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Erickson matrices

An Erickson matrix is a square binary matrix that contains no squares
with constant entries.

A square S in M = (ai ,j) is a 2× 2 sub-matrix of M of the form

S =

(
ai ,j ai ,j+s

ai+s,j ai+s,j+s

)
for some positive integer s.


0 1 0 1 0

1 1 0 1 0

0 0 0 1 1
1 1 1 1 0
1 1 0 1 1


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How large can an Erickson matrix be? (1996)



0 0 0 1 0 1 1 1
0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 1
1 1 0 0 1 1 1 1
0 0 0 1 1 0 0 0
1 1 0 1 0 0 1 1
1 0 0 1 0 1 0 1
1 0 1 1 0 1 1 0



Not arbitrarily large (by Gallai).

An n × n Erickson matrix,

n ≤ 9(281 + 1)(2(281+1)2
+ 1).
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Rephrasing the problem

A square binary matrix is a 2-coloring of the grid [n]× [n].

A constant square is a monochromatic square.

Problem (Erickson, 1996)

Determine the minimum positive integer R2(S) such that every 2-coloring
of [n]× [n], with n ≥ R2(S), contains a monochromatic square.
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Solution of the problem

13 ≤ R2(S) ≤ min{w(2; 8), 5 · 2240
) (Axenovich and Manske, 2008).

R2(S) = 15 (Bacher and Eliahou, 2010).
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f : U → {c1, c2, . . . , ck}= Γ

U = C1 ∪ C2 ∪ · · · ∪ Ck where Ci = f −1(i)

Ramsey Theory: study monochromatic subsets.

Anti-Ramsey Theory: study rainbow subsets.

Zero-Sum Ramsey Theory: study zero-sum subsets.

When global bounded discrepancy implies local bounded discrepancy?
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f : U → {−1, 1} ⊆ Z

Ramsey Theory: study monochromatic subsets.

Anti-Ramsey Theory: study rainbow subsets.

Zero-Sum Ramsey Theory: study zero-sum subsets.

When bounded discrepancy (that is, |
∑

x∈U f (x)|) implies

the existence of a zero-sum substructure?
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For example

+ + − + + − − − + − + − − + + − + − + − − + + − + − +−

f : [n]→ {−1, 1}

Q1: Is it true that every (sufficiently large) bounded discrepancy
{−1, 1}-sequence contains a zero-sum arithmetic progression?

Yes!
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Zero-sum k-blocks

Theorem (Caro, Hansberg, M, 2019)

Let t, k and q be integers such that q ≥ 0, 0 ≤ t < k, and t ≡ k (mod 2),
and take s ∈ [0, t + 1] as the unique integer satisfying
s ≡ q + k−t−2

2 (mod (t + 2)). Then, for any integer

n ≥ 1

2(t + 2)
k2 +

q − s

t + 2
k − t

2
+ s

and any function f : [n]→ {−1, 1} with |f ([n])| ≤ q, there is a k-block
B ⊆ [n] with |f (B)| ≤ t.
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Zero-sum squares in {−1, 1}–matrices

f : [n]× [n]→ {−1, 1}

Q2: Is it true that every (sufficiently large) bounded discrepancy
{−1, 1}-matrix contains a zero-sum square?


+ − + − +
− − − − −
+ − + − +
− − − − −
+ − + − +


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With computing assistance we observe that

for 5 ≤ n ≤ 11, every n × n non-triangular {−1, 1}-matrix M with
disc(M)≤ n contains a zero-sum square.
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Theorem (Arévalo, Roldán-Pensado, M, 202+)

Let n ≥ 5. Every n × n non-diagonal {−1, 1}-matrix M with disc(M) ≤ n
contains a zero-sum square.

Theorem (Arévalo, Roldán-Pensado, M, 202+)

Let n ≥ 5 and m ∈ {n, n + 1}. Every n ×m non-diagonal {−1, 1}-matrix
M with disc(M) ≤ n contains a zero-sum square.
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Open problems
Other ranges, other shapes, larger dimension, etc.

For 5 ≤ n ≤ 11, these are all examples (up to symmetries) of n × n and
n × (n + 1) non-triangular zero-sum-square-free {−1, 1}-matrices M with
disc(M)≤ 2n.

Conjecture (Arévalo, Roldán-Pensado, M, 202+)

For every C > 0 there is a integer N such that whenever n ≥ N the
following holds: Every n × n non-diagonal {−1, 1}-matrix M with
disc(M)≤ Cn contains a zero-sum square.
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Thank you for your attention!!
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