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Affine Grassmannian slices

We study affine Grassmannian slices for a semisimple group G .

Gr = G [t, t−1]/G [t], the affine Grassmannian.

For any coweight µ, a point tµ ∈ Gr

For λ dominant,

Grλ = G∨[[t]]tλ, Grλ = ∪µ≤λGrµ

For µ dominant,

Wµ = G∨1 [t−1]tµ, Wλ
µ = Grλ ∩Wµ

G1[t−1] = ker(G [t, t−1]→ G )

For any coweight µ, Sµ = N−[t, t−1]tµ

Example

If G = SLn, λ = nω1, µ = 0, then Wλ
µ = Nsln
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Properties of these slices

These results are due to Braverman-Finkelberg-Nakajima and
K-Webster-Weekes-Yacobi.

Theorem

1 Wλ
µ is an affine Poisson variety with symplectic singularities,

with symplectic leaves Wν
µ for µ ≤ ν ≤ λ.

2 T acts on Wλ
µ with fixed point tµ and attracting locus

Grλ ∩ Sµ.

3 There is an integrable system Ψ :Wλ
µ → Aρ(λ−µ)

4 Wλ
µ is the Coulomb branch of a quiver gauge theory.

5 The quantization Wλ
µ is a truncated shifted Yangian.

6 Htop(Grλ ∩ Sµ) = V (λ)µ, Htop(Ψ−1(0)) = (C[N]⊗ V (λ))µ
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Non dominant µ

If µ is not dominant, then Wλ
µ requires a more complicated

definition, due to Bullimore-Dimofte-Gaiotto.

Wµ = U1[t−1]T1[t−1]tµU−,1[t−1] ⊂ G1[t, t−1] (1)

Wλ
µ = G [t]tλG [t] ∩Wµ (2)

We can even take λ = 0 and get

W0
−ν = { based maps P1 → G/B of degree ν }

Simplest case

W0
−αi

= T ∗C× Y 0
−αi

= D(C×)
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Properties of generalized slices

Theorem [BFN, KWWY, Muthiah, Krylov, Zhou]

1 Wλ
µ is an affine Poisson variety with symplectic singularities,

the symplectic leaves are Wν
µ for µ ≤ ν ≤ λ.

2 T acts on Wλ
µ with fixed point tµ and attracting locus

Grλ ∩ Sµ. (If V (λ)µ 6= 0.)

3 There is an integrable system Ψ :Wλ
µ → Aρ(λ−µ)

4 Wλ
µ is the Coulomb branch of a quiver gauge theory.

5 The quantization Wλ
µ is a truncated shifted Yangian. (No

longer a subquotient of the Yangian)

6 Htop(Grλ ∩ Sµ) = V (λ)µ, Htop(Ψ−1(0)) = (C[N]⊗ V (λ))µ
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Gelfand-Tsetlin and category O modules

The integrable system Ψ :Wλ
µ → Aρ(λ−µ) quantizes to a

polynomial subalgebra of Y λ
µ , which we call the GT subalgebra.

Example

G = SLn, Y nω1
0 = Usln/Z+ which contains the Gelfand-Tsetlin

subalgebra generated by all Z (Uslk), for k = 2, . . . , n − 1.

We study modules for Y λ
µ on which the GT -subalgebra acts locally

finitely and we study category O for Y λ
µ . To describe these

modules we use the KLRW algebra Tλ
µ and its quotient −T

λ
µ .

Theorem [K-Tingley-Webster-Weekes-Yacobi]

There are equivalences

Y λ
µ -GT mod ∼= Tλ

µ -mod

Y λ
µ -Omod ∼= −T

λ
µ -mod
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Corollary

We can compute the number of simple Gelfand-Tsetlin modules for
Usln, solving an open problem studied by Futorny, . . . .

Using transport de structure, we obtain get a categorical action on
categories of modules for truncated shifted Yagnians.

Corollary

For each simple αi , we have a functor

Ei : Y λ
µ -GTmod→ Y λ

µ+αi
-GTmod

categorifying the representation C[N]⊗ V (λ).

Question

How can we describe these functors without using this equivalence?
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Multiplication and Comultiplication

To relate Y λ
µ and Y λ

µ+αi
, we will use multiplication maps

Wµ1 ×Wµ2 →Wµ1+µ2

and comultiplication maps

Yµ1+µ2 → Yµ1 ⊗ Yµ2

introduced by Finkelberg-K-Pham-Rybnikov-Weekes.

We also will use a Ga action on Wµ defined by a · g = xi (a)g .
This action is Hamiltonian with moment map Φi :Wµ → C.
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Hamiltonian reduction for slices

Theorem [K-Pham-Weekes]

1 The multiplication gives an isomorphism

Wλ
µ+αi

×W0
−αi

∼−→ Φ−1
i (C×) ⊂ Wλ

µ

2 There is an isomorphism

Wλ
µ //1 Ga

∼=Wλ
µ+αi

3 The comultiplication gives an isomorphism

Y λ
µ+αi

⊗ Y 0
−αi
∼= Y λ

µ [Φ−1
i ]

Unfortunately, this theorem does not seem to lead to our desired
functor, since this isomorphism does not preserve the integrable
system.
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Higgs and Coulomb branches

G a complex reductive group, V a representation of G .
Physicists define a gauge theory from G ,V and two spaces.

Higgs branch
T ∗V // G = µ−1(0)/G

Coulomb branch, defined by Braverman-Finkelberg-Nakajima

MC (G ,V ) = SpecH∗ (Maps (D ∪D× D, [V /G ]))

We also get a quantization A(G ,V ) of the Coulomb branch
by taking C×-equivariant homology.

Joel Kamnitzer Hamiltonian reduction for affine Grassmannian slices



Quiver gauge theories

Fix a semisimple group GQ and λ, µ as before.
Write λ− µ =

∑
i viαi and λ =

∑
i wiωi

V =
⊕
i→j

Hom(Cvi ,Cvj )⊕
⊕
i

Hom(Cvi ,Cwi )

where the first sum ranges over edges in the Dynkin quiver of GQ .
The Higgs branch T ∗V // G is a Nakajima quiver variety, where
G =

∏
GLvi .

Theorem (B-F-K-Kodera-N-W-W)

The Coulomb branch for this gauge theory is Wλ
µ and we have

A(G ,V ) ∼= Y λ
µ
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Parabolic restriction for Coulomb branches

Fix G ,V as before, and choose any ξ : C× → T ⊂ G . Let Lξ be
the centralizer of the image.
We would like to relate

A(G ,V ) and A(Lξ,V
ξ)

Theorem (KWWY)

There is a functor

A(G ,V )-GTmod→ A(Lξ,V
ξ)-GTmod

defined by a more complicated version of Hamiltonian reduction.
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Application to affine Grassmannian slices

Choose G ,V as above with Mc(G ,V ) =Wλ
µ. Choose

ξ : C× → G =
∏

GLvi using the first fundamental coweight for
GLvi .

Lξ =
∏
j 6=i

GLvj × GLvi−1 × C×

MC (Lξ,V
ξ) =Wλ

µ+αi
×W0

−αi

Theorem

This leads to a functor Y λ
µ -GTmod→ Y λ

µ+αi
-GTmod fitting into a

commutative diagram

Y λ
µ -GTmod Tλ

µ -mod

Y λ
µ+αi

-GTmod Tλ
µ+αi

-mod

∼

Ei

∼
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