
Reconciling the Gaussian and Whittle
Likelihood with an application to estimation in

the frequency domain
CIRM, Luminy, September, 2020

Suhasini Subba Rao
Texas A&M University



Joint work with Junho Yang (final graduate student at Texas A&M).

1



Parameter estimation methods

• In general, there are two different approaches for fitting second order
stationary models to a time series.

• Time Domain approach Construction is based on the Gaussian likelihood.
The idea is to “fit” a parametric autocovariance of the form {cθ(r)}r∈Z
to the time series, where θ is the unknown parameter.

• Frequency Domain approach Construction is based on the Whittle
likelihood. We “fit” a parametric spectral density form fθ(ω) to the
periodogram of the time series.
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• The models are equivalent, as the autocovariance and spectral density
are connected through the relation

fθ(ω) =
∑
r∈Z

cθ(r) exp(irω).

• This relation connects the two parameterisations, but not the two
estimation approaches.

3



Motivation: Bias of Gaussian and Whittle estimators

AR(1): Xt = φXt−1 + εt, |φ| < 1 sample size n = 20.
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• The difference in the bias is
φ/n+O(n−3/2).

• In general, the difference
is due to the derivative of
the difference between the
likelihoods.

Objective: Quantify the difference between the likelihoods.
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Overview

• Using ideas from linear prediction and biorthogonal transforms, we show
that the Gaussian likelihood has a frequency domain representation.

• Using this we connect the Whittle and Gaussian likelihood (circulant and
inverse Toeplitz matrices) through a series expansion.

The construction hinges on the “so called” predictive DFT.

• Applications: Theoretical Apply these results for obtaining an
interpretable bound between the Gaussian and Whittle likelihoods, their
derivatives and bias.

• Applications: Practical Obtain a new frequency domain criterion that
combines the benefits of the Gaussian and Whittle likelihoods.
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Definition: The Gaussian likelihood
• We observe the time series Xn = (X1, . . . , Xn)′. Fit autocovariance
{cθ(r)} to the time series.

• The Gaussian Likelihood

Ln(θ;Xn) = n−1X ′nΓn(fθ)
−1Xn + n−1 log |Γn(fθ)|

Γn(fθ) the variance matrix of Xn.

• Due to Stationarity, Γn(fθ) is an n× n Toeplitz matrix:

Γn(fθ) =


cθ(0) cθ(1) . . . cθ(n− 1)

cθ(1) cθ(0) . . . cθ(n− 2)

cθ(2) cθ(1) . . . cθ(n− 3)
... ... . . . ...

cθ(n− 1) cθ(n− 2) . . . cθ(0)


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Definition: The Whittle likelihood

• The Whittle Likelihood (based on the Riemann sum). Fit the spectral
density fθ(·) to the periodogram of the data.

Kn(θ;Xn) = n−1
n∑
k=1

|Jn(ωk,n)|2

fθ(ωk,n)
+ n−1

n∑
k=1

log fθ(ωk,n)

• It is based on the DFT (linear transform of the time series)

Jn(ωk,n) = n−1/2
n∑
t=1

Xt exp(itωk,n).

with [0, 2π] divided into a grid ωk,n = 2πk/n.
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The Whittle likelihood in matrix form
• To compare the two likelihoods we rewrite the Whittle likelihood in

matrix form

n−1
n∑
k=1

|Jn(ωk,n)|2

fθ(ωk,n)
= n−1X ′nF

∗
n∆n(f−1

θ )FnXn,

where

∆n(f
−1
θ ) =


fθ(ω1,n)

−1 0 . . . 0

0 fθ(ω2,n)
−1 . . . 0

0 0 . . . 0

0 0 . . . fθ(ωn,n)
−1

 ,

• Fn is the discrete Fourier transform matrix, (Fn)k,t = n−1/2 exp(itωk,n).

(FnXn)k = Jn(ωk,n) = n−1/2
∑n
t=1Xt exp (itωk,n).
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Comparing the matrices in the two likelihoods

• Simple calculations show that the Whittle matrix F ∗n∆n(f−1
θ )Fn is

circulant

F ∗n∆n(f−1
θ )Fn =


aθ(0) aθ(1) . . . aθ(n− 1)

aθ(n− 1) aθ(0) . . . aθ(n− 2)
aθ(n− 2) aθ(n− 1) . . . aθ(n− 3)

... ... . . . ...
aθ(1) aθ(2) . . . aθ(0)

 ,

where aθ(0) is the wrapped inverse covariance (corresponding to f−1
θ )

and all rows are cyclic permutations of the first row.

• On the other hand, for the Gaussian likelihood X ′nΓn(fθ)
−1Xn, the

inverse Toeplitz Γn(θ)−1 is neither circulant of Toeplitz.
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Example: AR(1)
• The inverse corresponding to the AR(1) model Xt = φXt−1 + εt

Γn(fθ)
−1 =


1 −φ 0 0 . . . 0
−φ 1 + φ2 −φ 0 . . . 0
0 −φ 1 + φ2 −φ . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1



F ∗n∆n(f−1
θ )Fn =


1 + φ2 −φ 0 0 . . . −φ
−φ 1 + φ2 φ 0 . . . 0
0 −φ 1 + φ2 −φ . . . 0
... ... ... ... . . . ...
−φ 0 0 0 . . . 1 + φ2


• For AR(1) the difference lies only at the four corners of the matrix.
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Known bounds between the Gaussian and Whittle

• If
∑
r |cθ(r)| <∞, it is well known (see eg. Dahlhaus (1988)), then

‖Γn(fθ)
−1 − F ∗n∆n(f−1

θ )Fn‖2 = o(1).

Based on this, the Whittle likelihood is an approximation of the Gaussian

likelihood. Leading to the well known result

X ′nΓn(fθ)
−1Xn ≈ X

′
nF
∗
n∆n(f−1

θ )FnXn.

• In the next few slides we obtain a construction to explicitly connects
F ∗n∆n(f−1

θ )Fn with Γn(fθ)
−1.
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First step: Biorthogonal transforms

• Let Un and Vn denote two “transformation” matrices.

UnXn and VnXn may not be orthogonal, in the sense that var(UnXn) 6=
diagonal and var(VnXn) 6= diagonal.

• UnXn and VnXn are said to be biorthogonal w.r.t. Γn = var(Xn) if

cov (UnXn, VnXn) = UnΓnV
∗
n = diag(λ1, . . . , λn)

• Application: Matrix inversion identity

Γ−1
n = V ∗ndiag(λ−1

1 , . . . , λ−1
n )Un,
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• Application: Quadratic forms w.r.t. Γ−1
n :

since cov ([UnXn]k, [VnXn]k) = λk

⇒ X ′nΓ−1
n Xn =

n∑
k=1

[UnXn]k[V
∗
nXn]k

λk

where [a]k denotes the kth entry of the vector a.

• This is a generalisation of the spectral decomposition spectral
decomposition:

Γ−1
n = E∗ndiag(λ−1

1 , . . . , λ−1
n )En.
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Application to the Whittle and Gaussian likelihood

Gaussian Γn(fθ)
−1 Whittle F ∗n∆n(f−1

θ )Fn.

• Recall the kth entry of FnXn is Jn(ωk,n).

• Objective Find the transformation, UnXn, that is biorthogonal to FnXn.

• This will allow is to invert Γ−1
n in terms of Fn and Un.

We will show that the diagonal matrix is diag(fθ(ω1,n), . . . , fθ(ω1,n)).

• Next Step Obtain Un.
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Starting point

• It is well known that DFTs of a second order stationary time series with∑
r |rc(r)| <∞, are “almost” uncorrelated:

cov (Jn(ωk1,n), Jn(ωk2,n)) = f(ωk1,n)δk1,k2 +O(n−1)

where δk1,k2 is the indicator variable.

• Where does the above come from, and why O(n−1)?

• The derivation is based on the elementary sum of exponentials identity

1

n

n∑
t=1

exp (itωk1−k2,n) =

{
0 k1 − k2 /∈ nZ
1 k1 − k2 ∈ nZ

.
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cov [Jn(ωk1,n), Jn(ωk2,n)] =
1

n

n∑
t=1

eit(ωk1,n
−ωk2,n

)
n∑
τ=1

c(t− τ)ei(t−τ)ωk2,n

change to
1

n

n∑
t=1

eit(ωk1,n
−ωk2,n

)
∞∑

τ=−∞
c(t− τ)ei(t−τ)ωk2,n = f(ωk1,n)δk1,k2

Aim Ammend one of
the DFTs, by finding
random variables that
will reproduce the red
covariances and allow us
to extend the boundary,
without the O(n−1) error.
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Extending the boundary
• Apply results from linear prediction Let X = sp(X1, . . . , Xn) and PX(Y )

denote the linear projection of the random variable Y onto X. We use
the well know result

cov [PX(Y ), X`] = cov(Y,X`) 1 ≤ ` ≤ n.

• Set Y = Xτ for τ 6= {1, . . . , n}. Then we have

cov [PX(Xτ), Xt] = c(τ − t) 1 ≤ t ≤ n.

• Define X̂τ,n = PX(Xτ). Replace one DFT with
∑∞
τ=−∞ X̂τ,ne

iτωk,n
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Theorem Suppose
∑
r |c(r)| <∞. Let

J̃n(ω; f)︸ ︷︷ ︸
Complete DFT

= n−1/2
∞∑

τ=−∞
X̂τ,ne

iτωk,n = Jn(ω) + Ĵn(ω; f)︸ ︷︷ ︸
predictive DFT

where Ĵn(ω; f) = n−1/2
∑
τ≤0

X̂τ,ne
iτω + n−1/2

∑
τ>n

X̂τ,ne
iτω;

Then

cov
[
J̃n(ωk1,n; f), Jn(ωk2,n)

]
= f(ωk1,n)δk1,k2.
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The biorthogonal transform of the DFT

• Interpretation Since J̃n(ωk,n; f) ∈ sp(X1, . . . , Xn), then

{J̃n(ωk,n; f)}nk=1
Biorthogonal⇐⇒ {Jn(ωk,n)}nk=1,

where J̃n(ωk,n; f) is the regular DFT together with an additional term
which predicts across the boundary of observation.

With cov[J̃n(ωk,n; f), Jn(ωk,n)] = f(ωk,n).
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Frequency representation of the Gaussian likelihood
Theorem If

∑
r |cθ(r)| < ∞, then (ignoring the log term) we have the

frequency domain representation

Ln(θ) =
1

n
X ′nΓn(fθ)

−1Xn

=
1

n

n∑
k=1

[UnXn]k[F
∗
nXn]k

λk

=
1

n

n∑
k=1

J̃n(ωk,n; fθ)Jn(ωk,n)

fθ(ωk,n)

• Observe If we fit fθ to the data, then the linear predictors in the Gaussian
likelihood are based on the autocovariance associated with fθ.
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Difference between the two likelihoods

Difference = Gaussian−Whittle =
1

n

n∑
k=1

Ĵn(ωk,n; fθ)Jn(ωk,n)

fθ(ωk,n)

• The Gaussian likelihood simultaneously fits fθ and predicts. The Whittle
likelihood only fits fθ(·) to |Jn(·)|2.

• The Whittle likelihood is biased due to the “hard” truncation at the
boundary of observation (outside X1, . . . , Xn).

• Next, our focus will on the “predictive DFT” Ĵn(ωk,n; fθ).
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Expression for the predictive DFT

• Supose the coeffiicents {φt,n(τ ; f)}nt=1 minimize the L2-distance
Ef [Xτ −

∑n
t=1 φt,n(τ ; f)Xt]

2. Then the best linear predictor of Xτ

given Xn is

X̂τ,n =

n∑
t=1

φt,n(τ ; f)Xt.

• The predictive DFT is

Ĵn(ω; f) = n−1/2
n∑
t=1

Xt

∑
τ≤0

φt,n(τ ; f)eiτω + reflective term.
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Example: Predictive DFT of the AR(1) model
• Suppose f corresponds to the AR(1) model: Xt = φXt−1 + εt.

It yields the predictors X̂0 = φX1, X̂−1 = φ2X1, ...on the left

and X̂n+1 = φXn, X̂n+1 = φ2Xn,... on the right.

Ĵn(ω; fθ) =
φ√
n

(
1

φ(ω)
X1 +

ei(n+1)ω

φ(ω)
Xn

)
φ(ω) = 1− φe−iω.

23



Predictive DFT of AR(p) models

• fθ = σ2|1−
∑p
j=1 φjXt−j|−2 = σ2|φp(ω)|−2, where p < n.

• The predictive DFT has an analytic form in terms of φ

Ĵn(ω; fθ) =
n−1/2

φp(ω)

p∑
t=1

Xt

p−t∑
s=0

φt+se
−isω

︸ ︷︷ ︸
=ζ

(1)
t,n(ω;φ)

+ reflective term

• Difference = Gaussian−Whittle

=
σ−2

n

p∑
`=1

Xn+1−`

p−∑̀
s=0

φ`+s

X(s+1) mod n −
p∑
j=1

φjX(s+1−j) mod n

+
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The predictive DFT for general spectral densities

• We showed that for AR(p) models where n > p, that Ĵn(ω; f) has an
analytic form.

• For general spectral density functions, Ĵn(ω; f) does not have a simple
analytic form.

• Suppose f(ω) which are bounded away from zero and from above, then
by using Szegö (1921) and Baxter (1962) we have the decomposition

f(ω) = σ2|1 −
∑∞
j=1 φje

ijω|−2 = σ2|φ(ω)|−2, where {φj} are
causal/minimum phase coefficients (this is the AR(∞) representation
of a general time series).

• We obtain a series expansion of Ĵn(ω; f) in terms the AR(∞) coefficients.
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• Series expansion By using von Neumann’s alternating projections theorem
and Inoue and Kasahara (2006) we can represent the finite predictions
φt,n(τ) in terms of AR and MA coefficients. We use this to obtain the
decomposition

Ĵn(ω; f) =

∞∑
s=1

Ĵ (s)
∞,n(ω;φ)

• Each term Ĵ
(s)
∞,n(ω;φ) can be written as

Ĵ (s)
n (ω;φ) =

n−1/2

φ(ω)

n∑
t=1

Xtζ
(s)
t,n(ω;φ)

where ζ
(s)
t,n(ω;φ) is a recursive integral in terms of the AR(∞) coefficients.
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• The first term in the series expansion is

Ĵ (1)
n (ω;φ) =

n−1/2

φ(ω)

n∑
t=1

Xt

∞∑
s=0

φt+se
−isω + reflective term.

This is a generalisation of the AR(p) result to AR(∞).

• Using Baxter-type inequalities we can show that

Ĵn(ω; f) = Ĵ (1)
n (ω;φ) +O

(
1

nK−1/2

)
where

∑
r |rKc(r)| <∞.
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Application: Theoretical bounds

The series expansion and approximation for Ĵn(ω; f) is used to analyze

• Γn(fθ)
−1 − F ∗n∆n(f−1

θ )Fn

• Difference between the likelihoods Ln(θ)−Kn(θ)

• Difference between derivatives of the likelihoods ∇`θ[Ln(θ)−Kn(θ)].

• Difference between asymptotic bias of Whittle and Gaussian likelihood
estimators.
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Application: Estimation

Next objective:

• Estimate the predictive DFT from data.

• Develop a frequency domain criterion which is a hybrid of the Whittle
and the Gaussian likelihood.

• Potential benefits: it has the computational simplicity of the Whittle
likelihood but tends to have the performance of the Gaussian likelihood.
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Estimating the predictive DFT

• We have shown

Ĵn(ω;φ) =
n−1/2

φ(ω)

n∑
t=1

Xt

∞∑
s=0

φt+se
−isω +O

(
1

nK−1/2

)
.

• Fact The AR(∞) parameters can be approximated with the best fitting
AR(p) parameters (see Baxter (1962) and Kreiss, Paparoditis and Politis
(2011)).

• Idea Replace the AR(∞) parameters in Ĵ
(1)
n (ωk,n;φ) with the best fitting

AR(p) parameters (the plug-in estimator: Bhansali (1996) and Kley,
Preuss and Fryzlewicz (2019)).
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The plug-in estimator

• Given the time series {Xt} select the order p using the AIC.

• Estimate the best fitting AR(p) parameters with the Yule-Walker

estimator to give f̂p = σ̂2|1−
∑p
j=1 φ̂je

ijω|−2.

• Replace Ĵn(ωk,n; f)⇒ Ĵn(ωk,n; f̂p) where

Ĵn(ω; f̂p) =
n−1/2

φ̂p(ω)

p∑
t=1

Xt

p−t∑
s=0

φ̂t+se
−isω + reflective term
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New likelihoods: The spectral divergence

Spectral Divergence In(f ; fθ) =
1

n

n∑
k=1

(
f(ωk,n)

fθ(ωk,n)
+ log fθ(ωk,n)

)
.

It is a measure of “distance” between the f and fθ, which is smallest when
θ0 = arg minθ In(f ; fθ).

Under correct specification f = fθ0 The Gaussian likelihood
Efθ0[Ln(θ0)] = I(fθ0; fθ0).

Under misspecification f 6= fθ0 The Gaussian likelihood is
Ef [Ln(θ0)] = I(f ; fθ0) +O(n−1).
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A criterion based on the spectral divergence

• If the true density is f , then predicting with the true density gives
Ef [J̃n(ωk,n; f)Jn(ωk,n)] = f(ωk,n).

• Based on this, define the infeasible criterion

Ln(θ) =
1

n

n∑
k=1

(
J̃n(ωk,n; f)Jn(ωk,n)

fθ(ωk,n)
+ log fθ(ωk,n)

)

= Whittle +
1

n

n∑
k=1

Ĵn(ωk,n; f)Jn(ωk,n)

fθ(ωk,n)

Clearly E[Ln(θ)] = In(f ; fθ).

• Question Can we estimate Ln and still improve on O(n−1)?
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A feasible criterion

L̂p,n(θ) =
1

n

n∑
k=1

[
J̃n(ωk,n; f̂p)Jn(ωk,n)

fθ(ωk,n)
+ log fθ(ωk,n)

]
.

Theorem Suppose
∑
r∈Z |rKc(r)| < ∞ and under suitable regularity

conditions

L̂p,n(θ) = Ln(θ) +O

(
p3

n3/2
+

1

npK−1

)
and

|θ̂n − θ̃n|1 = Op

(
p3

n3/2
+

1

npK−1

)
,

where θ̂n = arg min L̂p,n(θ) and θ̃n = arg minLn(θ).
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Sampling properties of new likelihood estimators

• Since the feasible and infeasible estimators are asymptotically equivalent
in the sense n|θ̂n − θ̃n|1 = o(1), the asymptotic sampling properties of
the infeasible estimator holds for the feasible estimator.

• Under certain regularity conditions we obtain an expression for the
asymptotic bias of θ̂n.

• The asymptotic variance of θ̂n is equivalent to the asymptotic variance
of the Whittle and Gaussian likelihood estimators.
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Simulations

• We compare the new likelihood (two variants) with the Gaussian, Whittle,
taper Whittle and debiased Whittle (proposed in Sykulski et. al. (2019)).

• Model 1 We use the AR(1) model Xt = θXt−1 + εt (θ =
0.1, 0.3, 0.5, 0.7, 0.9) as the data generating process and sample sizes
n = 20, 50 and 300.

• Model 2 We use the MA(1) model Xt = εt + θεt (θ =
0.1, 0.3, 0.5, 0.7, 0.9) as the data generating process and sample sizes
n = 20, 50 and 300.

• Simulations under misspecification (but not presented here).
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AR(1) specified
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MA(1) specified
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Current and future work

• Apply the “complete” periodogram J̃n(ωk,n; f̂p)Jn(ωk,n) to spectral
density estimation.

• Generalisation of these results to the multivariate-time series framework.

• All results described in this talk are for short memory time series. We
are currently studying the case of long memory time series.
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