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Financial time series

A standard assumption is that prices are nonstationary while
returns (or log returns) are (strictly) stationary.

It is generally admitted that many �nancial returns series have
heavy tailed marginal distributions.

However, there is no commonly accepted assumption concerning
the existence of moments of such returns.

Many searchers argue that stock returns might not admit 4th-order

moments (see e.g. Politis (2007)), while some even question the

existence of second-order moments.
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Existence of moments is central to many applications

In presence of heavy tails, many statistical tools developed for the
analysis of �nancial time series become invalid.

For instance, using the expected shortfall in risk analysis requires
�niteness of the �rst absolute moment.

Long-run horizons predictions of the squared returns require
�nite unconditional variance of the returns, and their con�dence
intervals require �nite fourth-order moments.

Estimation methods may also require the existence of some
moments.
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Testing stationarity of �nancial series

Testing the existence of moments: tackled in di�erent ways in the
literature, among others

Loretan and Phillips (1994): nonparametric methods for testing the
constancy of the unconditional variance when the fourth unconditional
moment is in�nite.

Estimation of the tail index for dependent observations; e.g. Hill (2015).

Dwivedi and Subba Rao (2011): A test for second-order stationarity of a
time series based on the discrete Fourier transform.

Trapani (2016): a test for �niteness of the k-th moment of a random
variable; based on the convergence/divergence of sample moments.

Testing strict stationarity in GARCH-type models:
Jensen and Rahbek (2014a, 2014b), FZ (2012, 2013), Pedersen and Rahbek

(2016), Li, Zhang, Zhu and Ling (2018).
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Model: Standard GARCH(p, q)


εt = σtηt, (ηt) i.i.d., Eηt = 0, Eη2

t = 1,

σ2
t = ω0 +

∑q
i=1 α0iε

2
t−i +

∑p
j=1 β0jσ

2
t−j

NSC for the existence of even-order moments depend on the
moments ηt (except for the 2nd order).

[See Ling and McAleer (2002), Chen and An (1998), He and Teräsvita (1999)]

Some of these conditions are explicit (algebraic form):
2nd-order (for all p and q); 2m-th order (p = q = 1)
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Moment restrictions for the GARCH(1,1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gaussian innovations

α

β

E(ε2) < ∞E(ε4) < ∞E(ε6) < ∞

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Student innovations

α

β

E(ε2) < ∞E(ε4) < ∞E(ε6) < ∞

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the Gaussian QML
E�ciency gains via Generalized QML
Numerical illustrations

Gaussian QMLE of the GARCH(p, q)

Given observations ε1, . . . , εn, and arbitrary initial values the
Gaussian QMLE is de�ned by

θ̂n = arg min
θ∈Θ

1

n

n∑
t=1

˜̀
t(θ), where ˜̀

t(θ) =
ε2t

σ̃2
t (θ)

+ log σ̃2
t (θ).

Assumptions for the CAN of the Gaussian QMLE:

A1: θ0 ∈
◦
Θ and Θ is compact

A2: γ(A0) < 0, and for all θ ∈ Θ,
∑p
j=1 βj < 1

[γ(A0): top-Lyapunov exponent of the GARCH model]

A3: η2
t has a nondegenerate distribution and Eη2

t = 1 and Eη4
t <∞

A4: The lag polynomials verify standard conditions
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η̂t = εt/σ̂t

µ̂r =
1

n

n∑
t=1

|η̂t|r, µr = E|ηt|r, µ̂m = (µ̂2, µ̂4, . . . , µ̂2m)′, µm = (µ2, µ4, . . . , µ2m)′

Joint asymptotic normality of the parameter estimator and a
vector of residuals sample moments

Under A1-A4 and if µ4m <∞( √
n
(
θ̂n − θ0

)
√
n(µ̂m − µm)

)
L→ N

{
0,Σm :=

(
(µ4 − 1)J−1 −θ0b

′
m

−bmθ
′
0 Am

)}
,

θ0 = (ω0, α01, . . . , α0q , 0, . . . , 0)′, J = E

(
1
σ4
t

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)
,

Am = (aij)1≤i,j≤m, bm = (bi)1≤i≤m, with

aij = µ2(i+j) + µ2iµ2j [i+ j + (µ4 − 1)ij − 1]

−iµ2iµ2(j+1) − jµ2jµ2(i+1), 1 ≤ i, j ≤ m,

bi = µ2i − µ2(i+1) + (µ4 − 1)iµ2i, 1 ≤ i ≤ m.
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Remarks

1 The asymptotic variance-covariance matrix Am of the vector
of empirical moments of the rescaled returns is model free
(does not depend on θ0) but not estimation free.
This is due to the relation

Ω′J−1Ω = 1

Ω = E

(
1
σ2
t

∂σ2
t (θ0)

∂θ

)
, J = E

(
1
σ4
t

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)
(see FZ (2013)).

2 Case m = 1 degenerate

µ̂1 = 1 whence the initial values are such that

for any K > 0, Kσ̃2
t (θ̂n) = σ̃2

t (θ̂
∗
n) for some θ̂

∗
n ∈ Θ.

For more general initial values,

√
n(µ̂2 − 1)→ 0, in probability as n→∞.

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the Gaussian QML
E�ciency gains via Generalized QML
Numerical illustrations

GARCH(1,1) case: σ2
t = ω0 + α0ε

2
t−1 + β0σ

2
t−1

If m ≥ 1 is an integer,

E(ε2mt ) <∞ ⇔
m∑
i=0

(
m

i

)
αi0β

m−i
0 µ2i < 1

Let G(θ,µ) =
∑m

i=0

(
m
i

)
αiβm−iµ2i. Under the previous

assumptions

√
n{G(θ̂, µ̂m)−G(θ0,µm)} L→ N (0, σ2

m),

where

σ2
m =

∂G(θ0,µm)

∂(θ′,µ′)
Σm

∂G(θ0,µm)

∂
(
θ
µ

) .
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Testing problems

Consider the 2m-th order stationarity problems

H0 : E(ε2mt ) <∞ against H1 : E(ε2mt ) =∞,

and

H∗0 : E(ε2mt ) =∞ against H∗1 : E(ε2mt ) <∞.

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the Gaussian QML
E�ciency gains via Generalized QML
Numerical illustrations

Test of 2m-th order moment for the GARCH(1,1)

Test of H0 (resp. H∗0) at the asymptotic level α ∈ (0, 1)

De�ned by the rejection region

{Tn > Φ−1(1− α)}, (resp. {Tn < Φ−1(α)}),

where

Tn =

√
n
{∑m

i=0

(
m
i

)
α̂inβ̂

m−i
n µ̂2i − 1

}
σ̂m

,

σ̂2
m =

∂G(θ̂n, µ̂m)

∂(θ′,µ′)
Σ̂m

∂G(θ̂n, µ̂m)

∂
(
θ
µ

)
and Σ̂m is a consistent estimator of Σm.
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Remarks

The test is constructed for the closure of the null assumption
H0 :

∑m
i=0

(
m
i

)
αi0β

m−i
0 µ2i ≤ 1.

The asymptotic region satis�es

sup
H0

lim
n→∞

P{Tn > Φ−1(1− α)} = α

Testing the 2nd-order moment condition: α0 + β0 < 1
In this case, with e = (0, 1, 1)′,

Tn =

√
n(α̂+ β̂ − 1)

{(µ̂4 − 1)e′Ĵ
−1
e}1/2

.

A bootstrap procedure can be used to avoid estimating the
asymptotic distribution. Resampling scheme
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Reparametrization

Provided that E|ηt|r <∞, the GARCH(p, q) model can be
equivalently rewritten as

εt = σt(θ
(r)
0 )η

(r)
t , E|η(r)

t |r = 1,

where η
(r)
t = ηt/{E|ηt|r}1/r.

Link with the original parameters:

θ0 = B(r)θ
(r)
0 , B(r) =

(
µ
−2/r
r Iq+1 0

0 Ip

)
=

(
µ

(r)
2 Iq+1 0

0 Ip

)
,

where µ
(r)
s = E|η(r)

t |s for any s > 0.
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Generalized QMLE of θ
(r)
0

For Θ(r) such that Θ = {B(r)θ, θ ∈ Θ(r)}

θ̂
(r)

n = argmin
θ∈Θ(r)

Ĩn(θ),

where for θ ∈ Θ(r),

Ĩn(θ) =
1

n

n∑
t=1

l̃t(θ) with l̃t(θ) = log σ̃2
t (θ) +

2

r

|εt|r

σ̃rt (θ)
.

Remark: under the identi�ability constraint E|η(r)
t |r = 1, the only

QMLE which is strongly consistent (to θ
(r)
0 , not to θ0) whatever

the error distribution is of the above form (cf FZ, 2013).

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the Gaussian QML
E�ciency gains via Generalized QML
Numerical illustrations

Two-stage QMLE

θ0 = B(r)θ
(r)
0

B(r) can be estimated from empirical moments of the standardized

returns η̂
(r)
t = εt/σ̃t(θ̂

(r)

n ).

Asymptotic law of the two-stage QMLE of θ0 (FLZ, 2011)

Let r > 0. Under Assumptions A1-A4, and if µ2r <∞,

√
n
(
B̂(r)
n θ̂

(r)

n − θ0

)
L→ N

(
0,Σ(r)

)
,

Σ(r) = g(r)J−1 + {µ4 − 1− g(r)}θ0θ
′
0,

g(r) =

(
2

r

)2 (µ2r

µ2
r

− 1

)
, θ0 = (ω0, α01, . . . , α0q , 0, . . . , 0)′

[For the Gaussian QML (r = 2) we have Σ(2) = (µ4 − 1)J−1.]
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Testing second-order stationarity using the 2QMLE of θ0

Let

H0 :

q∑
i=1

α0i +

p∑
j=1

β0j < 1, or, equivalently H0 : c′θ0 < 1,

where c = (0, 1, . . . , 1) ∈ Rp+q+1.

Test of H0 [resp. H∗0 : c′θ0 ≥ 1] at level α ∈ (0, 1)

De�ned by the rejection region

Cr = {Tn,r > Φ−1(1− α)}, [resp. C∗r = {Tn,r < Φ−1(α)}].

where

Tn,r =

√
n(c′B̂

(r)
n θ̂

(r)

n − 1)

c′Σ̂(r)c
.
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Local alternatives

Around θ0 such that c′θ0 = 1, let a sequence of local parameters

θn = θ0 +
τ√
n
, τ ∈ Rp+q+1.

Regularity assumptions on the density f of ηt:

f > 0, lim
|y|→∞

yf(y) = 0, lim
|y|→∞

y2f ′(y) = 0,

and for K > 0 and δ > 0,

|y|
∣∣∣∣f ′f (y)

∣∣∣∣+ y2

∣∣∣∣(f ′f
)′

(y)

∣∣∣∣+ y2

∣∣∣∣(f ′f
)′′

(y)

∣∣∣∣ ≤ K (1 + |y|δ
)
,

E |η1|2δ <∞.
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Local alternatives

Local Asymptotic Powers

Local asymptotic powers of the 2nd-order stationarity tests:

lim
n→∞

Pn,τ (Cr) = Φ

{
Φ−1(α) +

c′τ

σ(r)

}
for c′τ ≥ 0,

lim
n→∞

Pn,τ (C∗r) = Φ

{
Φ−1(α)− c′τ

σ(r)

}
for c′τ ≤ 0.

Comparison when r varies thus boils down to comparing the
coe�cients

σ(r) =
{
c′Σ(r)c

}1/2
.
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Local comparisons

Optimal r

Let [r, r] such that r0 is well de�ned, where

r0 = arg min
[r,r]

g(r), g(r) =

(
2

r

)2(µ2r

µ2
r

− 1

)
.

Then, within the family {Cr, r ∈ [r, r]} for testing H0 the test Cr0
has the highest local asymptotic power, uniformly in τ .

Remarks:
1 r0 depends on the errors distribution, and is also optimal for the estimator θ̂n,r

of θ0.
If ηt ∼ N (0, 1), r0 = 2, but in general tests based on the GQMLE are not
optimal. If ηt ∼ t(ν): r0 < 1 for small values of ν, and increases to 2 as ν →∞.

2 A minimum of g over R+ may not exist for particular distributions of ηt.

3 r0 is not known but can be consistently estimated.
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Performance of tests of existence of 2mth-order moments

N = 1000 independent trajectories of size n = 2000, 4000, 8000
of a GARCH(1,1):

εt = σtηt, (ηt) i.i.d.N (0, 1)

σ2
t = 0.5 + 0.105ε2t−1 + 0.87σ2

t−1

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6∑m
i=0

(m
i

)
αi0β

m−i
0 µ2i − 1 -0.025 -0.027 0.001 0.073 0.216 0.482

Thus, for integers m,

E|εt|2m <∞ ⇔ m ≤ 2

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the Gaussian QML
E�ciency gains via Generalized QML
Numerical illustrations

Finite-sample performance

Table: Relative frequency of rejection of H0 : Eε2mt <∞ against
H1 : Eε2mt =∞ [or of H∗0 : Eε2mt =∞ against H∗1 : Eε2mt <∞] at the
nominal level 5% or 10%.

Null n level m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
H0 2000 5% 0.0 0.0 1.2 14.4 35.8 48.9

10% 0.0 0.0 4.5 30.6 60.5 80.6
4000 5% 0.0 0.0 2.4 35.9 77.1 93.1

10% 0.0 0.0 6.4 53.4 90.0 98.5
8000 5% 0.0 0.0 3.0 66.8 99.0 99.9

10% 0.0 0.0 6.9 79.6 99.6 100.0
H∗0 2000 5% 97.5 48.1 7.9 0.7 0.1 0.1

10% 99.8 65.9 15.7 1.8 0.1 0.1
4000 5% 100.0 72.7 7.3 0.1 0.0 0.0

10% 100.0 85.3 14.7 0.4 0.0 0.0
8000 5% 100.0 94.1 6.7 0.0 0.0 0.0

10% 100.0 97.3 14.5 0.0 0.0 0.0
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Using Bootstrap

Table: Using the resampling algorithm instead of the asymptotic distribution

Null n level m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
H0 2000 5% 0.0 0.1 3.6 24.8 50.2 72.9

10% 0.0 0.1 8.3 38.4 67.6 86.8
4000 5% 0.0 0.0 6.3 42.9 81.5 94.7

10% 0.0 0.1 11.0 60.2 89.7 98.6
8000 5% 0.0 0.0 4.3 68.3 97.9 99.8

10% 0.0 0.0 9.1 81.5 99.4 100.0
H∗0 2000 5% 83.3 31.2 4.3 0.6 0.0 0.0

10% 95.1 48.9 9.7 1.3 0.1 0.0
4000 5% 98.9 51.9 4.5 0.1 0.0 0.0

10% 100.0 69.8 10.2 0.7 0.0 0.0
8000 5% 100.0 81.8 5.3 0.0 0.0 0.0

10% 100.0 93.3 10.2 0.1 0.0 0.0
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Empirical distribution of Sn = α̂ + β̂ when α + β = 1.

0.98 0.99 1.00 1.01

0
20

40
60

n=2000

0.990 0.995 1.000 1.005
0

50
10

0
15

0

n=8000

Figure: Based on 1,000 simulations of a GARCH(1,1) with α = 0.1,
β = 0.9 and ηt ∼ N (0, 1).
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Tests based on non-Gaussian QML

Let the empirical function

r 7→ ĝ(r) =

(
2

r

)2( µ̂2r

µ̂2
r

)
for r ∈ [r, r] when ηt ∼ N (0, 1).

The optimal value r0 = 2 of r minimizes the theoretical function
g(r).

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the Gaussian QML
E�ciency gains via Generalized QML
Numerical illustrations

0 2 4 6 8

2.
0

2.
5

3.
0

3.
5

n = 1000, r = 0.2, r = 8

r

ĝ(
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ĝ(
r)

0 10 20 30 40 50 60

5
10

15
20

n = 10000, r = 0.01, r = 60

r

ĝ(
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Figure: Empirical estimate of the function g(r) when the GARCH
innovation ηt ∼ N (0, 1).
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Finite-sample performance for non-Gaussian errors

Table: Relative frequency of rejection of H0 : Eε2t <∞ against
H1 : Eε2t =∞ or of H∗0 : Eε2t =∞ against H∗1 : Eε2t <∞ at the nominal
level 5% or 10%, using the Gaussian QML or the generalized QML methods.
ηt ∼ GED(0.3)

(α0, β0) (0.1, 0.8) (0.105, 0.87) (0.105, 0.895) (0.145, 0.88) (0.15, 0.9)
α0 + β0 0.9 0.975 1 1.025 1.05
Null n level QML gQML QML gQML QML gQML QML gQML QML gQML
H0 2000 5% 0.0 0.0 0.2 0.0 0.4 1.8 2.6 8.9 9.9 41.3

10% 0.2 0.0 0.8 0.4 2.8 5.3 9.7 22.4 27.1 63.2
4000 5% 0.0 0.0 0.1 0.0 1.2 1.6 6.3 21.0 33.0 76.7

10% 0.0 0.0 0.8 0.2 4.5 6.3 19.3 37.1 56.9 88.3
8000 5% 0.0 0.0 0.2 0.0 2.1 3.1 14.8 43.3 67.5 96.4

10% 0.1 0.0 0.8 0.1 6.2 7.8 31.2 61.6 83.1 98.6
H∗0 2000 5% 6.5 84.4 2.2 33.5 0.7 10.4 0.5 2.9 0.4 0.4

10% 25.6 91.1 16.6 47.4 6.8 15.6 4.2 5.0 1.4 0.8
4000 5% 35.1 98.4 13.7 44.1 5.5 10.1 1.3 1.3 0.1 0.0

10% 69.8 98.7 35.6 56.1 17.5 16.2 4.3 1.9 0.5 0.0
8000 5% 87.2 100.0 31.3 58.7 8.2 7.6 1.4 0.2 0.1 0.0

10% 94.6 100.0 46.5 69.0 15.4 13.3 2.5 0.9 0.2 0.0
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Finite-sample performance with bootstrap

Table: Using resampling algorithms instead of the asymptotic distributions.

(α0, β0) (0.1, 0.8) (0.105, 0.895) (0.15, 0.9)
α0 + β0 0.9 1 1.05
Null n α QML gQML QML gQML QML gQML
H0 2000 5% 0.3 0.0 2.7 4.3 21.0 41.0

10% 1.0 0.1 6.7 8.8 40.0 59.6
H∗0 2000 5% 14.2 31.9 3.6 3.1 0.2 0.5

10% 30.7 51.1 8.1 7.1 0.7 0.6

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the Gaussian QML
E�ciency gains via Generalized QML
Numerical illustrations

Empirical appplication

Daily stock returns of Total SA (2001-07-16 to 2018-09-21)

Estimated GARCH(1,1) model:

ω̂ = 0.035(0.009), α̂ = 0.083(0.011), β̂ = 0.903(0.011)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
Tn -2.96 -0.69 1.15 1.62 1.45 1.19

price
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Figure: Total stock price and return from 2001-07-16 to 2018-09-21.
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Estimator of the density of Sn under the null that S = 1
Value of Sn =

∑m
i=0

(
m
i

)
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Augmented GARCH processes

Many GARCH(1,1)-type models are of the form

εt = σtηt, σδt = ω(ηt−1) + a(ηt−1)σδt−1,

δ > 0, ω : R→ [ω,+∞) and a : R→ [a,+∞), for some ω > 0 and a ≥ 0.

[Duan (1997), He and Teräsvirta (1999), Aue, Berkes and Horváth (2006)]

Example [standard GARCH]: ω(η) = ω, a(η) = αη2 + β and δ = 2.

Strict stationarity condition: γ = E log a(η1) < 0
(assuming E log+ a(η1) <∞ and E log+ ω(η1) <∞)

Existence of moments condition: for u > 0,
E(σuδt ) <∞ ⇔ E[au(η1)] < 1 and E[ωu(η1)] <∞.

u 7→ E[au(η1)] can be called Moment Generating Function (MGF)
of the augmented GARCH model.
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Augmented GARCH models

for δ0 > 0 and θ0 ∈ Θ ⊂ Rd,

εt = σt(θ0)ηt, σδ0t (θ0) = ω(ηt−1;θ0) + a(ηt−1;θ0)σδ0t−1

For any θ ∈ Θ, ω(·;θ) : R→ [ω,+∞) and a(·;θ) : R→ [a,+∞).

(εt): strictly stationary, non-anticipative and ergodic solution

Given observations ε1, . . . , εn, and arbitrary initial values ε̃0 and
σ̃0 > 0 let, for t = 1, . . . , n and any θ ∈ Θ,

σ̃δt (θ) = ω

(
εt−1

σ̃t−1(θ)
;θ

)
+ a

(
εt−1

σ̃t−1(θ)
;θ

)
σ̃δt−1

SRE:

σδt (θ) = ω

(
εt−1

σt−1(θ)
;θ

)
+ a

(
εt−1

σt−1(θ)
;θ

)
σδt−1, t ∈ Z.
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Main assumptions

B1: [Strict stationarity] E log+ ω(η1,θ0) <∞, E log a(η1,θ0) < 0 and
E[as(η1,θ0)] <∞ for some s > 0.

B2: [Existence of a solution to the SRE] For any θ ∈ Θ, there exists z0 > 0
such that

E log+ ω

(
εt

z
1/δ
0

;θ

)
+ log+ a

(
εt

z
1/δ
0

;θ

)
<∞,

E log sup
z≥ω

∣∣∣∣ ∂∂z
{
ω

(
εt

z1/δ
;θ

)
+ a

(
εt

z1/δ
;θ

)
z

}∣∣∣∣ < 0.

B3: [Invertibility] The Ft−1-measurable function θ → (σt(θ), σ̃t(θ)) is a.s. C1.

sup
θ∈Θ

|σt(θ)− σ̃t(θ)|+
∣∣∣∣∂σt(θ)

∂θ
−
∂σ̃t(θ)

∂θ

∣∣∣∣ ≤ Ktρt
where Kt ∈ Ft−1 and supt E(Kr

t ) <∞ for some r > 0.

B4: [Bahadur expansion]
√
n
(
θ̂n − θ0

)
= 1√

n

∑n
t=1 ∆t−1V (ηt) + oP (1), ∆t−1 ∈ Ft−1

with EV (ηt) = 0, var{V (ηt)} = Υ is nonsingular, E∆t = Λ is full row rank.
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Asymptotic distribution of the empirical MGF

Recalling the moment condition E[au(η1)] < 1, a test statistic

can be based on the empirical MGF: S
(u)
n = 1

n

∑n
t=1 a

u(η̂t; θ̂n)

Let S
(u)
∞ = E[au(ηt;θ0)].

Asymptotic distribution of S
(u)
n

For 0 < u ≤ s/2, we have

√
n
{
S(u)
n − S(u)

∞

}
L→ N

(
0, υ2

u := g′uΣgu + ψu + 2g′uξu
)
.

where Σ = E(∆tΥ∆′t), ψu = Var[au(η1;θ0)], ξu = ΛE[V (ηt)au(ηt;θ0)],

gu = E
(
gu,t

)
where gu,t =

[
∂

∂θ
au{ηt(θ);θ}

]
θ=θ0

.

Moreover υ2
u > 0 if Var {au(ηt;θ0),V ′(ηt)} is positive de�nite.
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Particular cases

QML and ML for the standard GARCH(1,1)

Mx,y = E[η2x
t (α0η2

t + β0)y ], x, y ∈ R, mu = (0,M1,u−1,M0,u−1)′,

J = E

(
1

σ4
t

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)
.

Asymptotic variances of S
(u)
n = 1

n

∑n
t=1 a

u(η̂t; θ̂n):

υ2
u,QML = u2(κ4 − 1)

{
m′uJ

−1mu − α2
0M

2
1,u−1

}
+M0,2u −M2

0,u,

υ2
u,ML = =

4u2

ιf

{
m′uJ

−1mu − α2
0M

2
1,u−1

}
+M0,2u −M2

0,u

where κ4 = Eη4
t and ιf =

∫
{1 + yf ′(y)/f(y)}2 f(y)dy is the Fisher information for

scale.
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Testing the existence of moments of given order

H0,u : E{au(ηt)} < 1 against H1,u : E{au(ηt)} ≥ 1

H∗0,u : E{au(ηt)} ≥ 1 against H∗1,u : E{au(ηt)} < 1

Test statistic based on the empirical MGF

T (u)
n =

√
n
{
S

(u)
n − 1

}
υ̂u

, where υ̂2
u = ĝ′uΣ̂ĝu + ψ̂u + 2ĝ′uξ̂u,

Test of H0,u [resp. H∗0,u] at the asymptotic level α ∈ (0, 1)

C
(u)
T = {T (u)

n > Φ−1(1− α)}, [resp. {T (u)
n < Φ−1(α)}],
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Maximal Moment exponent

Augmented GARCH:

εt = σtηt, σδt = ω(ηt−1) + a(ηt−1)σδt−1

The Maximal Moment Exponent (MME), when existing, is the
maximal order u0 at which moments of σδt exist:

u0 = sup{u > 0; Eσδut <∞}
= sup{u > 0; E{au(ηt)} < 1},

assuming Eωu(ηt) <∞ for all u > 0.

Berkes, Horváth and Kokoszka (2003) proposed an estimator of this
coe�cient for standard GARCH(1,1) models.
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MGF and MME for a GARCH(1,1) and Student distributions
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Condition for a �nite MME

Suppose γ = E log a(η1) < 0

If P [a(η1) ≤ 1] = 1, then ∀u > 0, E[au(η1)] < 1, and
E(σuδt ) <∞ provided E[ωu(η1)] <∞. We set u0 =∞.

If P [a(η1) ≤ 1] < 1, and 1 ≤ E[as(η1)] <∞ for some s > 0,

there exists a unique u0 > 0 such that E[au0(η1)] = 1.

If E[ωu0(η1)] <∞,

E(σuδt ) <∞, ∀u < u0,

E(σuδt ) =∞, u ≥ u0.
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Empirical MME

Suppose γn := 1
n

∑n
t=1 log a(η̂t; θ̂n) < 0

If a(η̂t; θ̂n) ≤ 1 for t = 1, . . . , n, then S
(u)
n < 1, for all u > 0.

If a(η̂t; θ̂n) > 1 for at least one 1 ≤ t ≤ n, then there exists a

unique un > 0 such that S
(un)
n = 1.

Letting
ûn = sup{u > 0;S(u)

n ≤ 1},

we have ûn =∞ when a(η̂t; θ̂n) ≤ 1 for all 1 ≤ t ≤ n, and
ûn = un in the opposite case.
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Asymptotic distribution of the empirical MME

Under the previous (and additional) assumptions

If P [a(η1) > 1] > 0, and 1 < E[as(η1)] <∞ for some s > 0, then

ûn → u0, a.s.

and √
n(ûn − u0)

L→ N
(

0, w2
u0

:= {D(u0)
∞ }−2υ2

u0

)
,

where D
(u0)
∞ := ∂

∂uS
(u0)
∞ .

Remark: The proof is based on the weak convergence of the empirical MGF, on the
space C equipped with the uniform distance. For [u1, u2] ⊂ (0, s/2)

√
n
{
S

(u)
n − S(u)

∞
} C[u1,u2]

=⇒ Γ(u),

where Γ(u) is a centered Gaussian process.
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Test based on the empirical MME

Noting that the null assumption of �nite uδ-th moment can be
written H0,u : u < u0, let the test statistic,

U (u)
n =

√
n {u− ûn}
ŵûn

,

where ŵ2
u =

{
1
n

∑n
t=1 a

ûn(η̂t; θ̂n) log{a(η̂t; θ̂n)}
}−2

υ̂2
u.

Test of H0,u [resp. H∗0,u] at the asymptotic level α ∈ (0, 1)

C
(u)
U = {U (u)

n > Φ−1(1− α)}, [resp. {U (u)
n < Φ−1(α)}],
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Purely parametric estimator of the MME

When the density f of ηt is known, the MME can be obtained by
solving ∫

au0(x;θ)f(x)dx = 1,

with solution u0 = u0,f (θ) (unique by the convexity of the MGF).

Let ûn,f = u0,f (θ̂n,ML) where θ̂n,ML is the MLE of θ0.

Assume that the MLE satis�es the following expansion

√
n(θ̂n,ML − θ0) =

2J−1

ιf
√
n

n∑
t=1

1

σ2
t

∂σ2
t

∂θ
g1(ηt) + oP (1).

(see Berkes, Horváth and Kokoszka (2004))
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Purely parametric estimator of the MME

Let the test statistic V
(u)
n =

√
n(u−ûn,f )

σ̂f
where σ̂f is a consistent

estimator of σf =
(

4
ιf
∂u0

∂θ′
J−1 ∂u0

∂θ

)1/2
.

Under the previous assumptions and if ∂u0
∂θ 6= 0,

a test of H0,u [resp. H∗0,u] at the asymptotic level α ∈ (0, 1) is
de�ned by

C
(u)
V = {V (u)

n > Φ−1(1− α)}, [resp. {V (u)
n < Φ−1(α)}].
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Test statistics for H0,u : E{au(ηt)} < 1

Based on the empirical MGF:

T (u)
n =

√
n
{
S

(u)
n − 1

}
υ̂u

Based on the empirical MME:

U (u)
n =

√
n {u− ûn}
ŵûn

Fully parametric:

V (u)
n =

√
n(u− ûn,f )

σ̂f
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Asymptotic power under local alternatives

Around θ0 ∈
◦
Θ, let a sequence of local parameters of the form

θn = θ0 + τ/
√
n,

where τ ∈ Rd.

Let Pn,τ (resp. P0) the distribution of the observations when the
parameter is θ0 + τ/

√
n (resp. θ0).

Under appropriate assumptions on τ , the parameter θn belongs to
the alternative for testing H0,u0 .

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the MGF and MME
Power comparisons

Local asymptotic powers

LAP of the tests T , U and V

lim
n→∞

Pn,τ

(
C

(u0)
T

)
= lim

n→∞
Pn,τ

(
C

(u0)
U

)
= Φ

{
cf ,u0(θ0)− Φ−1(1− α)

}
,

lim
n→∞

Pn,τ

(
C

(u0)
V

)
= Φ

{
df ,u0(θ0)− Φ−1(1− α)

}
,

where, using g1(y) = 1 + y f ′

f (y) and ru0
= ∂

∂θS
u0
∞ (θ0),

cf,u0(θ0) =−
τ ′

υu0

[
E

(
1

σt

∂σt(θ0)

∂θ

)
E{au0(η1)g1(η1)}

+E

(
1

σt

∂σt(θ0)

∂θ
g′u0

∆t−1

)
E{V (η1)g1(η1)}

]
,

df,u0(θ0) =
r′u0
τ√

4
ιf
r′u0
J−1ru0

.
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LAPs of the test T, U (blue line) and V (dotted red line) for a GARCH(1,1) with Student errors
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Comparisons based on Bahadur slopes

To be able to distinguish the tests T and U , the Bahadur approach
can be used.

slope = a.s limit of −2/n× the logarithm of the p-value under Pθ

Asymptotic slopes of the tests:

cT (u) =

{
S

(u)
∞ − 1

}2

υ2
u

and cU (u) =
{u− u0}2

wu0
2

.

In the Bahadur sense, T
(u)
n is more e�cient than U

(u)
n i�

cT (u)

cU (u)
=

{
S

(u)
∞ − 1

}2

{u− u0}2
υ2
u0

{E[au0(η1;θ0) log{a(η1;θ0)}]}2υ2
u

> 1.
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Bahadur slopes of the tests T and U for GARCH(1,1) models with Gaussian errors
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Conclusions

Tests based on the QML are valid whatever the distribution of the
innovations. However, choosing the appropriate version of the QML can
bring e�ciency gains without much additional cost.

The bootstrap versions of our tests bring signi�cant improvements in
terms of size but, as expected, do not improve powers.

Locally optimal tests are worth considering both in terms of size and
power, but may be inconclusive for moderate sample sizes.

Augmented GARCH(1,1) can also be tested at any power.

Tests can be extended to a parametrized error density (not shown).

Numerical results suggest that one has to be cautious in assessing the
existence, or non-existence, of moments of �nancial time series.
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Thank you!
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Resampling scheme for m = 1 (2nd-order stationarity)

In the GARCH(1,1) case:
1 Compute the constrained QMLE

θ̂
′
c = (ω̂c, α̂c, 1− α̂c) = arg min

θ∈Θc

n∑
t=1

˜̀
t(θ)

and the standardized residuals η̂t = η̃t/sn, where η̃t = εt/σ̃t(θ̂c) and
s2n = n−1

∑n
t=1 η̃

2
t . Denote by F ∗n the empirical distribution of these residuals.

2 Simulate a trajectory of length n of a GARCH model with the parameter θ̂c and
distribution F ∗n for the i.i.d. noise η∗t , compute the unconstrained QMLE

θ̂
∗

= (ω̂∗, α̂∗, β̂∗)′ and the statistic S∗n = α̂∗ + β̂∗

3 On the observations ε1, . . . , εn, compute the unconstrained QMLE θ̂ = (ω̂, α̂, β̂)

and the statistic Sn = α̂+ β̂

4 Repeat B times step 2, and denote by S∗1n , . . . , S∗Bn the bootstrap test statistic.

Approximate the p-value of the test of H0 : Eε2t <∞ against H1 : Eε2t =∞ by

#{S∗jn ≥ Sn; j = 1, . . . , B}/B.
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Resampling scheme for m = 1 using Newton-Raphson

The numerical optimization in Step 2, repeated a large number of
times B, is the most time-consuming part of the algorithm.

Instead, one can mimic the distribution of the QMLE by using a
Newton-Raphson type iteration. Set

θ̂
∗

= θ̂c + J−1
n

1

n

n∑
t=1

(
η∗ 2
t − 1

)
φ̃t(θ̂c),

where

φ̃t(θ) =
1

σ̃t(θ)

∂σ̃t(θ)

∂θ
, Jn =

1

n

n∑
t=1

φ̃tφ̃
′
t(θ̂c)

and η∗1, . . . , η
∗
n are independent and F ∗n -distributed.
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Validity of the resampling scheme for testing H0 : Eε
2
t <∞

(or H∗0 : Eε2t =∞)

Let θ0 such that c′θ0 = 1 with c′ = (0, 1, . . . , 1).

Asymptotic validity of the bootstrap procedure for the GARCH(p, q)

Assume A1-A4 + a bounded density for ηt.
Let θ̂

∗
obtained in Step 2 (or by a NR iteration).

For almost all realization (εt), as n→∞ we have, given (εt),

√
n (S∗n − 1)

L→ N (0, σ2), σ2 = (µ4 − 1)c′J−1c.

⇒ the law of S∗n given (εt) well mimics the (unconditional) law of
Sn at the boundary of H0, at least for large n.

In �nite samples, the bootstrap distribution of S∗n is expected to
better approach the law of Sn than its asymptotic distribution.

Francq, Zakoian Testing the existence of moments for GARCH processes



Tests for the standard GARCH model
Tests for augmented GARCH

Tests based on the MGF and MME
Power comparisons

Bootstrap procedure for testing the existence of Eε2mt when
m > 1

5 Estimate a GARCH(1,1) model and compute µ̂2i = n−1
∑n
t=1 η̂

2i
t on the

recentred and rescaled residuals.

6 Estimate a GARCH(1,1) model of parameter θc = (ωc, αc, βc) under the

constraint H0 :
∑m
i=0

(m
i

)
αicβ

m−i
c µ̂2i = 1.

7 Simulate a trajectory of length n of a GARCH model with the parameter θ̂c of
the previous step, and the empirical distribution of the unconstrained residuals

for the i.i.d. noise. Compute the unconstrained QMLE θ̂
∗

= (ω̂∗, α̂∗, β̂∗)′ and

the statistic S∗n =
∑m
i=0

(m
i

)
α̂∗ iβ̂∗m−iµ̂∗2i where µ̂

∗
2i is computed on the

residuals based on θ̂
∗
.

8 Compute Sn =
∑m
i=0

(m
i

)
α̂iβ̂m−iµ̂2i.

9 As Step 4.

Remark: Heinemann (2019) establishes the validity of a �xed-design residual

bootstrap (as in Cavaliere, Pedersen and Rahbek (2018)) for testing the existence of

moments for GARCH(p, q) processes. Return
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