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Introduction

ä Time series of counts appear in various applications: Medical science,
epidemiology, meteorology, network modelling, actuarial science,
econometrics and finance.

ä Count data: Non-negative and integer-valued, and often over-dispersed
(i.e. variance > mean).

ä Recently the class of (integer-valued) trawl (IVT) processes has been
introduced as a flexible model, see Barndorff-Nielsen et al. (2014) for the
univariate and Veraart (2019) for the multivariate case.

Aim of the project

à Improve the estimation method for IVT processes
(likelihood-based rather than moment-based);

à Tailor model selection tools to the IVT class;

à (Probabilistic) forecasting of IVT processes;
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A very short and incomplete review of the literature
ä Recent surveys & some new developments:

Cameron & Trivedi (1998), Kedem & Fokianos (2002),Cui & Lund (2009); Davis et al.
(1999); Davis & Wu (2009); Jung & Tremayne (2011); McKenzie (2003); Weiß (2008), Karlis
(2016), Fokianos (2016).

ä Literature on count data is spread across different disciplines.
ä Overall, two predominant modelling approaches:

à Discrete autoregressive moving-average (DARMA) models introduced by
Jacobs & Lewis (1978a,b).

à Models obtained from thinning operations going back to the influential work
of Steutel & van Harn (1979), e.g. INAR(MA), see e.g. Pedeli et al. (2015).

ä Further models: Regression type models (typically based on generalised
linear models, see e.g. Fokianos (2016)), also Fokianos et al. (2020);
state-space and Bayesian approaches.

Our approach:

ä Use ”trawling” for modelling counts.
ä This is a continuous-time framework based on the idea of ”thinning”

points.
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Introduction
What is trawling...? A first ”definition”

“Trawling is a method of fishing that involves pulling a fishing net through the
water behind one or more boats. The net that is used for trawling is called a
trawl.” (Wikipedia)
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Theoretical framework
Definition of trawl process

We define a stationary integer-valued trawl (IVT) process (Xt )t≥0 by

Xt = L(At ) =
∫

R×R
IA(x , s− t)L(dx ,ds).

ä L is the integer-valued, homogeneous Lévy basis on [0,1]×R:
à L(dx ,ds) :=

∫ ∞
−∞ yN(dy ,dx ,ds), (x , s) ∈ [0,1]×R.

à N is a homogeneous Poisson random measure on Z× [0,1]×R with
compensator η ⊗ Leb⊗ Leb, i.e. E(N(dy ,dx ,ds)) = η(dy)dxds, where η is
a Lévy measure satisfying

∫ ∞
−∞ min(1, |y |)η(dy) < ∞.

ä A Borel set At = A + (0, t) with A = A0 ⊆ [0,1]× (−∞,0] and
Leb(A) < ∞ is called the trawl.

à Typically, we choose A to be of the form

A = {(x , s) : s ≤ 0, 0 ≤ x ≤ d(s)},

where d : (−∞,0] 7→ [0,1] is continuous and Leb(A) < ∞.
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Example
Poisson-Exponential trawl
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Example
Negative binomial-Exponential trawl
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Some key properties of IVT processes
Cumulants

ä The IVT process is stationary and infinitely divisible.
ä The IVT process is mixing⇒ weakly mixing⇒ ergodic.
ä The cumulant (log-characteristic) function of a trawl process is, for θ ∈ R,

given by

CXt (θ) = CL(At )(θ) = Leb(A)CL′(θ),

where the random variable L′ (called the Lévy seed) associated with L
satisfies

E[exp(iθL′)] = exp(CL′(θ)), with CL′(θ) =
∫ (

eiθy − 1
)

η(dy).

à I.e. to any infinitely divisible integer-valued law π, say, there exists a
stationary integer-valued trawl process having π as its one-dimensional
marginal law.

ä The autocorrelation function is given by

ρ(h) ..= Cor(Yt ,Yt+h) =
Leb(A∩ Ah)

Leb(A)
, for h > 0.
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Examples
Modelling the marginal distribution

Example 1 (Poissonian Lévy seed)

Let L′ ∼ Poisson(ν). Then Xt ∼ Poisson(νLeb(A)), i.e., for all t ≥ 0,

P (Xt = k) = (νLeb(A))k e−νLeb(A)/k !, k = 0,1,2, . . . .

Example 2 (Negative Binomial Lévy seed)

Let L′ ∼ NB(m,p) for m > 0,p ∈ [0,1]. Then Xt ∼ NB(mLeb(A),p), i.e., for
all t ≥ 0,

P(Xt = k) =
Γ(Leb(A)m + k)
k !Γ(Leb(A)m)

(1− p)Leb(A)mpk , k = 0,1,2, . . . ,

where Γ(z) =
∫ ∞

0 xz−1e−xdx for z > 0 is the Γ-function.
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Examples
Modelling the trawl function/correlation structure

ä Recall the typical choice for the trawl:

A = A0 = {(x , s) : s ≤ 0, 0 ≤ x ≤ d(s)}, At = A + (0, t).

ä Restrict attention to a class of superposition trawls:

d(s) :=
∫ ∞

0
eλsπ(dλ), s ≤ 0,

where π is a probability measure on R+.

ä For h ≥ 0, the acf is given by

ρ(h) := Cor(L(At+h),L(At )) =
Leb(Ah ∩ A)

Leb(A)
=

∫ ∞
h d(−s)ds∫ ∞
0 d(−s)ds

.
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Examples
Modelling the trawl function/correlation structure

ä Exponential trawl function: Let λ > 0 and π(dx) = δλ(dx), then
d(s) = eλs for s ≤ 0 and

ρ(h) = Cor(Xt+h,Xt ) = exp(−λh), h ≥ 0.

ä Inverse Gaussian trawl function: Letting π be given by the inverse
Gaussian distribution

π(dx) =
(γ/δ)1/2

2K1/2(δγ)
x−1/2 exp

(
−1

2
(δ2x−1 + γ2x)

)
dx ,

where Kν(·) is the modified Bessel function of the third kind and γ, δ ≥ 0
with both not zero simultaneously. Then

d(s) =
(

1− 2s
γ2

)−1/2
exp

(
δγ

(
1−

√
1− 2s

γ2

))
, s ≤ 0,

ρ(h) = Cor(Xt+h,Xt ) = exp

(
δγ(1−

√
1 + 2h/γ2)

)
, h ≥ 0.
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Examples
Modelling the trawl function/correlation structure

ä Gamma trawl function: Let π have the Γ(1 + H, α) density,

π(dx) =
1

Γ(1 + H)
α1+H λHe−λαdx ,

where α > 0 and H > 0.

d(s) =
(

1− s
α

)−(H+1)
, s ≤ 0,

and

ρ(h) = Cor(Xt+h,Xt ) =
Leb(Ah ∩ A)

Leb(A)
=

(
1 +

h
α

)−H
.

Note that in this case∫ ∞

0
ρ(h)dh =

{
∞ if H ∈ (0,1],

α
H−1 if H > 1,

i.e. the trawl process has long memory for H ∈ (0,1].
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Estimation
From method of moments to composite likelihood

ä Suppose we have n ∈N observations of the IVT process X , x1, . . . , xn,
on an equidistant grid of size ∆ = T /n.

ä Define

CL(h)(θ; x) :=
n−h

∏
i=1

f (xi+h, xi ; θ), h ≥ 1.

ä Let Θ be a compact parameter space such that the true parameter
vector, θ0, lies in the interior of Θ.

ä Construct the composite likelihood function, for H ⊆ {1,2, . . . ,n− 1},

LHCL(θ; x) := ∏
h∈H

CL(h)(θ; x) = ∏
h∈H

n−h

∏
i=1

f (xi+h, xi ; θ).

ä The maximum composite likelihood (MCL) estimator of θ is defined as

θ̂CL := argmax
θ∈Θ

lHCL(θ; x),

where lHCL(θ; x) := log LHCL(θ; x) is the log composite likelihood function.
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Pairwise likelihood
The general case and a simulation-based approach

ä The joint probability mass function of two observations xi+h and xi is

f (xi+h,xi ; θ) := Pθ

(
X(i+h)∆ = xi+h,Xi∆ = xi

)
=

∞

∑
c=−∞

Pθ

(
L(A(i+h)∆ \ Ai∆) = xi+h − c

)
· Pθ

(
L(Ai∆ \ A(i+h)∆) = xi − c

)
· Pθ

(
L(A(i+h)∆ ∩ Ai∆) = c

)
.

ä Suppose the Lévy basis L is positive, i.e. η(y) = 0 for y < 0. Then we
can replace ∑∞

c=−∞ by ∑
min{xi+h,xi}
c=0 in the above formula.

ä Let t , s ≥ 0, choose C ∈N and let c(j) ∼ L(At ∩ As), j = 1,2, . . . ,C, be
an iid sample. A simulation based unbiased estimator of f (xt , xs; θ) is

f̂ (xt , xs; θ) =
1
C

C

∑
j=1

Pθ(L(At \ As) = xt − c(j))Pθ(L(As \ At ) = xs − c(j)).
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MCL outperforms GMM for IVTs
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Model selection for IVTs

ä Following Takeuchi (1976), Varin & Vidoni (2005) we apply the composite
likelihood information criterion (CLAIC)

CLAIC = lLC(θ̂
CL; x) + tr

{
V̂ (θ̂CL)Ĥ(θ̂CL)−1

}
as a basis for model selection.

ä Note that G(θ)−1 = H(θ)−1V (θ)H(θ)−1 is the asymptotic covariance
matrix of the MCE. We use the straight-forward estimator
Ĥ(θ̂CL) = −n−1 ∂

∂θ∂θ′ lCL(θ̂
CL; x) which is consistent for H(θ) due to the

stationarity and ergodicity of the IVT process, and estimate V̂ (θ̂CL) by
parametric bootstrap.

ä We also apply the BIC adapated to the composite likelihood case, see
Gao & Song (2010)

CLBIC = lCL(θ̂
CL; x) +

log(n)
2

tr
{

V̂ (θ̂CL)Ĥ(θ̂CL)−1
}
,

where n is the number of observations of the data series x .
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Simulation study of model selection procedure
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The numbers plotted are average selection rates of the models given on the
x-axis, using a given criteria over M = 100 Monte Carlo simulations. For each
Monte Carlo replication, n = 4 000 observations of the true DGP are
simulated on a grid with step size ∆ = 0.1.
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Probabilistic forecasting of IVTs

ä Let Ft = σ((Xs)s≤t ), let h > 0 be a forecast horizon.

ä Goal: Forecast the future value Xt+h (and its distribution).

ä Note that X̃t+h|t = E[Xt+h|Ft ] is not data coherent.

ä Consider instead a probabilistic forecasting approach, where the interest
is in the distribution of Xt+h|Ft and generate data coherent point
forecasts, e.g. using the median or mode of the distribution.

ä However, since the IVT process Xt is in general non-Markovian, the
distribution of Xt+h|Ft is highly intractable.

ä The probabilistic forecast of Xt+h|Xt gives promising results.
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Probabilistic forecasting of IVTs

Proposition 1

Suppose the Lévy basis L is positive, i.e. η(y) = 0 for y < 0. Now

P(Xt+h = xt+h|Xt = xt ) =
min(xt ,xt+h)

∑
c=0

P(L(At+h \ At ) = xt+h − c)

·P(L(At ∩ At+h) = c|Xt = xt ),

where

P(L(At ∩ At+h) = c|Xt = xt ) =
P(L(At \ At+h) = xt − c)P(L(At ∩ At+h) = c)

P(Xt = xt )
.
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Empirical study: Goal: Forecasting the bid-ask spread

ä Study of high frequency data of bid-ask spreads of equity prices.

ä Spread data of Agilent Technologies Inc. stock (ticker: A, NYSE)
(measured in U.S. dollar cents); single day, May 4, 2020 [used data from
10:30AM to 4PM, i.e. discarded the first 60 minutes]

ä The data were cleaned using the approach proposed in
Barndorff-Nielsen et al. (2009), then sampled equidistantly (5s) using the
previous-tick method resulting in n = 3 961 observations.

ä Let st be the spread level at time t . Since the minimum spread level in the
data is one tick (i.e. one cent), we work on xt = st − 1.

ä Model selection: The NB-Gamma model is the preferred model on all
three criteria, while the second-best model is the NB-IG model. Note,
however, that these two models appear to provide an almost identical fit.
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Empirical study: Model selection
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Empirical study: Forecasting the bid-ask spread
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Summary

ä Integer-valued trawl processes provide a continuous-time framework for
modelling stationary, serially correlated count data.

ä They consist of two key components:
à Integer-valued, homogeneous Lévy basis: Generates random point pattern

and determines marginal distribution.
à Trawl: Thins the point pattern and determines the autocorrelation structure.

ä We showed that the pairwise likelihood for IVTs is tractable and MCL
outperforms previously used GMM.

ä The pairwise likelihood can be used for model selection criteria (CLBIC
slightly preferred)

ä Method for probabilistic forecasting of IVTs using the pairwise likelihood
principle.

ä Application to forecasting equity spread data: Superior performance of
IVT compared to INAR(1) benchmark model.
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