MINI-COURSE ON FANO FOLIATIONS

Carolina Araujo (IMPA)

Lecture 3: Classification of Fano foliations of large index

MINI-COURSE ON FANO FOLIATIONS

Joint with Stéphane Druel (CNRS/Université Claude Bernard Lyon 1)

- Lecture 0: Algebraicity of smooth formal schemes and applications to foliations
- Lecture 1: Definition, examples and first properties
- Lecture 2: Adjunction formula and applications
- Lecture 3: Classification of Fano foliations of large index

CLASSIFICATION OF FANO MANIFOLDS

Theorem (Kollár-Miyaoka-Mori 1992)

For fixed n, Fano manifolds of dimension n form a bounded family

Classification in dimension \leq 3 (Iskovskikh & Mori-Mukai 1977-1981)

DEFINITION

The **index** of a Fano manifold X is

$$i(\mathcal{F}) := max\{m \in \mathbb{Z} \mid -K_X = mA, A \text{ ample }\}$$

THEOREM (KOBAYASHI-OCHIAI 1973)

•
$$i(X) \leq \dim(X) + 1$$

• $i(X) = \dim(X) + 1 \iff X \cong \mathbb{P}^n$
• $i(X) = \dim(X) \iff X \cong Q^n \subset \mathbb{P}^{n+1}$

CLASSIFICATION OF FANO MANIFOLDS

THEOREM (FUJITA 1982)

Classification when $i(X) = \dim(X) - 1$ (del Pezzo manifolds)

THEOREM (MUKAI 1992) Classification when $i(X) = \dim(X) - 2$ (Mukai manifolds)

THEOREM (BIRKAR 2016)

For singular Fano varieties, boundedness still holds if one suitably bounds the singularities (ϵ -lc)

FANO FOLIATIONS

Problem

For fixed r and n, do Fano foliations of rank r on projective manifolds of dimension n form a bounded family?

NECESSARY CONDITION (PROVED IN LECTURES 0 AND 1)

 $\mathcal{F} \ \ \mathsf{Fano \ foliation} \ \ \Rightarrow \ \exists \ \mathsf{subfoliation} \ \mathcal{G} \subset \mathcal{F} \ \mathsf{with \ algebraic} \ \mathsf{and} \ \mathsf{RC} \ \mathsf{leaves}$

 \implies X is uniruled

DEFINITION

The **index** of a Fano foliation \mathcal{F} on complex projective manifold X is

$$i(\mathcal{F}) := max\{m \in \mathbb{Z} \mid -K_{\mathcal{F}} \sim_{\mathbb{Z}} mA, A \text{ ample } \}$$

KOBAYASHI-OCHIAI THEOREM FOR FOLIATIONS

THEOREM (A.- DRUEL - KOVÁCS 2008)

 $\mathcal{F} \subsetneq \mathcal{T}_X$ Fano foliation of rank r on a complex projective manifold X

•
$$i(\mathcal{F}) \leq r$$

• $i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$

THEOREM (WAHL 1983)

X complex projective manifold

If T_X contains an ample line bundle, then $X \cong \mathbb{P}^n$

 \implies in the theorem we may assume that $r\geq 2$

KOBAYASHI-OCHIAI THEOREM FOR FOLIATIONS THEOREM (A.- DRUEL - KOVÁCS 2008)

 $\mathcal{F} \subsetneq \mathcal{T}_X$ Fano foliation of rank r on a complex projective manifold X

•
$$i(\mathcal{F}) \leq r$$

•
$$i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$$

Proof.

Let $\mathcal{F} \subsetneq T_X$ be Fano foliation of rank $r \ge 2$ and index $i(\mathcal{F}) \ge r$

- Step 1. Show that $i(\mathcal{F}) = r$
- \bullet Step 2. Show that the leaves of ${\cal F}$ are algebraic
- Step 3. Show that the general log leaf (F, Δ) ≃ (ℙ^r, H) (log canonical)
- Step 4. Using the common point, show that $X \cong \mathbb{P}^n$

TOOL: RATIONAL CURVES ON UNIRULED VARIETIES

X complex projective manifold of dimension n

W dominating family of rational curves of minimal degree on X ($W \subset Chow(X)$)

 $x \in X$ general $\rightsquigarrow W_x = \{[\ell] \in W \mid x \in \ell\}$ proper $(d = \dim(W_x))$

PROPERTIES

• \forall closed subset $Z \subset X$ with $\operatorname{codim}_X(Z) \ge 2$ $\exists \ \ell \in W$ such that $\ell \cap Z = \emptyset$

• For general
$$[\ell] \in W$$
, $T_{X|_{\ell}} \cong \underbrace{\mathcal{O}_{\mathbb{P}^1}(2)}_{= \mathcal{T}_{\mathbb{P}^1}} \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)}$

TOOL: RATIONAL CURVES ON UNIRULED VARIETIES

X complex projective manifold of dimension n

W dominating family of rational curves of minimal degree on X ($W \subset Chow(X)$)

 $x \in X$ general $\rightsquigarrow W_x = \{[\ell] \in W \mid x \in \ell\}$ proper $(d = \dim(W_x))$

PROPERTIES

• \forall closed subset $Z \subset X$ with $\operatorname{codim}_X(Z) \ge 2$ $\exists \ \ell \in W$ such that $\ell \cap Z = \emptyset$

• For general
$$[\ell] \in W$$
, $T_{X|_{\ell}} \cong \underbrace{\mathcal{O}_{\mathbb{P}^1}(2)}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)}$

THEOREM (Cho-Miyaoka-Shepherd-Barron, Kebekus 2002)

 $d=n-1\iff X\cong\mathbb{P}^n\iff \exists x_0\in X ext{ such that curves from }W_{x_0}$ dominate X

RATIONALLY CONNECTED QUOTIENTS

X complex projective manifold

 ${\it W}$ dominating family of rational curves on ${\it X}$

Equivalence relation on X:

 $x \sim y \iff x$ and y can be connected by a chain of cycles in W \exists dense open subset $X^{\circ} \subset X$ and proper morphism

$$\pi: X^{\circ} \rightarrow Y^{\circ}$$

whose fibers are equivalence classes

For general $[\ell] \in W$:

$$T_{X|_{\ell}} \cong \underbrace{\mathcal{O}_{\mathbb{P}^{1}}(2)}_{\subset (T_{X^{\circ}/Y^{\circ}})|_{\ell}} \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus (n-d-1)}$$

RATIONALLY CONNECTED QUOTIENTS

Remark

X complex projective manifold

W proper (unsplit) family of rational curves on X

(e.g., for some ample divisor A on X, $A \cdot \ell = 1$, $[\ell] \in W$)

 $x \sim y \iff x$ and y can be connected by a chain of cycles in W

 \exists dense open subset $X^{\circ} \subset X$ with $\operatorname{codim}_X(X \setminus X^{\circ}) \ge 2$ and equidimensional proper morphism onto normal variety

$$\pi: X^{\circ} \rightarrow Y^{\circ}$$

whose fibers are equivalence classes, reduced and irreducible

KOBAYASHI-OCHIAI THEOREM FOR FOLIATIONS THEOREM (A.- DRUEL - KOVÁCS 2008)

 $\mathcal{F} \subsetneq \mathcal{T}_X$ Fano foliation of rank r on a complex projective manifold X

•
$$i(\mathcal{F}) \leq r$$

•
$$i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$$

Proof.

Let $\mathcal{F} \subsetneq T_X$ be Fano foliation of rank $r \ge 2$ and index $i(\mathcal{F}) \ge r$

- Step 1. Show that $i(\mathcal{F}) = r$
- \bullet Step 2. Show that the leaves of ${\cal F}$ are algebraic
- Step 3. Show that the general log leaf (F, Δ) ≃ (ℙ^r, H) (log canonical)
- Step 4. Using the common point, show that $X \cong \mathbb{P}^n$

Step 1. Show that $i(\mathcal{F}) = r$

Assumption: $-K_{\mathcal{F}} = i(\mathcal{F})A$, A ample and $i(\mathcal{F}) > r$

W dominating family of rational curves of minimal degree on Xwith associated rationally connected quotient $\pi: X^{\circ} \rightarrow Y^{\circ}$

$$\begin{split} &[\ell] \in W \text{ general } \implies \ell \cap \operatorname{Sing}(\mathcal{F}) = \emptyset \text{ and} \\ &\mathcal{F}_{|_{\ell}} \subset T_{X|_{\ell}} \cong \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus (n-d-1)} \\ &\implies \mathcal{F}_{|_{\ell}} \cong \underbrace{\mathcal{O}_{\mathbb{P}^{1}}(2)}_{\oplus} \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus r-1} \text{ and } A \cdot \ell = 1 \quad (W \text{ unsplit}) \\ &\implies T_{X^{\circ}/Y^{\circ}} \subset \mathcal{F}_{|X^{\circ}} \end{split}$$

 $egin{aligned} \mathcal{O}_{\mathbb{P}^1}(2)\oplus\mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \ \subset \ (\mathcal{T}_{X^\circ/Y^\circ})_{|\ell} \ \subset \ \mathcal{F}_{|\ell} \ \cong \ \mathcal{O}_{\mathbb{P}^1}(2)\oplus\mathcal{O}_{\mathbb{P}^1}(1)^{\oplus r-1} \ \subset \ & \subset \ \mathcal{O}_{\mathbb{P}^1}(2)\oplus\mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d}\oplus\mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)} \ \cong \ \mathcal{T}_{X|_\ell} \end{aligned}$

Step 1. Show that $i(\mathcal{F}) = r$

Assumption: $-K_{\mathcal{F}} = i(\mathcal{F})A$, A ample and $i(\mathcal{F}) > r$

W dominating family of rational curves of minimal degree on Xwith associated rationally connected quotient $\pi: X^{\circ} \rightarrow Y^{\circ}$

$$\begin{split} &[\ell] \in W \text{ general } \implies \ell \cap \operatorname{Sing}(\mathcal{F}) = \emptyset \text{ and} \\ &\mathcal{F}_{|_{\ell}} \subset T_{X|_{\ell}} \cong \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^{1}}^{\oplus (n-d-1)} \\ &\implies \mathcal{F}_{|_{\ell}} \cong \underbrace{\mathcal{O}_{\mathbb{P}^{1}}(2)}_{\oplus \mathbb{O}_{\mathbb{P}^{1}}(1)^{\oplus r-1} \text{ and } A \cdot \ell = 1 \quad (W \text{ unsplit}) \\ &\implies T_{X^{\circ}/Y^{\circ}} \subset \mathcal{F}_{|X^{\circ}} \end{split}$$

 $\begin{array}{lll} \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} &\cong (T_{X^{\circ}/Y^{\circ}})_{|\ell} &= \mathcal{F}_{|\ell} &\cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus r-1} \\ &\subset \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus (n-d-1)} &\cong T_{X|\ell} \end{array}$

Step 1. Show that $i(\mathcal{F}) = r$

Assumption: $-K_{\mathcal{F}} = i(\mathcal{F})A$, A ample and $i(\mathcal{F}) > r$

W dominating family of rational curves of minimal degree on Xwith associated rationally connected quotient $\pi: X^{\circ} \rightarrow Y^{\circ}$

Conclusion: \mathcal{F} is induced by $\pi: X^{\circ} \rightarrow Y^{\circ}$

General log leaf $(F, \Delta) = (X_y, 0)$

Corollary (proved in Lecture 2)

If \mathcal{F} is an algebraically integrable Fano foliation on a complex projective manifold, then $\Delta \neq 0$.

Contradiction!

KOBAYASHI-OCHIAI THEOREM FOR FOLIATIONS THEOREM (A.- DRUEL - KOVÁCS 2008)

 $\mathcal{F} \subsetneq \mathcal{T}_X$ Fano foliation of rank r on a complex projective manifold X

•
$$i(\mathcal{F}) \leq r$$

•
$$i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$$

Proof.

Let $\mathcal{F} \subsetneq T_X$ be Fano foliation of rank $r \ge 2$ and index $i(\mathcal{F}) \ge r$

- Step 1. Show that $i(\mathcal{F}) = r$
- \bullet Step 2. Show that the leaves of ${\cal F}$ are algebraic
- Step 3. Show that the general log leaf (F, Δ) ≃ (ℙ^r, H) (log canonical)
- Step 4. Using the common point, show that $X \cong \mathbb{P}^n$

STEP 2. Show that leaves are algebraic

Assumption: $-K_{\mathcal{F}} = rA$, A ample

W dominating family of rational curves of minimal degree on *X W* $\rightsquigarrow \alpha \in N_1(X)$ movable curve class $\rightsquigarrow \mu_{\alpha}(\bullet) = \frac{\det(\bullet) \cdot \alpha}{\operatorname{rank}(\bullet)}$

The Harder-Narasimhan filtration of \mathcal{F} :

$$egin{aligned} 0 &= \mathcal{F}_0 \subsetneq \mathcal{F}_1 \subsetneq \cdots \subsetneq \mathcal{F}_k = \mathcal{F} \ ig(\ \mu_lpha(\mathcal{F}_1) > \mu_lpha(\mathcal{F}_2) > \cdots > \mu_lpha(\mathcal{F}_k) \geq 1 \ ig) \end{aligned}$$

Theorem (proved in lectures 0 and 1)

 \mathcal{F}_1 has algebraic (and RC) leaves

Case 1. $\mathcal{F} = \mathcal{F}_1$ is μ_{α} -semistable $\implies \mathcal{F}$ has algebraic leaves **Case 2.** $\mathcal{F}_1 \neq \mathcal{F} \implies \mu_{\alpha}(\mathcal{F}_1) > 1$ STEP 2. Show that leaves are algebraic

Case 2. $\mathcal{F}_1 \subsetneq \mathcal{F}$ with $\mu_{\alpha}(\mathcal{F}_1) = \frac{\det(\mathcal{F}_1) \cdot \alpha}{\operatorname{rank}(\mathcal{F}_1)} > 1 \implies$ (as in step 1)

- W unsplit
- \mathcal{F}_1 has rank r-1
- \mathcal{F}_1 is induced by the rationally connected quotient associated to W

$$\pi: X^{\circ} \rightarrow Y^{\circ}$$

($\operatorname{codim}_X(X \setminus X^\circ) \ge 2$ and π equidimensional and proper with reduced and irreducible fibers onto normal variety)

$$\implies \quad \mathcal{F}=\pi^*\mathcal{G} \ \, \text{for} \ \, \mathcal{G}\subset T_{\mathbf{Y}^\circ} \ \, \text{foliation of rank 1}$$

$$K_{\mathcal{F}} = K_{X^{\circ}/Y^{\circ}} + \pi^* K_{\mathcal{G}}$$

STEP 2. Show that leaves are algebraic

 $X^\circ \subset X$ open subset with $\operatorname{codim}_X(X \setminus X^\circ) \geq 2$

 $\pi:\ X^\circ\ \to\ Y^\circ\ {\rm equidimensional\ and\ proper\ with\ reduced\ fibers}$ $\mathcal{G}\subset \mathcal{T}_{Y^\circ}\ {\rm foliation\ of\ rank\ 1}$

$$\mathcal{F} = \pi^* \mathcal{G} \quad \rightsquigarrow \quad \left[-K_{\mathcal{F}} = -K_{X^{\circ}/Y^{\circ}} - \pi^* K_{\mathcal{G}} \right]$$

 $\tilde{C} \subset X$ general complete intersection curve $\implies \tilde{C} \subset X^{\circ}$ $C = \pi(\tilde{C}) \subset Y^{\circ}$ (we may assume it is smooth) and $X_C = \pi^{-1}(C)$ $\pi_C : X_C \rightarrow C$ equidimensional and proper with reduced fibers

$$\underbrace{(-K_{\mathcal{F}})_{|X_{\mathcal{C}}}}_{\text{ample}} = \underbrace{-K_{X_{\mathcal{C}}/\mathcal{C}}}_{\text{cannot be ample}} - \pi^*(K_{\mathcal{G}|\mathcal{C}})$$

 $\implies -K_{\mathcal{G}} \cdot C > 0$

 \implies leaves of \mathcal{G} are algebraic

KOBAYASHI-OCHIAI THEOREM FOR FOLIATIONS THEOREM (A.- DRUEL - KOVÁCS 2008)

 $\mathcal{F} \subsetneq \mathcal{T}_X$ Fano foliation of rank r on a complex projective manifold X

•
$$i(\mathcal{F}) \leq r$$

•
$$i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$$

Proof.

Let $\mathcal{F} \subsetneq T_X$ be Fano foliation of rank $r \ge 2$ and index $i(\mathcal{F}) \ge r$

- Step 1. Show that $i(\mathcal{F}) = r$
- \bullet Step 2. Show that the leaves of ${\cal F}$ are algebraic
- Step 3. Show that the general log leaf $(F, \Delta) \cong (\mathbb{P}^r, H)$ (log canonical)
- Step 4. Using the common point, show that $X \cong \mathbb{P}^n$

STEP 3. SHOW THAT $(F, \Delta) \cong (\mathbb{P}^r, H)$

Adjunction theory: To describe a polarized variety (Y, L) by studying

 $K_Y + mL$, $m \ge 1$ (adjunction divisors)

EXAMPLE (FUJITA 1988) $K_Y + \dim(Y)L$ not pseudo-effective $\implies (Y, L) \cong (\mathbb{P}^n, H)$

In our case: $(Y, L) = (F, A_F)$

$$K_F + \Delta \sim (K_F)_{|F} \sim -rA_F$$

 $\implies K_F + rA_F \sim -\Delta \text{ is not pseudo-effective}$ $\implies (F, A_F) \cong (\mathbb{P}^r, H) \text{ and } \Delta \sim H$

KOBAYASHI-OCHIAI THEOREM FOR FOLIATIONS THEOREM (A.- DRUEL - KOVÁCS 2008)

 $\mathcal{F} \subsetneq \mathcal{T}_X$ Fano foliation of rank r on a complex projective manifold X

•
$$i(\mathcal{F}) \leq r$$

•
$$i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$$

Proof.

Let $\mathcal{F} \subsetneq T_X$ be Fano foliation of rank $r \ge 2$ and index $i(\mathcal{F}) \ge r$

- Step 1. Show that $i(\mathcal{F}) = r$
- \bullet Step 2. Show that the leaves of ${\cal F}$ are algebraic
- Step 3. Show that the general log leaf (F, Δ) ≃ (ℙ^r, H) (log canonical)
- Step 4. Using the common point, show that $X \cong \mathbb{P}^n$

Step 4. Show that $X \cong \mathbb{P}^n$

Assumption: $-K_{\mathcal{F}} = rA$, A ample + leaves are algebraic General log leaf $(F, \Delta) \cong (\mathbb{P}^r, H)$ and $A_F \sim H$

 $\ell \subset F \cong \mathbb{P}^r \iff W$ dominating (unsplit) family of rational curves on X

COROLLARY (PROVED IN LECTURE 2)

 \mathcal{F} algebraically integrable Fano foliation on a complex projective manifold If the general log leaf (F, Δ) is log canonical, then there is a common point in the closure of a general leaf.

 $x_0 \in X$ commont point in the closure of a general leaf $F \cong \mathbb{P}^r$ Curves from W_{x_0} dominate $X \implies X \cong \mathbb{P}^n$

DEL PEZZO FOLIATIONS

THEOREM (A.- DRUEL - KOVÁCS 2008)

 $\mathcal{F} \subsetneq \mathcal{T}_X$ Fano foliation of rank r on a complex projective manifold X

•
$$i(\mathcal{F}) \leq r$$

• $i(\mathcal{F}) = r \implies X \cong \mathbb{P}^n$

DEFINITION

A Fano foliation $\mathcal{F} \subsetneq T_X$ of rank r on a complex projective manifold X is a **del Pezzo foliation** if $i(\mathcal{F}) = r - 1$.

DEL PEZZO FOLIATIONS

DEFINITION

A Fano foliation $\mathcal{F} \subsetneq T_X$ of rank r on a complex projective manifold X is a **del Pezzo foliation** if $i(\mathcal{F}) = r - 1$.

THEOREM (A.- DRUEL 2013)

If \mathcal{F} is a del Pezzo foliation on a complex projective manifold X, then

- either $X \cong \mathbb{P}^n$ and $\exists \varphi : \mathbb{P}^n \dashrightarrow \mathbb{P}^{n-r+1}$ such that $\mathcal{F} = \varphi^* \mathcal{C}$ for $\mathcal{C} \cong \mathcal{O} \subset \mathcal{T}_{\mathbb{P}^{n-r+1}}$, or
- \mathcal{F} is algebraically integrable

Problem

Classification of del Pezzo foliations

THEOREM (A.- DRUEL 2016, A. 2018)

Classification of log leaves (F, Δ) of del Pezzo foliations on complex projective manifolds:

- $(F,\Delta) \cong (\mathbb{P}^r,Q^{r-1})$
- $\textcircled{}{} (F,\Delta)\cong (Q^r,H)$
- $\textcircled{O}(F,\Delta)\cong (\mathbb{P}^2,\ell)$
- $\bullet \ \ {\cal F}\cong \mathbb{P}_{\mathbb{P}^1}({\cal E}) \ + \ {\rm classification} \ {\rm of} \ {\cal E} \ {\rm and} \ {\rm description} \ {\rm of} \ \Delta \ \ (\ r\leq 3 \)$
- (F, Δ) is a cone over $(C_d, p_1 + p_2)$, where C_d is rational normal curve of degree d in \mathbb{P}^d
- (F, Δ) is a cone over (4)

CLASSIFICATION OF DEL PEZZO FOLIATIONS

THEOREM (A.- DRUEL 2013, 2016, FIGUEREDO 2019)

 \mathcal{F} del Pezzo foliation of rank $r \geq 3$ on complex projective manifold $X \ncong \mathbb{P}^n$ Suppose that the general log leaf (F, Δ) is log canonical. Then

• either $X \cong Q^n$ and \mathcal{F} is induced by a linear projection $\mathbb{P}^{n+1} \dashrightarrow \mathbb{P}^{n-r}$

• or r = 3 and $X \cong \mathbb{P}_{\mathbb{P}^k}(\mathcal{E})$ (+ classification of \mathcal{E} and \mathcal{F})

Problem

Classification of del Pezzo foliations of rank r = 2

Thank you!