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Outline of the talk

© The Erickson matrices problem (Ramsey Theory)
@ Zero-sum Ramsey Theory

@ Zero-sum squares in bounded discrepancy {—1,1}-matrices
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Erickson matrices

o An Erickson matrix is a square binary matrix that contains no squares
with constant entries.

e A square S in M = (a;;) is a 2 x 2 sub-matrix of M of the form

S = dij dij+s
djts,j dits,j+s

for some positive integer s.
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How large can an Erickson matrix be? (1996)
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How large can an Erickson matrix be? (1996)

00010111

01010100

e 0 010O0O0O0T1
Combinatorics 11001111
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1 0110110

e Not arbitrarily large (by Gallai).

@ An n x n Erickson matrix,
n < 9(281 4 1)(2@" 1) 4 1),
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Rephrasing the problem

@ A square binary matrix is a 2-coloring of the grid [n] x [n].

@ A constant square is a monochromatic square.

Problem (Erickson, 1996)

Determine the minimum positive integer R>(S) such that every 2-coloring
of [n] x [n], with n > R(S), contains a monochromatic square.
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Solution of the problem

e 13 < Ry(S) < min{w(2;8),5-22")  (Axenovich and Manske, 2008).
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Solution of the problem

e 13 < Ry(S) < min{w(2;8),5 - 22*)
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(Axenovich and Manske, 2008).

@ Ry(S) =15 (Bacher and Eliahou, 2010).
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f:Z/l—>{C1,C2,...,Ck}

U=CUCyU---UCx where C; = f~1(i)

@ Ramsey Theory: study monochromatic subsets.
@ Anti-Ramsey Theory: study rainbow subsets.
@ Zero-Sum Ramsey Theory: study zero-sum subsets.
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fill > {-1,1}C7Z

@ Ramsey Theory: study monochromatic subsets.
@ Anti-Ramsey Theory: study rainbow subsets.
@ Zero-Sum Ramsey Theory: study zero-sum subsets.

When bounded discrepancy (that is,

> xeu f(x)]) implies

the existence of a zero-sum substructure?
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For example

R it

f:[n —{-1,1}

Q1: Is it true that every (sufficiently large) bounded discrepancy
{—1, 1}-sequence contains a zero-sum arithmetic progression?
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For example

R it

f:[n —{-1,1}

Q1: Is it true that every (sufficiently large) bounded discrepancy
{—1, 1}-sequence contains a zero-sum arithmetic progression?

Yes!

18/29



Zero-sum k-blocks

Theorem (Caro, Hansberg, M, 2019)

Let t, k and q be integers such that ¢ > 0, 0 < t < k, and t = k (mod 2),
and take s € [0, t + 1] as the unique integer satisfying
s = q+ =2 (mod (t + 2)). Then, for any integer

1 5 g—s t

> k— =
"oy T Tt

and any function f : [n] — {—1,1} with |f([n])| < q, there is a k-block
B C [n] with |f(B)| < t.
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Zero-sum squares in {—1, 1}—matrices

Foln] x [n] = {~1,1}

Q2: Is it true that every (sufficiently large) bounded discrepancy
{—1,1}-matrix contains a zero-sum square?
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Zero-sum squares in {—1, 1}—matrices
fon] % [n] — {~1,1}

Q2: Is it true that every (sufficiently large) bounded discrepancy
{—1, 1}-matrix contains a zero-sum square?
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Zero-sum squares in {—1, 1}—matrices
f:[n] x[n] —{-1,1}

Q2: Is it true that every (sufficiently large) bounded discrepancy
{—1,1}-matrix contains a zero-sum square?
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With computing assistance we observe that

for 5 < n <11, every n x n non-triangular {—1, 1}-matrix M with J

disc(M)< n contains a zero-sum square.

s
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Theorem (Arévalo, Roldan-Pensado, M, 202+)

Let n > 5. Every n x n non-diagonal {—1,1}-matrix M with disc(M) < n
contains a zero-sum square.
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Theorem (Arévalo, Roldan-Pensado, M, 202+)

Let n > 5. Every n x n non-diagonal {—1,1}-matrix M with disc(M) < n
contains a zero-sum square.

—t 3 —t -2 —

Theorem (Arévalo, Roldan-Pensado, M, 202+)

Let n>5and m € {n,n+ 1}. Every n x m non-diagonal {—1, 1}-matrix

M with disc(M) < n contains a zero-sum square. e s




Open problems

@ Other ranges, other shapes, larger dimension, etc.
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Open problems

@ Other ranges, other shapes, larger dimension, etc.

For 5 < n <11, these are all examples (up to symmetries) of n x n and
n x (n+ 1) non-triangular zero-sum-square-free {—1, 1}-matrices M with

disc(M)< 2n.
bl R G
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Open problems

@ Other ranges, other shapes, larger dimension, etc.

For 5 < n <11, these are all examples (up to symmetries) of n x n and
n x (n+ 1) non-triangular zero-sum-square-free {—1, 1}-matrices M with

disc(M)< 2n.
bl 33

Conjecture (Arévalo, Rolddn-Pensado, M, 202+)

For every C > 0 there is a integer N such that whenever n > N the
following holds: Every n x n non-diagonal {—1, 1}-matrix M with
disc(M)< Cn contains a zero-sum square.
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Thank you for your attention!!

29/29



