic F -invariant probability measures on X by Me(F).
We recall the definition of the topological pressure of ϕ with respect to F . For

ε > 0 and t > 0 the Bowen ball of radius ε and order t is

Bt(x, ε) = {y ∈M | d(fsx, fsy) < ε for all 0 ≤ s ≤ t}.

Given ε > 0 and t ∈ [0,∞), a set E ⊂ X is (t, ε)-separated if for all distinct x, y ∈ E
we have y /∈ Bt(x, ε).

We write Φ(x, t) =
∫ t

0
ϕ(fsx) ds for the integral of ϕ along an orbit segment of

length t. Let

(2.1) Λ(ϕ, ε, t) = sup

{∑
x∈E

eΦ(x,t) | E ⊂ X is (t, ε)-separated

}
.

Then the topological pressure of ϕ (with respect to F) is

P (ϕ) = lim
ε→0

lim sup
t→∞

1

t
log Λ(ϕ, ε, t).

The variational principle for pressure states that if X is a compact metric space
and F is a continuous flow on X, then

P (ϕ) = sup
µ∈M(F)

{
hµ +

∫
ϕdµ

}
.

A measure achieving the supremum is an equilibrium state for ϕ. When ϕ = 0, we
recover the topological entropy h(F). An equilibrium state for ϕ = 0 is called a
measure of maximal entropy.

If the entropy map µ 7→ hµ is upper semi-continuous then equilibrium states exist
for each continuous potential function. This is the case in our setting since the flow
is entropy-expansivity. This is proved using the flat strip theorem in [Kni98].
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2.2. Pressure on the singular set. Since the singular set Sing is closed and flow-
invariant, we can consider the dynamics restricted to Sing. We write P (Sing, ϕ) for
the pressure of ϕ with respect to (gt)|Sing. Equivalently, we can define

P (Sing, ϕ) = sup

{
hµ +

∫
ϕdµ : µ is flow-invariant with µ(Sing) = 1

}
.

2.3. Pressure of the geometric potential. We now consider the pressure of the
geometric potential. It follows from the Ruelle-Margulis inequality and the Pesin
formula, and that −

∫
ϕudµ is the sum of the positive Lyapunov exponents for µ,

that

P (ϕu) = 0,

and the Liouville measure µL is an equilibrium state for ϕu. In the case of negative
curvature manifolds, ϕu is Hölder and µL is the unique equilibrium state by Bowen’s
classic work.

2.4. Pressure and periodic orbits for geodesic flows (optional). For a < b,
let PerR(a, b] denote the set of closed regular geodesics with length in the interval
(a, b]. For each such geodesic γ, let Φ(γ) be the value given by integrating ϕ around

γ; that is, Φ(γ) := Φ(v, |γ|) =
∫ |γ|

0
ϕ(ftv) dt, where v ∈ T 1M is tangent to γ and |γ|

is the length of γ. Given T, δ > 0, let

Λ∗Reg(ϕ, T, δ) =
∑

γ∈PerR(T−δ,T ]

eΦ(γ).

For a closed geodesic γ, let µγ be the normalized Lebesgue measure around the orbit.
Here, we are following a notation convention of Katok: when we say a geodesic, we
mean oriented geodesic, and we are considering γ as a periodic orbit living in T 1M .
We consider the measures

µReg
T,δ =

1

Λ∗Reg(ϕ, T, δ)

∑
γ∈PerR(T−δ,T ]

eΦ(γ)µγ.

We say that regular closed geodesics weighted by ϕ equidistribute to a measure µ if
limT→∞ µ

Reg
T,δ = µ in the weak* topology for every δ > 0.

3. Main results for week 2

Our main result on uniqueness of equilibrium states for geodesic flow in nonposi-
tive curvature is the following.
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Theorem 3.1: Uniqueness of equilibrium states for rank 1 geodesic
flow (Burns-Climenhaga-Fisher -T.)

Let (gt) be the geodesic flow over a closed rank 1 manifold M and let
ϕ : T 1M → R be ϕ = qϕu or be Hölder continuous satisfying the pressure
gap

P (Sing, ϕ) < P (ϕ).

Then ϕ has a unique equilibrium state µ. This equilibrium state is hyperbolic,
fully supported, and is the weak∗ limit of weighted regular closed geodesics;

In Lecture 5, we will discuss the following new result, which is not yet on the
ArXiv (a preliminary version is available on request).

Theorem 3.2: K and Bernoulli properties (Call-T.)

Any unique equilibrium state provided by the above theorem has the K-
property. The unique MME µKBM has the Bernoulli property.

Remarks on Theorem 3.1:

1) If P (Sing, ϕ) = P (ϕ), i.e. if the pressure gap fails, there is definitely not a
unique fully supported equilibrium state.

2) The case ϕ = 0 is due to Knieper using a Patterson-Sullivan type construction
at the boundary at infinity.

3) As a corollary of 2), it follows that htop(Sing) < htop(X), i.e. that the entropy
gap holds. This is non-trivial since in higher dimensions we may have htop(Sing) > 0.
This is demonstrated by the Gromov example. We have a new direct proof of the
entropy gap which we will discuss in Lecture 6.

Theorem 3.3: Entropy gap (Knieper; new direct proof from BCFT)

For geodesic flow on a closed rank 1 manifold M , the entropy gap holds

(Actually our proof gives the pressure gap for any continuous potential ϕ which
is locally constant on a a neighbourhood of Sing.)

It follows from the entropy gap and a soft argument based on the variational
principle that the pressure gap holds whenever

supϕ− inf ϕ < htop(X)− htop(Sing).

This holds, for example, for qϕu with q small.
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4) When Dim(M) = 2, ϕu vanishes on Sing and htop(Sing) = 0.

Thus, P (Sing, qϕu) = 0 for all q ∈ R.

It is an easy consequence of Ruelle inequality and Pesin formula that

P (qϕu) > 0 for q < 1.

Thus, qϕu has a unique equilibrium state for q < 1. We obtain the classic picture
of the pressure function in non-uniform hyperbolicity.

4. Proof idea for Theorem 3.1

A key idea is to find a decomposition (P ,G,S) for the space of orbit segments. I’ll
wait until the next lecture to state our abstract theorem on uniqueness of equilibrium
states from [CT16] rigorously, although the idea will be familiar from the MME case
which was presented last week. For now, we just sketch the main ideas.

We require that:

(1) G has good properties: that is, the specification property at all scales, and
good control on the integral of ϕ along orbit segments in G;

(2) The collections P ,S satisfy P (P ∪ S) < P (ϕ).

Choose a function λ : X → [0,∞) which measures ‘hyperbolicity’. We want:
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(1) λ vanishes on Sing
(2) λ uniformly positive implies uniform estimates.

There is a convenient geometrically-defined function which has the desired prop-
erties. We let λ(v) be the minimum of the curvature of the stable horosphere Hs(v)
and the unstable horosphere Hu(v).

If v ∈ Sing, then λ(v) = 0 due to the presence of a parallel orthogonal Jacobi
field. The set {v ∈ Reg : λ(v) = 0} may be non-empty, but it has zero measure for
any invariant measure [BCFT18, Corollary 3.6].

If λ(v) ≥ η > 0, then we have various uniform estimates at the point v, for
example on the angle between Eu

v and Es
v , and on the growth of Jacobi fields at v.

Thus, the function λ serves as a useful ‘measure of hyperbolicity’. In particular, we
get the following distance estimates.

Given η > 0 and δ = δ(η) sufficiently small, v ∈ T 1M , and w,w′ ∈ W s
δ (v), we

have for every t ≥ 0:

ds(ftw, ftw
′) ≤ ds(w,w′)e−

∫ t
0 (λ(fτv)−η/2) dτ ,

where ds is the distance on W s. We get similar estimates for w,w′ ∈ W u
δ (v).

We fix η > 0, and define the decomposition (P ,G,S) as follows. Let

B(η) = {(x, t) | 1

t

∫ t

0

λ(fs(x)) ds < η},

G(η) = {(x, t) | 1

ρ

∫ ρ

0

λ(fs(x)) ds ≥ η and
1

ρ

∫ ρ

0

λ(f−sft(x)) ds ≥ η for ρ ∈ [0, t]}.

Let P = S = B(η), and let G = G(η). We decompose an orbit segment (x, t)
by taking the longest initial segment in P as the prefix, and the longest terminal
segment which lies in S as the suffix. The good core is what is left over.

v ft(v)

∈ P
∈ Sfp(v)

ft−s(v)

⇓
∈ G

average(λ) ≥ η

average(λ) < η
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We say that a decomposition (P ,G,S) defined in this way by a continuous function
λ : X → [0,∞) is a λ-decomposition (with constant η).

This decomposition is useful for us is for the following two reasons:

(1) For η > 0 small, P (P ∪ S, ϕ) is close to P (Sing, ϕ). Thus the pressure gap
assumption gives us P (P ∪ S, ϕ) < P (X,ϕ)

(2) G has the specification property and desired uniform estimates on ϕ.

We prove that the specification property holds on the collection

C(η) = {(x, t) : λ(x) > η, λ(ftx) > η}.
Clearly, we have G(η) ⊂ C(η). The proof of the specification property is essentially
the one given last week in the uniformly hyperbolic case. The key ingredient is
uniformity of the local product structure at the end points of the orbit segments.
This is provided by the condition that λ is uniformly positive at these points. Then
we use uniform density of unstable leaves to transition between orbit segments. We
additionally need some definite contraction along the stable of each orbit segment,
which is not hard to obtain.

We also mention another estimate that we hope is illuminating. For an orbit
(x, t) ∈ G(η), the distance estimate

ds(ftw, ftw
′) ≤ ds(w,w′)e−

∫ t
0 (λ(fτx)−η/2) dτ .

becomes

ds(ftw, ftw
′) ≤ ds(w,w′)e−tη/2.

This is a crucial estimate for controlling the regularity of the potential along the
orbit; we will discuss our regularity condition on ϕ precisely next time.

In summary, the ideas above give us the main ingredients to apply our abstract
machinery on uniqueness of equilibrium states. Thus, the pressure gap yields a
unique equilibrium state.

4.1. The function λ in higher dimensions (Optional). We define a version of
the function λ : T 1M → [0,∞) which is suitable for manifolds M with Dim(M) ≥ 2.
Let Hs, Hu be the stable and unstable horospheres for v. Let U sv : TπvH

s → TπvH
s

be the symmetric linear operator defined by U(v) = ∇vN , where N is the field
of unit vectors normal to H on the same side as v. This determines the second
fundamental form of the stable horosphere Hs. We define Uuv : TπvH

s → TπvH
s

analogously. Then Uuv and U sv depend continuously on v, Uu is positive semidefinite,
U s is negative semidefinite, and Uu−v = −U sv .

For v ∈ T 1M , let λu(v) be the minimum eigenvalue of Uuv and let λs(v) = λu(−v).
Let λ(v) = min(λu(v), λs(v)).
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The functions λu, λs, and λ are continuous since the map v 7→ Uu,sv is continuous,
and we have λu,s ≥ 0. When M is a surface, the quantities λu,s(v) are just the
curvatures at πv of the stable and unstable horocycles, and we recover the definition
of λ we stated previously.
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