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Random forests

Random Forests: Idea introduced by Breiman (2001), inspired by CART
Breiman, et al. (1984). (63,000 and 47,000 citations)

Leo Breiman:

e Started out as a probabilist (Breiman's Lemma for heavy tails) —
influenced by Loeve and Blackwell
Textbook: Probability
CART et al. (Breiman, Friedman, Olshen, and Stone.)
Conversation with Leo Breiman—fascinating look at the man.
Statistical Modeling: The Two Cultures (2001) — generative models
and predictive models.
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Classical setting for random forest: {(Xt, Y:)} an iid sequence of
observations from the model

Y = f(X) +e,

Goal: Estimate f(x) = E(Y|X = x). Here X may be high-dimensional
and f is nonlinear.

Random forests Use regression trees or a recursive partition of the feature
space, i.e., independent variables X;.

Advantages:

@ learning algorithm that aggregates estimates over a large number of
trees.

@ widely used in a variety of applications including object recognition,
bioinformatics, ecology, and finance.

o little tuning required

@ some (Howard and Bowles (2012) claim random forests are the most
successful general-purpose prediction algorithms.



Random forests

Time series setting: The time series { Y;} is a Nonlinear AR (NLAR)
process satisfying the recursions,

Yt:f(ytfla"'vytfp)‘i’at, tz]_’

with initial values Yp,..., Y1—p. (p could be large and increasing with
sample size.)

Objective: Based on observations (X1, Y1),..., (X7, Y7), where
Xt = (Yi-1,..., Yi—p), estimate E(Y|X = x) using random forests.



Recursive partitions: Start with P; = {RP} and then construct Pp1 from
P, as follows:

@ Select an (unsplit) node A € P,
@ Select a split direction i—could be random with prob p;,i=1,...,p

@ Determine split position 7 € {x; : x € A} chosen in accordance with
some set of rules.

AL ={x€eA:x <7} and Ag ={x€A: x>},
(x; refers to the i-th entry of x € RP)

@ A is the parent node of A; and Ag; A, and Agr are child nodes of A.

Remark: A given partition A of RP is called recursive if A = P, for some
n > 1, where Py,..., P, are obtained as above.



Choosing node, direction and position of split

Model. Observations Y1, ..., Y7 from the model
Yt = f(Xt) + Et, t Z 1,
where X; = (Ye—1,..., Yi—p) and £ = (Yo,..., Yi_p).

Group these into input-out pairs,

Dr ={(X1,Y1),...,(X7, Y1)}
e split direction i: probability of splitting in i*" direction is p; = p;(DT).
@ split position 7: Breiman suggests maximizing impurity, i.e., minimize
the sum of variances

Similar in spirit to change-point problem in a random field. Choice of
7 may depend on Dt and other independent random mechanism ©.



Regression tree estimate

Regression tree estimate: For a recursive tree partition A, the estimate is

1

TN = (X € AnG) thlAA(x)(xt) xeRP, (1)

where Ap is the unique leaf in the partition containing x.

Partition-optimal tree:

Tx(x) = EAlY | X € Arn(X)] (2)
e (X,Y)is a copy of (X1, Y1) and indep of (D1, ©)

o [Ep denotes expectation with respect to the conditional probability
measure Py :=P(- | D7, 0).

@ The set Ax(x) is treated as non-random in (2).

o We'll show Ta(x) — T(x) goes to 0 uniformly (in some sense)
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Assumptions on the model

A.1 &1 has pdf h.(x) > 0 on R and, for some ¢ € (0, 0),
E[le1]|™] < mlc™ 2, m > 3 (Bernstein Condition) (3)
The cdf F.(x) = [*__ h-(y) dy of &1 satisfies

F.(x+ 1)
PEG) )

for any T € (0, 00).
A.2 f is bounded, i.e., M = sup, s |f(x)| < c0..

A.3 Minimum number of points k in a leaf satisfies k/(log T)* — 0o as
T — oo.



Comments on the assumptions

Al: &1 has pdf, positive, Bernstein, etc.

@ gives a geometrically ergodic stationary solution to Markov chain
(could get by with less)

@ Bernstein condition implies €1 is subexpoential,
P(le1] > x) < 4177 for 71,72 > 0.

o Left tail condition (4) is implied by limy_o hh( (+)) exists and is
nonzero for 7 > 0.

A2: f bounded. Implicit in virtually all theoretical work since the input
vector is assumed to live on [0, 1]” and f is continuous.

A3: k/(log T)* — co. Number of points in the leaves has to grow, but not
too fast. (log T)* is needed in order to apply Bernstein-like inequality to
strong mixing sequences and bound has to apply uniformly across all trees.



First result: a concentration inequality

Suppose that A.1-A.3 are satisfied. Then there exists a constant
B € (0,00) such that

(log T)?
sup Ta(x Tx(x)| < —=—
(XJ\)ER”WI A(x) = TA(x)] N

with probability at least 1 — 4T~ for all sufficiently large T.

(Vx = all partition whose leafs contain at least k points.)

Remark | Ta(x) — Tx(x)| is the deviation of mean-corrected sample
average of at least k observations. For some choices of pairs (x,A) the
number is exactly k and hence error is l/ﬂ Upper bound includes
(log T)?, small price to get uniform rates.



A Corollary for forests

Forests Let Wy = {A C Vy : |A| < oo} = collection of k-valid partitions
(trees). Let A = {A1,...,Ag} be B trees in W.

Random forest estimate and its partition optimal—counterpart are

B
1
= EZ TAb(X and HA Z TAb X € RP.

Corollary 2

Suppose that A.1-A.3 are satisfied. Then there exists a constant
B € (0,00) such that

sup |Ha(x) — HA(X)] < /B(Io;g/;)z

(x,A)ERP X W

with probability at least 1 — 4T~ for all sufficiently large T.




Notes.

@ This development follows that of Wager and Walther (2015) in the iid
setting.

@ All the trees are constructed from the same data set D.

@ Breiman (2001) uses an initial bootstrap step before growing the
trees.

@ If f is smooth and if the diameter of each leaf shrinks to 0, then the
forest estimates should be consistent.



Getting to consistency.

Construction of the trees. For a € (0,.5), m > 2k, A is an («a, k, m)-valid
partition (A € Vo k.m) if

(i) Any currently unsplit node with at least m data points will eventually
be split.

(ii) The probability p; = p;(Dr) that a given (feasible) node is split along
the i-th direction is bounded from below for all i=1,...,p by a
strictly positive constant.

(iii) The split position is chosen such that each child node contains at
least a fraction a € (0,1/2) of the data points in its parent node.

(iv) All leaves of the tree contain at least k data points.



A4: The function f in (1) is C-Lipschitz, that is,
If(X) — f(x)| < C|Ix" — x| for all x,x" € RP

A5: It holds that log(T/m)/log(a™!) — oo as T — oo.
Theorem 3

Let fr be an (v, k, m)-forest and suppose that A.1-A.5 are satisfied. Then
the following hold:

@ fr is a pointwise consistent estimator of f in the sense that
fr(x) — f(x) in probability as T — oo.

for any x € RP.

@ fr(X) is a consistent estimator of the conditional mean E[Y | X] in
the sense that

~

fr(X) — E[Y | X] in probability as T — oo.
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Transform X; to [0, 1]°. Choose a mapping
Lh: (Xl, . ,Xp) — (Fh(Xl), cey Fh(Xp))
such that Z; = t4(X¢) has pdf hz on [0, 1]P with
(Y <hz(z) <¢ forall z€[0,1]P.

This is purely conceptual for proofs—not needed in practice.
Concentration inequality. Use Bernstein-type inequality to show
‘#R x2T

T M 2+ T 1+ x(log T)2’

IogIP( (R)‘ >x) S x >0,
(#R = |{t: Z: € R} and v} = Var(1r(Z1)) + 233, |Cov(1r(Ze11), 1r(Z1))].)

Leaves get smaller. Conditions A.1, A.2, A.5 imply diam(Ax(x)) — 0 as
T — oo. (Proof is similar but more complex than in Meihshausen (2006).)



Simulation study

Model Y; = f(Yy_1) + ¢, {e¢} ~ IID Laplace, h.(x) = se= .
Four models:
1. f(x) = 0.5sign(x) min{|x|, 10}, truncated AR(1)
2. f(x) = —2xe 0.7 +3x2 —0.95x* " eyponential AR(2)
3. f(x) = cos(5x)e™ * damped sinusoid
4. f(x) = min{|x|,0.75} min{|x|, 10}, spline-like.

f(x

Used ranger package in R.
e B =400 trees
e T=400, 1600, 6400
e k=10.04(log T)*loglog T|.



Simulation study
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FIG 1. Simulations of Y1
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Simulation study
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FIG 3. Scatter plots of the data Daoo under two of the specifications of f considered in (4.1).



Simulation study
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FIG 2. The four specifications of f considered in (4.1) (blue) and the corresponding random forest estimator fT
based on sample sizes of T'= 400 (green), T' = 1600 (red) and T' = 6400 (brown).



Simulation study
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FIG 4. Two of the specifications of f considered in (4.1) (blue) and the corresponding random forest estimator
f1600 with k = 40 (green), k = 160 (red) and k = 640 (brown).



Simulation study p = 2

Now we take p = 2 and

f(x1,x2) = x1 e 00 _ 2(x? e 034 4 xQe*0'7X22) +3x3 e 0955 (6)
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FIG 5. The mean squared error (4.3) of the random forest estimator fT as a function of 10~*T when f is given
by (4.2).
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