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Introduction

» Time series of counts appear in various applications: Medical science,
epidemiology, meteorology, network modelling, actuarial science,
econometrics and finance.

» Count data: Non-negative and integer-valued, and often over-dispersed
(i.e. variance > mean).

» Recently the class of (integer-valued) trawl (IVT) processes has been
introduced as a flexible model, see Barndorff-Nielsen et al. (2014) for the
univariate and Veraart (2019) for the multivariate case.

Aim of the project

w |mprove the estimation method for IVT processes
(likelihood-based rather than moment-based);

m Tailor model selection tools to the IVT class;

w (Probabilistic) forecasting of IVT processes;
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A very short and incomplete review of the literature

» Recent surveys & some new developments:
Cameron & Trivedi (1998), Kedem & Fokianos (2002),Cui & Lund (2009); Davis et al.
(1999); Davis & Wu (2009); Jung & Tremayne (2011); McKenzie (2003); Weil3 (2008), Karlis
(2016), Fokianos (2016).
» Literature on count data is spread across different disciplines.
» Overall, two predominant modelling approaches:
= Discrete autoregressive moving-average (DARMA) models introduced by
Jacobs & Lewis (1978a,b).
= Models obtained from thinning operations going back to the influential work
of Steutel & van Harn (1979), e.g. INAR(MA), see e.g. Pedeli et al. (2015).
» Further models: Regression type models (typically based on generalised
linear models, see e.g. Fokianos (2016)), also Fokianos et al. (2020);
state-space and Bayesian approaches.

Our approach:

» Use "trawling” for modelling counts.
» This is a continuous-time framework based on the idea of "thinning”
points.
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Introduction

What is trawling...? A first "definition”

“Trawling is a method of fishing that involves pulling a fishing net through the
water behind one or more boats. The net that is used for trawling is called a
trawl.” (Wikipedia)
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Theoretical framework

Definition of trawl process
We define a stationary integer-valued trawl (IVT) process (X;):>o by

X = L(A) = /lRlR La(x, s — t)L(dx, d).

» L is the integer-valued, homogeneous Lévy basis on [0, 1] x R:
w [(dx,ds) = [T yN(dy,dx,ds), (x,s)€[0,1]xR.

w N is a homogeneous Poisson random measure on Z x [0, 1] x R with
compensator 7 @ Leb ® Leb, i.e. E(N(dy, dx, ds)) = 5(dy)dxds, where 7 is
a Lévy measure satisfying [ min(1, |y|)7(dy) < c.

» A Borel set Ay = A+ (0, t) with A= Ay C [0, 1] x (—o0, 0] and
Leb(A) < oo is called the trawl.
= Typically, we choose A to be of the form

A={(x,8):5<0,0<x<d(s)},

. where d : (—o0,0] — [0, 1] is continuous and Leb(A) < co.
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Example

Poisson-Exponential trawl
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Example

Negative binomial-Exponential trawl
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Some key properties of IVT processes

Cumulants

» The IVT process is stationary and infinitely divisible.

» The IVT process is mixing = weakly mixing = ergodic.

» The cumulant (log-characteristic) function of a trawl process is, for 6 € R,
given by

Cx,(0) = C(a,(0) = Leb(A)Cp(0),

where the random variable L’ (called the Lévy seed) associated with L
satisfies

E[exp(i6L')] = exp(Cp/(0)), with Cp(6) = / (&% 1) n(dy).

w |.e. to any infinitely divisible integer-valued law 7, say, there exists a
stationary integer-valued trawl process having 7t as its one-dimensional

marginal law.
» The autocorrelation function is given by
Leb(A N Ah)
= = for h .
p(h) == Cor(Y:, Yein) Leb(A) orh>0
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Examples
Modelling the marginal distribution

Example 1 (Poissonian Lévy seed)

Let L' ~ Poisson(v). Then X; ~ Poisson(vLeb(A)), i.e., forall t > 0,

P (X; = k) = (vLeb(A))ke > k1 k=0,12,....

Example 2 (Negative Binomial Lévy seed)

Let L' ~ NB(m, p) form > 0,p € [0,1]. Then X; ~ NB(mLeb(A), p), i.e., for
allt >0,

T'(Leb(A)m + k)

P(X = k) = KIT (Leb(A)m)

( _p)Leb(A)mpk, k=0,1,2,...,

where I'(z) = [, x*~Te *dx for z > 0 is the T-function.
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Examples

Modelling the trawl function/correlation structure

» Recall the typical choice for the trawl:

A=Ay={(x,5):5<0,0<x<d(s)} At =A+(0,1).

» Restrict attention to a class of superposition trawls:
d(s) = / e Sr(d)), <0,
Jo

where 7T is a probability measure on IR ;..
» For h > 0, the acf is given by

0
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Examples

Modelling the trawl function/correlation structure

» Exponential trawl function: Let A > 0 and 7t(dx) = J, (dx), then
d(s) = e'sfor s < 0 and

p(h) = Cor(X;yp, Xi) = exp(—Ah), h>0.

» Inverse Gaussian trawl function: Letting 7= be given by the inverse
Gaussian distribution

_ (’7/5)1/2 —1/2 _1 2,1 2
7T(dx>772K1/2((57)X exp 2((5 X' +9%x) ) dx,

where K, (-) is the modified Bessel function of the third kind and vy, > 0
with both not zero simultaneously. Then

d(s) = (1 —ig)uzexp ((5’)/ (1 — /1 —ig)) s<0,

p(h) = Cor(Xin X0) = exp (07(1 =/ 1+20/92) ) . =0,
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Examples

Modelling the trawl function/correlation structure

» Gamma trawl function: Let 7 have the I'(1 + H, «) density,
1

_ 1+H\H o—Aa
7T(dx)7r(1+H)(X Ae " dXx,
where « > 0and H > 0.
—(H+1)
d(s):<1f§> s<0

and

“H
p(h) = Cor(Xeh Xi) = W = <1 - h) .

Note that in this case

= [ i He(01],
/0 F’(h)dh—{ A H> T,

.,p., ”lp. I | | memor I H & .
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Estimation

From method of moments to composite likelihood

» Suppose we have n € IN observations of the IVT process X, x1,..., Xn,
on an equidistant grid of size A = T/n.
» Define
n—h
CLM(9; x) == [T f(xivn Xxi:0), h>1.
i=1

» Let © be a compact parameter space such that the true parameter
vector, 60, lies in the interior of ©.

» Construct the composite likelihood function, for # C {1,2,..., n—1},
n—h
L& (6;x) == TT cL™(0;x) = TT TT f(Xiin xi:6).
heH heH i=1

» The maximum composite likelihood (MCL) estimator of 6 is defined as
6t .= 1% (6; x
g male (0.

H ) o H ) . . . . .
Imperialv&gﬁggé/a(e,x) := log Lz, (6; x) is the log composite likelihood function.
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Pairwise likelihood

The general case and a simulation-based approach
» The joint probability mass function of two observations x;. , and x; is
f(Xithxii 0) == Py (X(i+h)A = Xij+h Xia = Xi)
=) P <L(A(i+h)A \Aia) = Xiph — C)

- Py (L(AIA \A(irna) = Xi — C)
. P@ (L(A(H»h)A ﬂA,-A) = C> .

» Suppose the Lévy basis L is positive, i.e. 17(y) = 0 for y < 0. Then we
can replace Y by Z?;%{X’*”’X’} in the above formula.

> Lett s> 0,choose C € Nandletcl) ~ L(ANAs),j=1,2,..., C,be
an iid sample. A simulation based unbiased estimator of f(x;, Xs; 6) is

F(xt, Xs: 0 2 Po(L(A;\ As) = x; — cU)Py(L(As \ Ap) = xs — V).
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MCL outperforms GMM for IVTs
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Model selection for IVTs

» Following Takeuchi (1976), Varin & Vidoni (2005) we apply the composite
likelihood information criterion (CLAIC)

CLAIC = I,c(8°; x) +tr { V(6°L) F(§ot) }
as a basis for model selection.

» Note that G(6)~" = H(0) ' V(0)H(#)~" is the asymptotic covariance
matrix of the MCE We use the straight-forward estimator
H(6) = —n=1 525101 (9C1; x) which is consistent for H(6) due to the
stationarity and ergodicity of the IVT process, and estimate V(GCL) by
parametric bootstrap.

» We also apply the BIC adapated to the composite likelihood case, see
Gao & Song (2010)

CLBIC = Ig, (6% x) + |og2(n) tr { V(@) A"},

Imperial ¢ofiége is the number of observations of the data series x.
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Simulation study of model selection procedure

; True DGP: P-Exp ; True DGP: NB-Exp
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The numbers plotted are average selection rates of the models given on the
X-axis, using a given criteria over M = 100 Monte Carlo simulations. For each
Monte Carlo replication, n = 4 000 observations of the true DGP are
simulated on a grid with step size A = 0.1.
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Probabilistic forecasting of IVTs

Let 7t = 0((Xs)s<t), let h > 0 be a forecast horizon.
Goal: Forecast the future value X;. , (and its distribution).

Note that )~(f+h‘, = E[X;, p| Fi] is not data coherent.

Y Y Y Y

Consider instead a probabilistic forecasting approach, where the interest
is in the distribution of X;, 5| F; and generate data coherent point
forecasts, e.g. using the median or mode of the distribution.

» However, since the IVT process X; is in general non-Markovian, the
distribution of X;, »|F; is highly intractable.

» The probabilistic forecast of X; 5| X; gives promising results.
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Probabilistic forecasting of IVTs

Proposition 1

Suppose the Lévy basis L is positive, i.e. (y) = 0 for y < 0. Now

min(X¢, X )
P(Xisn = XenlXe =xt) = Y. P(L(Atzn\ At) = Xen — C)
e=0

P(L(At mAtJrh) = C|Xt = Xt),

where

P(L(A: N Atin) = Xt = xt) = PULAN Arir) :/;(é);t C:)I:;()L(At N Arin) = C).
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Empirical study: Goal: Forecasting the bid-ask spread

» Study of high frequency data of bid-ask spreads of equity prices.

» Spread data of Agilent Technologies Inc. stock (ticker: A, NYSE)
(measured in U.S. dollar cents); single day, May 4, 2020 [used data from
10:30AM to 4PM, i.e. discarded the first 60 minutes]

» The data were cleaned using the approach proposed in
Barndorff-Nielsen et al. (2009), then sampled equidistantly (5s) using the
previous-tick method resulting in n = 3 961 observations.

> Let s; be the spread level at time {. Since the minimum spread level in the
data is one tick (i.e. one cent), we work on x; = s; — 1.

» Model selection: The NB-Gamma model is the preferred model on all
three criteria, while the second-best model is the NB-IG model. Note,
however, that these two models appear to provide an almost identical fit.
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Empirical study: Model selection

Bid-ask spread of A on May 4, 2020
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Empirical study: Forecasting the bid-ask spread

Mean absolute error

Relative loss (vs. INAR)
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» Integer-valued trawl processes provide a continuous-time framework for
modelling stationary, serially correlated count data.

» They consist of two key components:

w Integer-valued, homogeneous Lévy basis: Generates random point pattern
and determines marginal distribution.
= Trawl: Thins the point pattern and determines the autocorrelation structure.

» We showed that the pairwise likelihood for IVTs is tractable and MCL
outperforms previously used GMM.

» The pairwise likelihood can be used for model selection criteria (CLBIC
slightly preferred)

» Method for probabilistic forecasting of IVTs using the pairwise likelihood
principle.

» Application to forecasting equity spread data: Superior performance of
IVT compared to INAR(1) benchmark model.

Imperial College
24 /25




Bibliography |

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2009). Realized kernels in practice: trades and quotes. The Econometrics Journal,
12(3), C1-C32. 21

Barndorff-Nielsen, O. E., Lunde, A., Shephard, N., & Veraart, A. E. D. (2014). Integer-valued trawl processes: A class of stationary infinitely divisible
processes. Scandinavian Journal of Statistics, 41, 693-724. 3

Bennedsen, M., Lunde, A., Shephard, N., & Veraart, A. E. D. (2020). Likelihood-based estimation, model selection, and forecasting of integer-valued trawl
processes. Work in progress.

Cameron, A. C. & Trivedi, P. K. (1998). Regression analysis of count data, volume 30 of Econometric Society Monographs. Cambridge: Cambridge
University Press. 4

Cui, Y. & Lund, R. (2009). A new look at time series of counts. Biometrika, 96(4), 781-792. 4

Davis, R. A., Wang, Y., & Dunsmuir, W. T. M. (1999). Modeling time series of count data. In Asymptotics, nonparametrics, and time series, volume 158 of
Statistics: Textbooks and Monographs (pp. 63—113). New York: Dekker. 4

Davis, R. A. & Wu, R. (2009). A negative binomial model for time series of counts. Biometrika, 96(3), 735-749. 4

Fokianos, K. (2016). Statistical analysis of count time series models: a GLM perspective. In Handbook of discrete-valued time series, Chapman & Hall/CRC
Handb. Mod. Stat. Methods (pp. 3-27). CRC Press, Boca Raton, FL. 4

Fokianos, K., Steve, B., Tjgstheim, D., & Doukhan, P. (2020). Multivariate count autoregression. Bernoulli, 26(1), 471-499. 4

Gao, X. & Song, P. X. K. (2010). Composite likelihood Bayesian information criteria for model selection in high-dimensional data. Journal of the American
Statistical Association, 105(492), 1531-1540. 17

Jacobs, P. A. & Lewis, P. A. W. (1978a). Discrete time series generated by mixtures. |. Correlational and runs properties. Journal of the Royal Statistical
Society. Series B. Methodological, 40(1), 94-105. 4

Jacobs, P. A. & Lewis, P. A. W. (1978b). Discrete time series generated by mixtures. Il. Asymptotic properties. Journal of the Royal Statistical Society. Series
B. Methodological, 40(2), 222-228. 4

Jung, R. & Tremayne, A. (2011). Useful models for time series of counts or simply wrong ones? AStA Advances in Statistical Analysis, 95, 59-91. 4

Karlis, D. (2016). Models for multivariate count time series. In Handbook of discrete-valued time series, Chapman & Hall/CRC Handb. Mod. Stat. Methods
(pp. 407—424). CRC Press, Boca Raton, FL. 4

Kedem, B. & Fokianos, K. (2002). Regression models for time series analysis. Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley & Sons. 4

McKenzie, E. (2003). Discrete variate time series. In Stochastic processes: modelling and simulation, volume 21 of Handbook of Statistics (pp. 573—-606).
Amsterdam: North-Holland. 4

Pedeli, X., Davison, A. C., & Fokianos, K. (2015). Likelihood estimation for the INAR(p) model by saddlepoint approximation. Journal of the American
Statistical Association, 110(511), 1229-1238. 4

Steutel, F. W. & van Harn, K. (1979). Discrete analogues of self-decomposability and stability. The Annals of Probability, 7(5), 893-899. 4

Takeuchi, K. (1976). Distribution of informational statistics and a criterion of model fitting. Suri Kagaku [Mathematical Sciences] (in Japanese), 153, 12—18.
17

Varin, C. & Vidoni, P. (2005). A note on composite likelihood inference and model selection. Biometrika, 92(3), 519-528. 17
Veraart, A. E. (2019). Modeling, simulation and inference for multivariate time series of counts using trawl processes. Journal of Multivariate Analysis, 169,
110-129. 3
|mperia| Co"egeﬂng operations for modeling time series of counts: a survey. AStA Advances in Statistical Analysis, 92, 319-341. 4

25/25




	Introduction
	Motivation

	Theoretical framework
	Integer-valued, homogeneous Lévy bases

	Some key properties of IVT processes
	Examples
	Estimation
	From method of moments to composite likelihood

	Summary 
	References

