Zero-sum squares in bounded discrepancy $\{-1,1\}\text{-matrices}$

Amanda Montejano

Universidad Nacional Autónoma de México

Joint work with Alma R. Arévalo and Edgardo Roldán-Pensado

Additive Combinatorics in Marseille, HYBRID CONFERENCE 2020

Outline of the talk

- The Erickson matrices problem (Ramsey Theory)
- 2 Zero-sum Ramsey Theory
- **③** Zero-sum squares in bounded discrepancy $\{-1,1\}$ -matrices

- An *Erickson matrix* is a square binary matrix that contains no *squares* with constant entries.
- A square S in $M = (a_{i,j})$ is a 2 × 2 sub-matrix of M of the form

$$S = egin{pmatrix} a_{i,j} & a_{i,j+s} \ a_{i+s,j} & a_{i+s,j+s} \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

- An *Erickson matrix* is a square binary matrix that contains no *squares* with constant entries.
- A square S in $M = (a_{i,j})$ is a 2 × 2 sub-matrix of M of the form

$$S = egin{pmatrix} a_{i,j} & a_{i,j+s} \ a_{i+s,j} & a_{i+s,j+s} \end{pmatrix}$$

- An *Erickson matrix* is a square binary matrix that contains no *squares* with constant entries.
- A square S in $M = (a_{i,j})$ is a 2 × 2 sub-matrix of M of the form

$$S = egin{pmatrix} a_{i,j} & a_{i,j+s} \ a_{i+s,j} & a_{i+s,j+s} \end{pmatrix}$$

- An *Erickson matrix* is a square binary matrix that contains no *squares* with constant entries.
- A square S in $M = (a_{i,j})$ is a 2 × 2 sub-matrix of M of the form

$$S = egin{pmatrix} a_{i,j} & a_{i,j+s} \ a_{i+s,j} & a_{i+s,j+s} \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

How large can an Erickson matrix be? (1996)

How large can an Erickson matrix be? (1996)

- Not arbitrarily large (by Gallai).
- An *n* × *n* Erickson matrix,

 $n \leq 9(2^{81}+1)(2^{(2^{81}+1)^2}+1).$

How large can an Erickson matrix be? (1996)

- Not arbitrarily large (by Gallai).
- An $n \times n$ Erickson matrix,

 $n \leq 9(2^{81}+1)(2^{(2^{81}+1)^2}+1).$

Rephrasing the problem

- A square binary matrix is a 2-coloring of the grid $[n] \times [n]$.
- A constant square is a monochromatic square.

Problem (Erickson, 1996)

Determine the minimum positive integer $R_2(S)$ such that every 2-coloring of $[n] \times [n]$, with $n \ge R_2(S)$, contains a monochromatic square.

Solution of the problem

• $13 \le R_2(S) \le \min\{w(2; 8), 5 \cdot 2^{2^{40}}\}$ (Axenovich and Manske, 2008).

Solution of the problem

• $13 \le R_2(S) \le \min\{w(2; 8), 5 \cdot 2^{2^{40}}\}$ (Axenovich and Manske, 2008).

Solution of the problem

• $13 \le R_2(S) \le \min\{w(2; 8), 5 \cdot 2^{2^{40}}\}$ (Axenovich and Manske, 2008).

• $R_2(S) = 15$ (Bacher and Eliahou, 2010).

$$f: \mathcal{U} \to \{c_1, c_2, \ldots, c_k\}$$

$$\mathcal{U} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots \cup \mathcal{C}_k$$
 where $\mathcal{C}_i = f^{-1}(i)$

• Ramsey Theory:

study monochromatic subsets.

- Anti-Ramsey Theory:
- Zero-Sum Ramsey Theory:

study rainbow subsets.

study zero-sum subsets.

$$f: \mathcal{U} \to \{c_1, c_2, \ldots, c_k\} \subseteq \Gamma$$

$$\mathcal{U} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots \cup \mathcal{C}_k$$
 where $\mathcal{C}_i = f^{-1}(i)$

• Ramsey Theory:

study monochromatic subsets.

- Anti-Ramsey Theory:
- Zero-Sum Ramsey Theory:

study rainbow subsets.

study zero-sum subsets.

$f: \mathcal{U} \to \{-1, 1\} \subseteq \mathbb{Z}$

• Ramsey Theory:

study monochromatic subsets.

- Anti-Ramsey Theory:
- Zero-Sum Ramsey Theory:

study rainbow subsets.

study <u>zero-sum</u> subsets.

When bounded discrepancy (that is, $|\sum_{x \in U} f(x)|$) implies

the existence of a zero-sum substructure?

For example

 $f:[n] \to \{-1,1\}$

Q1: Is it true that every (sufficiently large) bounded discrepancy $\{-1,1\}$ -sequence contains a zero-sum arithmetic progression?

For example

 $f:[n] \rightarrow \{-1,1\}$

Q1: Is it true that every (sufficiently large) bounded discrepancy $\{-1,1\}$ -sequence contains a zero-sum arithmetic progression?

Yes!

Zero-sum k-blocks

Theorem (Caro, Hansberg, M, 2019)

Let t, k and q be integers such that $q \ge 0$, $0 \le t < k$, and $t \equiv k \pmod{2}$, and take $s \in [0, t+1]$ as the unique integer satisfying $s \equiv q + \frac{k-t-2}{2} \pmod{(t+2)}$. Then, for any integer

$$n \ge \frac{1}{2(t+2)}k^2 + \frac{q-s}{t+2}k - \frac{t}{2} + s$$

and any function $f : [n] \to \{-1, 1\}$ with $|f([n])| \le q$, there is a k-block $B \subseteq [n]$ with $|f(B)| \le t$.

Zero-sum squares in $\{-1, 1\}$ -matrices

 $f:[n]\times[n]\to\{-1,1\}$

Q2: Is it true that every (sufficiently large) bounded discrepancy $\{-1,1\}$ -matrix contains a zero-sum square?

$$\begin{pmatrix} + & - & + & - & + \\ - & - & - & - & - \\ + & - & + & - & + \\ - & - & - & - & - \\ + & - & + & - & + \end{pmatrix}$$

Zero-sum squares in $\{-1, 1\}$ -matrices

$$f:[n]\times[n]\to\{-1,1\}$$

Q2: Is it true that every (sufficiently large) bounded discrepancy $\{-1,1\}$ -matrix contains a zero-sum square?

Zero-sum squares in $\{-1,1\}$ -matrices

 $f:[n]\times[n]\to\{-1,1\}$

Q2: Is it true that every (sufficiently large) bounded discrepancy $\{-1,1\}$ -matrix contains a zero-sum square?

With computing assistance we observe that

for $5 \le n \le 11$, every $n \times n$ non-triangular $\{-1, 1\}$ -matrix M with disc $(M) \le n$ contains a zero-sum square.

Theorem (Arévalo, Roldán-Pensado, M, 202+)

Let $n \ge 5$. Every $n \times n$ non-diagonal $\{-1, 1\}$ -matrix M with disc $(M) \le n$ contains a zero-sum square.

Theorem (Arévalo, Roldán-Pensado, M, 202+)

Let $n \ge 5$. Every $n \times n$ non-diagonal $\{-1, 1\}$ -matrix M with disc $(M) \le n$ contains a zero-sum square.

Theorem (Arévalo, Roldán-Pensado, M, 202+)

Let $n \ge 5$ and $m \in \{n, n+1\}$. Every $n \times m$ non-diagonal $\{-1, 1\}$ -matrix M with disc $(M) \le n$ contains a zero-sum square.

Open problems

• Other ranges, other shapes, larger dimension, etc.

Open problems

• Other ranges, other shapes, larger dimension, etc.

For $5 \le n \le 11$, these are all examples (up to symmetries) of $n \times n$ and $n \times (n+1)$ non-triangular zero-sum-square-free $\{-1, 1\}$ -matrices M with $\operatorname{disc}(M) \le 2n$.

Open problems

• Other ranges, other shapes, larger dimension, etc.

For $5 \le n \le 11$, these are all examples (up to symmetries) of $n \times n$ and $n \times (n+1)$ non-triangular zero-sum-square-free $\{-1,1\}$ -matrices M with $\operatorname{disc}(M) \le 2n$.

Conjecture (Arévalo, Roldán-Pensado, M, 202+)

For every C > 0 there is a integer N such that whenever $n \ge N$ the following holds: Every $n \times n$ non-diagonal $\{-1, 1\}$ -matrix M with disc $(M) \le Cn$ contains a zero-sum square.

Thank you for your attention!!

