Klt varieties with trivial canonical class – Holonomy, differential forms, and fundamental groups II Analytic aspects

### Henri Guenancia joint work with Daniel Greb and Stefan Kebekus

April 2020

H. Guenancia

Holonomy of singular Ricci-flat metrics

April 2020 1 / 13

# The singular Ricci-flat metric

X projective variety of dimension n, H ample line bundle.

#### Main assumption

X has canonical singularities and  $K_X \sim \mathcal{O}_X$ .

### Theorem (Eyssidieux-Guedj-Zeriahi '06)

There exists a unique smooth Kähler form  $\omega$  on  $X_{\mathrm{reg}}$  such that

$$\ 0 \ \ \omega \in c_1(H)|_{X_{\mathrm{reg}}},$$

**2** Ric 
$$\omega = 0$$
,

$$\, \mathbf{S} \, \int_{X_{\mathrm{reg}}} \omega^n = c_1(H)^n.$$

## Decomposition of the tangent sheaf

#### Theorem (Greb-Kebekus-Peternell '12, Guenancia '15)

There exists a finite quasi-étale cover  $f : A \times Z \rightarrow X$  and a decomposition

$$\mathscr{T}_{\mathsf{Z}} = \bigoplus_{i \in \mathsf{I}} \mathscr{E}_i$$

such that

•  $\widetilde{q}(Z) = 0$ , i.e.  $\forall Z' \to Z$  quasi-étale finite,  $h^0(Z', \Omega_{Z'}^{[1]}) = 0$ .

**2** Each  $\mathcal{E}_i$  has vanishing  $c_1$ , is strongly stable wrt any polarization.

Some of the vector bundle *E<sub>i</sub>*|<sub>Z<sub>reg</sub></sub> is invariant under parallel transport by ω<sub>Z</sub> defined by *f*<sup>\*</sup>ω = ω<sub>A</sub> ⊕ ω<sub>Z</sub>.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Objectives

Assume  $\tilde{q}(X) = 0$  and decompose  $\mathscr{T}_X = \bigoplus_{i \in I} \mathscr{E}_i$  into strongly stable pieces.

Road map

- Classify/compute  $\operatorname{Hol}_{\omega}(X_{\operatorname{reg}}, \mathscr{E}_i)$ .
- Pelate the geometry of *E<sub>i</sub>* (e.g. global sections of tensor bundles) to its holonomy group Hol<sub>ω</sub>(*X*<sub>reg</sub>, *E<sub>i</sub>*).
- Solution Classify varieties X with  $\mathscr{T}_X$  strongly stable (i.e. |I| = 1).

< □ > < □ > < □ > < □ > < □ > < □ >

# Quick recap on riemannian holonomy (1)

(M,g) Riemannian manifold, Levi-Civita connection  $abla^g$  on  $T_M$ ,  $x \in M$ .

#### Parallel transport

Given a loop  $\gamma : [0,1] \to M$  with  $\gamma(0) = \gamma(1) = x$  and  $v \in T_{M,x}$ ,  $\exists !$  smooth section  $v(t) \in T_{M,\gamma(t)}$  such that

$$\begin{array}{l} \bullet \quad v(0) = v. \\ \bullet \quad \nabla^g_{\gamma'(t)} v(t) = 0. \\ \\ \text{Define } \tau_{\gamma}(v) := v(1) \in T_{M,x} \rightsquigarrow \tau_{\gamma} \in \mathrm{O}(T_{M,x},g_x). \end{array}$$

# Quick recap on riemannian holonomy (2)

Holonomy group

We define

$${\mathcal G}:=\operatorname{Hol}({\mathcal M},g):=\{ au_\gamma,\gamma ext{ loop at } x\}\subset \operatorname{O}({\mathcal T}_{{\mathcal M},x})$$

and the connected component of the identity

$${\mathcal G}^\circ := \operatorname{Hol}^\circ({\mathcal M}, {m g}) := \{ au_\gamma, \gamma ext{ loop at } x ext{ homotopic to } 0\} \subset \operatorname{O}({\mathcal T}_{{\mathcal M}, x})$$

Link with fundamental group  $G^{\circ} \triangleleft G$  is normal and  $\exists$  canonical surjection  $\pi_1(M) \twoheadrightarrow G/G^{\circ}$ .

A (10) N (10)

# Quick recap on riemannian holonomy (3)

#### Main example

 $(M, \omega)$  Kähler Ricci-flat  $\rightsquigarrow G \subset SU(n)$ .

### Subbundles

If  $E \subset T_M$  is a subbundle invariant by parallel transport, then the holonomy G decomposes as  $G_1 \times G_2$  where  $G_1 \circlearrowleft E_x$  and  $G_2 \circlearrowright E_x^{\perp}$  and one sets  $\operatorname{Hol}(M, E, g) = G_1$ . If M is complex and E a holomorphic subbundle, then the  $\mathscr{C}^{\infty}$  splitting  $T_M = E \oplus E^{\perp}$  is actually holomorphic.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Elementary results

Assume  $\tilde{q}(X) = 0$  and decompose  $\mathscr{T}_X = \bigoplus_{i \in I} \mathscr{E}_i$  into strongly stable pieces of rank  $r_i$ , set  $G = \operatorname{Hol}(X_{\operatorname{reg}}, \omega)$  for some fixed  $x \in X_{\operatorname{reg}}$ 

#### Splitting

G decomposes as

$$G=\prod_{i\in I}G_i$$

with  $G_i \subset SU(r_i)$ .

### Irreducibility vs Stability

The action  $G_i \circ \mathbb{C}^{r_i}$  (resp  $G_i^{\circ} \circ \mathbb{C}^{r_i}$ ) is *irreducible* iff  $\mathscr{E}_i$  is stable (resp. strongly stable) wrt H.

< □ > < □ > < □ > < □ > < □ > < □ >

# Classification of the restricted holonomy

 $\rightsquigarrow$  The standard action of  $G_i^\circ = \operatorname{Hol}(X_{\operatorname{reg}}, \mathscr{E}_i, \omega)^\circ$  is irreducible.

### Berger-Simons classification

One of the following cases holds

**1** 
$$G_i^\circ = \{1\}$$

2 
$$G_i^{\circ} = \operatorname{Sp}(r_i/2).$$

$$G_i^\circ = \mathrm{SU}(r_i).$$

*Case 1.*  $\mathscr{E}_i|_{X_{\text{reg}}}$  is a flat vector bundle: impossible since by Druel's result, it would mean that an abelian variety splits off X (after a finite quasi-étale cover maybe).

*Case 2.* In the last two cases,  $G_i/G_i^{\circ}$  injects in U(1); in particular, it is abelian  $\rightsquigarrow$  it is finite!

April 2020 9 / 13

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

# Proof of finiteness claim

By Greb-Kebekus-Peternell, can assume that any linear representation of  $\pi_1(X_{reg})$  extends to  $\pi_1(X)$ .



but the first homology group is finite as

$$\operatorname{rank}(H_1(X,\mathbb{Z})) = \dim_{\mathbb{C}} H^1(X,\mathbb{C})$$
$$= 2 \dim_{\mathbb{C}} H^0(X,\Omega_X^{[1]}) = 0$$

since  $q(X) \leq \tilde{q}(X) = 0$ .

A B F A B F

# Consequence of the classification result

Consequence of the previous results:

### The holonomy group of $(X_{\mathrm{reg}},\omega)$ is known

Up to passing to a further quasi-étale finite cover, one can assume that  $G_i$  is either  $SU(r_i)$  or  $Sp(r_i/2)$  and G is the product of these groups.

In particular, one can compute explicitly the algebra of  $G_i$ -invariant (resp. G-invariant) vectors under the standard or tensor representations of  $\mathscr{E}_{i,x}$  (resp.  $\mathscr{T}_{X,x}$ ).

・ 何 ト ・ ヨ ト ・ ヨ ト

## The result

### Theorem: the Bochner principle (Greb-G-Kebekus '17)

Given a linear representation  $\rho$  of  $\operatorname{GL}(n, \mathbb{C})$ , the evaluation map at x induces a bijection between  $H^0(X_{\operatorname{reg}}, \mathscr{T}_X^{\rho})$  and  $\mathscr{T}_{X,x}^{\rho(G)}$ .

#### Idea of proof

In the smooth case, if  $\sigma$  is a holomorphic tensor, then Bochner-Weitzenböck formula reads

$$\Delta_{\omega}|\sigma|_{\omega}^2 = |\nabla^{\omega}\sigma|_{\omega}^2$$

since  $\operatorname{Ric} \omega = 0$ . As the integral of a Laplacian is zero, we get  $\nabla^{\omega} \sigma = 0$ , i.e.  $\sigma$  is parallel, i.e.  $\sigma_{x}$  is *G*-invariant.

- 4 回 ト 4 ヨ ト 4 ヨ ト

## The result

### Theorem: the Bochner principle (Greb-G-Kebekus '17)

Given a linear representation  $\rho$  of  $\operatorname{GL}(n, \mathbb{C})$ , the evaluation map at x induces a bijection between  $H^0(X_{\operatorname{reg}}, \mathscr{T}_X^{\rho})$  and  $\mathscr{T}_{X,x}^{\rho(G)}$ .

Calabi-Yau and Irreducible Holomorphic Symplectic varieties If G = SU(n) or G = Sp(n/2), then

$$\bigoplus_{p=0}^{n} H^{0}(X, \Omega_{X}^{[p]}) = \bigoplus_{p=0}^{n} (\Lambda^{p} (\mathbb{C}^{n})^{*})^{G} = \begin{cases} \mathbb{C}[\Omega], \ \Omega = \text{triv. of } K_{X}. \\ \mathbb{C}[\sigma], \ \sigma = \text{ symplectic 2-form.} \end{cases}$$

and the same holds for any finite, quasi-étale cover  $Y \rightarrow X$ .

- 4 回 ト 4 ヨ ト 4 ヨ ト

### Two corollaries

#### Strongly stable varieties are CY or IHS

Assume  $n \ge 2$ , and  $\mathscr{T}_X$  is strongly stable wrt H. Then, there is a finite, quasi-étale cover  $Y \to X$  such either

• Y is CY variety (i.e. G = SU(n)) or

**2** Y is an IHS variety (i.e. 
$$G = \operatorname{Sp}(n/2)$$
).

The next corollary plays a key role in Höring-Peternell's proof of the decomposition theorem.

#### Symmetric power of the tangent sheaf.

Assume  $n \ge 2$ , and  $\mathscr{T}_X$  is strongly stable wrt H. Then, for any  $r \ge 1$ , the sheaf  $\operatorname{Sym}^{[r]} \mathscr{T}_X$  is strongly stable wrt H.

< □ > < □ > < □ > < □ > < □ > < □ >