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Random forests

Random Forests: Idea introduced by Breiman (2001), inspired by CART
Breiman, et al. (1984). (63,000 and 47,000 citations)

Leo Breiman:

Started out as a probabilist (Breiman’s Lemma for heavy tails) –
influenced by Loève and Blackwell

Textbook: Probability

CART et al. (Breiman, Friedman, Olshen, and Stone.)

Conversation with Leo Breiman–fascinating look at the man.

Statistical Modeling: The Two Cultures (2001) – generative models
and predictive models.
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Random forests

Classical setting for random forest: {(Xt ,Yt)} an iid sequence of
observations from the model

Y = f (X ) + ε,

Goal: Estimate f (x) = E (Y |X = x). Here X may be high-dimensional
and f is nonlinear.

Random forests Use regression trees or a recursive partition of the feature
space, i.e., independent variables Xt .

Advantages:

learning algorithm that aggregates estimates over a large number of
trees.
widely used in a variety of applications including object recognition,
bioinformatics, ecology, and finance.
little tuning required
some (Howard and Bowles (2012) claim random forests are the most
successful general-purpose prediction algorithms.
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Random forests

Time series setting: The time series {Yt} is a Nonlinear AR (NLAR)
process satisfying the recursions,

Yt = f (Yt−1, . . . ,Yt−p) + εt , t ≥ 1,

with initial values Y0, . . . ,Y1−p. (p could be large and increasing with
sample size.)

Objective: Based on observations (X1,Y1), . . . , (XT ,YT ), where
Xt = (Yt−1, . . . ,Yt−p), estimate E (Y |X = x) using random forests.
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Recursive partitions: Start with P1 = {Rp} and then construct Pn+1 from
Pn as follows:

Select an (unsplit) node A ∈ Pn
Select a split direction i–could be random with prob pi , i = 1, . . . , p

Determine split position τ ∈ {xi : x ∈ A} chosen in accordance with
some set of rules.

AL := {x ∈ A : xi ≤ τ} and AR := {x ∈ A : xi > τ},

(xi refers to the i-th entry of x ∈ Rp)

A is the parent node of AL and AR ; AL and AR are child nodes of A.

Remark: A given partition Λ of Rp is called recursive if Λ = Pn for some
n ≥ 1, where P1, . . . ,Pn are obtained as above.
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Choosing node, direction and position of split

Model. Observations Y1, . . . ,YT from the model

Yt = f (Xt) + εt , t ≥ 1,

where Xt := (Yt−1, . . . ,Yt−p) and ξ := (Y0, . . . ,Y1−p).
Group these into input-out pairs,

DT = {(X1,Y1), . . . , (XT ,YT )}.
split direction i : probability of splitting in i th direction is pi = pi (DT ).

split position τ : Breiman suggests maximizing impurity, i.e., minimize
the sum of variances

1

|{i : Xi ≤ τ}|
∑

Xi≤τ
(Yi − Ȳ≤τ )2 +

1

|{i : Xi > τ}|
∑

Xi>τ

(Yi − Ȳ>τ )2

Similar in spirit to change-point problem in a random field. Choice of
τ may depend on DT and other independent random mechanism Θ.
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Regression tree estimate

Regression tree estimate: For a recursive tree partition Λ, the estimate is

TΛ(x) =
1

|{t : Xt ∈ AΛ(x)}|
T∑

t=1

Yt1AΛ(x)(Xt), x ∈ Rp , (1)

where AΛ is the unique leaf in the partition containing x .

Partition-optimal tree:

T ∗Λ(x) := EΛ[Y | X ∈ AΛ(x)] (2)

(X ,Y ) is a copy of (X1,Y1) and indep of (DT ,Θ)

EΛ denotes expectation with respect to the conditional probability
measure PΛ := P( · | DT ,Θ).

The set AΛ(x) is treated as non-random in (2).

We’ll show TΛ(x)− T ∗Λ(x) goes to 0 uniformly (in some sense)
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Assumptions on the model

A.1 ε1 has pdf hε(x) > 0 on R and, for some c ∈ (0,∞),

E[|ε1|m] ≤ m!cm−2, m ≥ 3 (Bernstein Condition) (3)

The cdf Fε(x) =
∫ x
−∞ hε(y) dy of ε1 satisfies

sup
x∈R

Fε(x + τ)

Fε(x)
<∞ (4)

for any τ ∈ (0,∞).

A.2 f is bounded, i.e., M := supx∈Rp |f (x)| <∞..

A.3 Minimum number of points k in a leaf satisfies k/(logT )4 →∞ as
T →∞.
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Comments on the assumptions

A1: ε1 has pdf, positive, Bernstein, etc.

gives a geometrically ergodic stationary solution to Markov chain
(could get by with less)

Bernstein condition implies ε1 is subexpoential,
P(|ε1| > x) ≤ γ1e

−γ2x for γ1, γ2 > 0.

Left tail condition (4) is implied by limx→∞
hε(x)

hε(x+τ) exists and is
nonzero for τ > 0.

A2: f bounded. Implicit in virtually all theoretical work since the input
vector is assumed to live on [0, 1]p and f is continuous.

A3: k/(logT )4 →∞. Number of points in the leaves has to grow, but not
too fast. (logT )4 is needed in order to apply Bernstein-like inequality to
strong mixing sequences and bound has to apply uniformly across all trees.
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First result: a concentration inequality

Theorem 1

Suppose that A.1–A.3 are satisfied. Then there exists a constant
β ∈ (0,∞) such that

sup
(x ,Λ)∈Rp×Vk

|TΛ(x)− T ∗Λ(x)| ≤ β (logT )2

√
k

(5)

with probability at least 1− 4T−1 for all sufficiently large T .

(Vk = all partition whose leafs contain at least k points.)

Remark |TΛ(x)− T ∗Λ(x)| is the deviation of mean-corrected sample
average of at least k observations. For some choices of pairs (x ,Λ) the
number is exactly k and hence error is 1/

√
k . Upper bound includes

(logT )2, small price to get uniform rates.
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A Corollary for forests

Forests Let Wk := {Λ ⊆ Vk : |Λ| <∞} = collection of k-valid partitions
(trees). Let Λ = {Λ1, . . . ,ΛB} be B trees in Wk .

Random forest estimate and its partition optimal-counterpart are

HΛ(x) =
1

B

B∑

b=1

TΛb
(x) and H∗Λ(x) =

1

B

B∑

b=1

T ∗Λb
(x), x ∈ Rp.

Corollary 2

Suppose that A.1–A.3 are satisfied. Then there exists a constant
β ∈ (0,∞) such that

sup
(x ,Λ)∈Rp×Wk

|HΛ(x)− H∗Λ(x)| ≤ β (logT )2

√
k

with probability at least 1− 4T−1 for all sufficiently large T .
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Notes.

This development follows that of Wager and Walther (2015) in the iid
setting.

All the trees are constructed from the same data set DT .

Breiman (2001) uses an initial bootstrap step before growing the
trees.

If f is smooth and if the diameter of each leaf shrinks to 0, then the
forest estimates should be consistent.
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Getting to consistency.

Construction of the trees. For α ∈ (0, .5),m ≥ 2k , Λ is an (α, k,m)-valid
partition (Λ ∈ Vα,k,m) if

(i) Any currently unsplit node with at least m data points will eventually
be split.

(ii) The probability ρi = ρi (DT ) that a given (feasible) node is split along
the i-th direction is bounded from below for all i = 1, . . . , p by a
strictly positive constant.

(iii) The split position is chosen such that each child node contains at
least a fraction α ∈ (0, 1/2) of the data points in its parent node.

(iv) All leaves of the tree contain at least k data points.
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A4: The function f in (1) is C -Lipschitz, that is,

|f (x ′)− f (x)| ≤ C‖x ′ − x‖ for all x , x ′ ∈ Rp

A5: It holds that log(T/m)/ log(α−1)→∞ as T →∞.

Theorem 3

Let f̂T be an (α, k,m)-forest and suppose that A.1–A.5 are satisfied. Then
the following hold:

(a) f̂T is a pointwise consistent estimator of f in the sense that

f̂T (x) −→ f (x) in probability as T →∞.

for any x ∈ Rp.

(b) f̂T (X ) is a consistent estimator of the conditional mean E[Y | X ] in
the sense that

f̂T (X ) −→ E[Y | X ] in probability as T →∞.
14 / 23



Main ideas in the arguments

Transform Xt to [0, 1]p. Choose a mapping

ιh : (x1, . . . , xp) 7−→ (Fh(x1), . . . ,Fh(xp))

such that Zt = ιh(Xt) has pdf hZ on [0, 1]p with

ζ−1 ≤ hZ (z) ≤ ζ for all z ∈ [0, 1]p.

This is purely conceptual for proofs–not needed in practice.

Concentration inequality. Use Bernstein-type inequality to show

logP
(∣∣∣#R

T
− µ(R)

∣∣∣ > x
)
. − x2T

ν2
R + T−1 + x(logT )2

, x > 0,

(#R = |{t : Zt ∈ R} and ν2
R := Var(1R(Z1)) + 2

∑∞
t=1 |Cov(1R(Zt+1), 1R(Z1))|.)

Leaves get smaller. Conditions A.1, A.2, A.5 imply diam(AΛ(x))→ 0 as
T →∞. (Proof is similar but more complex than in Meihshausen (2006).)
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Simulation study

Model Yt = f (Yt−1) + εt , {εt} ∼ IID Laplace, hε(x) = 1
2e
−|x |.

Four models:

1. f (x) = 0.5 sign(x) min{|x |, 10}, truncated AR(1)

2. f (x) = −2xe−0.7x2
+ 3x2e−0.95x2

, exponential AR(2)

3. f (x) = cos(5x)e−x
2
, damped sinusoid

4. f (x) = min{|x |, 0.75}min{|x |, 10}, spline-like.

Used ranger package in R.

B = 400 trees

T=400, 1600, 6400

k = b0.04(logT )4 log logT c.
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Simulation study
8
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FIG 1. Simulations of Y1, . . . , Y400 from the model (2.1) for the four different specifications of f considered in
(4.1).

example of an exponential AR model (see, e.g., [3]), while the last two specifications of f
correspond to an oscillating function and a particular spline, respectively. In Figure 1, we
have simulated a sample path Y1, . . . , Y400 for each of these specifications of f .

We consider estimation of f by a random forest f̂T across different sample sizes T and
we will be using the ranger package of R with B = 500 and k = b0.04(logT )4 log logT c.
To obtain diverse trees, we will use the extremely randomized trees of Geurts, Ernst
and Wehenkel [14] which corresponds to setting the parameters replace = FALSE,
sample.fraction= 1 and splitrule= ”extratrees”. Effectively, this means that split
positions are chosen at random and that we build each tree using the entire sample DT (no
initial bootstrap step). Note that, while this implementation aligns with the (α,k,m)-valid
forests treated in Section 3, α is not a prespecified parameter in the ranger package, yet
in principle its value can be implicitly determined. In Figure 2 we compare f̂T to f on the
interval [−2,2] for each of the four different examples of f presented in (4.1). While the
plots indicate the consistency of the random forest estimator in these examples (as should
be the case), observations are in fact rather noisy, and hence the performance of the ran-
dom forest is indeed remarkable. To support this, Figure 3 shows scatter plots of the data
DT = {(Y0, Y1), . . . , (YT−1, YT )} for T = 400 and two specifications of f . Furthermore, we
note that choosing the parameter k in finite samples is not a trivial task, and the choice used
above is rather arbitrary (the assumption of (A3) concerns only its asymptotic behavior).
Nevertheless, its value can have a significant impact on performance as it controls the bias–
variance tradeoff of the estimator. While optimal tuning of k is outside the scope of this paper,
we illustrate its effect on f̂T in Figure 4 where we estimate two of the functions in (4.1) for
different values of k using a sample of size T = 1600. For comparison, the value used for k
in Figure 2 when T = 1600 was 236.
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Simulation study

RANDOM FORESTS IN TIME SERIES 9
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FIG 2. The four specifications of f considered in (4.1) (blue) and the corresponding random forest estimator f̂T
based on sample sizes of T = 400 (green), T = 1600 (red) and T = 6400 (brown).
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FIG 3. Scatter plots of the data D400 under two of the specifications of f considered in (4.1).

We conclude this section by indicating consistency of random forests in a more challenging
setting. In particular, we consider p= 2 and the following choice of f :

(4.2) f(x1, x2) = x1e
−0.6x2

1 − 2(x2
1e
−0.3x2

1 + x2e
−0.7x2

2) + 3x2
2e
−0.95x2

2 .

We rely on the ranger package once again with the same specifications as were used to obtain
Figure 2, but we pass in the additional parameter split.select.weights= (1/2,1/2)
so that the probability of splitting along a given direction is the same for both directions (that
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Simulation study
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FIG 4. Two of the specifications of f considered in (4.1) (blue) and the corresponding random forest estimator
f̂1600 with k = 40 (green), k = 160 (red) and k = 640 (brown).
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FIG 5. The mean squared error (4.3) of the random forest estimator f̂T as a function of 10−4T when f is given
by (4.2).

is, ρ1 = ρ2 = 1/2). To evaluate its performance, we compute the mean squared error

(4.3) MSE =
1

|X |
∑

x∈X
(f̂T (x)− f(x))2

over the grid X := {−2,−1.75, . . . ,1.75,2}2 for different values of T . In Figure 5, the MSE
is depicted as a function of 10−4T .

5. Proofs. It will be convenient to transform the input vector Xt = (Yt−1, . . . , Yt−p) so
that it takes values in [0,1]p. Effectively, this can be done by applying a cumulative distribu-
tion function

(5.1) Fh(x) =

∫ x

−∞
h(y) dy, x ∈R,

with h : R→ [0,∞) being a probability density which is strictly positive almost everywhere.
We extend the domain of Fh to R := R∪ {±∞} by using the conventions Fh(−∞) = 0 and
Fh(∞) = 1, so that the mapping

ιh : (x1, . . . , xp) 7−→ (Fh(x1), . . . , Fh(xp))
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