Geometric approach to Hitchin components via punctual Hilbert schemes

Alexander Thomas

Université de Strasbourg, Max-Planck Institute Bonn

joint with Vladimir Fock

8th october 2020

Teichmüller theory: classical, higher, super and quantum

Goal

Describe Hitchin components in a geometric way, i.e. as the moduli space of some geometric structure.

In particular, we want to get rid of the fixed complex structure in Hitchin's parametrization.

- Teichmüller space \mathcal{T}^2 is moduli space of various geometric structures (hyperbolic, complex, conformal, ...)
- Hitchin components have representation-theoretic description
- Hitchin parametrization via Higgs bundle theory uses fixed complex structure on surface

We construct a new geometric structure, generalizing the complex structure, called **higher complex structure**.

Goal

Describe Hitchin components in a geometric way, i.e. as the moduli space of some geometric structure.

In particular, we want to get rid of the fixed complex structure in Hitchin's parametrization.

- Teichmüller space \mathcal{T}^2 is moduli space of various geometric structures (hyperbolic, complex, conformal, ...)
- Hitchin components have representation-theoretic description
- Hitchin parametrization via Higgs bundle theory uses fixed complex structure on surface

We construct a new geometric structure, generalizing the complex structure, called **higher complex structure**.

Goal

Describe Hitchin components in a geometric way, i.e. as the moduli space of some geometric structure.

In particular, we want to get rid of the fixed complex structure in Hitchin's parametrization.

- Teichmüller space \mathcal{T}^2 is moduli space of various geometric structures (hyperbolic, complex, conformal, ...)
- Hitchin components have representation-theoretic description
- Hitchin parametrization via Higgs bundle theory uses fixed complex structure on surface

We construct a new geometric structure, generalizing the complex structure, called **higher complex structure**.

Non-abelian Hodge correspondence

Let (V, Φ) be a stable Higgs bundle. Then there is a unique (up to unitary gauge) flat connection D of the form

$$D = hd + \Phi + hA + h^2 \Phi^*$$

where A is a unitary connection. In coordinates: $\Phi = \Phi_1 dz, A = A_1 dz + A_2 d\bar{z}, \Phi^* = \Phi_1^* d\bar{z}$.

Idea

To get rid of the fixed complex structure, we have to allow for $\Phi = \Phi_1 dz + \Phi_2 d\bar{z}$.

Non-abelian Hodge correspondence

Let (V, Φ) be a stable Higgs bundle. Then there is a unique (up to unitary gauge) flat connection D of the form

$$D = hd + \Phi + hA + h^2 \Phi^*$$

where A is a unitary connection. In coordinates: $\Phi = \Phi_1 dz, A = A_1 dz + A_2 d\bar{z}, \Phi^* = \Phi_1^* d\bar{z}$.

ldea

To get rid of the fixed complex structure, we have to allow for $\Phi = \Phi_1 dz + \Phi_2 d\bar{z}$.

To get rid of the fixed complex structure, we have to allow for $\Phi = \Phi_1 dz + \Phi_2 d\bar{z}$.

• Flatness of $D = hd + \Phi + hA + h^2 \Phi^*$ gives

 $[\Phi_1,\Phi_2]=0$

The space of pairs of commuting matrices modulo conjugation is the **punctual Hilbert scheme of the plane**.

To get rid of the fixed complex structure, we have to allow for $\Phi = \Phi_1 dz + \Phi_2 d\bar{z}$.

• Flatness of $D = hd + \Phi + hA + h^2 \Phi^*$ gives

 $[\Phi_1,\Phi_2]=0$

The space of pairs of commuting matrices modulo conjugation is the **punctual Hilbert scheme of the plane**.

To get rid of the fixed complex structure, we have to allow for $\Phi = \Phi_1 dz + \Phi_2 d\bar{z}$.

• Flatness of $D = hd + \Phi + hA + h^2 \Phi^*$ gives

 $[\Phi_1,\Phi_2]=0$

The space of pairs of commuting matrices modulo conjugation is the **punctual Hilbert scheme of the plane**.

To get rid of the fixed complex structure, we have to allow for $\Phi = \Phi_1 dz + \Phi_2 d\bar{z}$.

• Flatness of $D = hd + \Phi + hA + h^2 \Phi^*$ gives

 $[\Phi_1,\Phi_2]=0$

The space of pairs of commuting matrices modulo conjugation is the **punctual Hilbert scheme of the plane**.

Punctual Hilbert scheme

2 Higher complex structures

③ Further developments

- $GL_2(\mathbb{R})$ -action
- "Higher" mapping class group?

2 Higher complex structures

3 Further developments

- $GL_2(\mathbb{R})$ -action
- "Higher" mapping class group?

- Hilbert schemes exist in great generality: they describe all subschemes of a given scheme with some property.
- Example to have in mind: Grassmannian Gr(k, n) is the set of all k-planes in \mathbb{R}^n .

Here, we consider the plane $\mathbb{C}^2 = \text{Spec } \mathbb{C}[x, y]$ and all zero-dimensional subschemes.

- Hilbert schemes exist in great generality: they describe all subschemes of a given scheme with some property.
- Example to have in mind: Grassmannian Gr(k, n) is the set of all k-planes in \mathbb{R}^n .

Here, we consider the plane $\mathbb{C}^2 = \text{Spec } \mathbb{C}[x, y]$ and all zero-dimensional subschemes.

Punctual Hilbert scheme - Introduction

Consider *n* points in the plane \mathbb{C}^2 without order. This is the **configuration space** $(\mathbb{C}^2)^n / S_n$ (where S_n denotes the symmetric group), which is singular.

Consider the n points as an *algebraic variety*. The defining ideal I is of codimension n. The ideal retains more information when several points collapse.

Punctual Hilbert scheme - Introduction

Consider *n* points in the plane \mathbb{C}^2 without order. This is the **configuration space** $(\mathbb{C}^2)^n / S_n$ (where S_n denotes the symmetric group), which is singular.

Consider the n points as an *algebraic variety*. The defining ideal I is of codimension n. The ideal retains more information when several points collapse.

Definition

The **punctual Hilbert scheme of the plane**, denoted by $\text{Hilb}^n(\mathbb{C}^2)$, is the space of all ideals in $\mathbb{C}[x, y]$ of codimension *n*:

 $\operatorname{Hilb}^{n}(\mathbb{C}^{2}) = \{I \text{ ideal in } \mathbb{C}[x, y] \mid \dim \mathbb{C}[x, y]/I = n\}.$

The **zero-fiber** $\text{Hilb}_0^n(\mathbb{C}^2)$ consists of those ideals which are supported at the origin.

Theorem (Fogarty-Grothendieck, Haiman)

The punctual Hilbert scheme Hilbⁿ (\mathbb{C}^2) is a smooth algebraic variety of dimension 2n. It is a desingularization of the configuration space.

Definition

The **punctual Hilbert scheme of the plane**, denoted by $\text{Hilb}^n(\mathbb{C}^2)$, is the space of all ideals in $\mathbb{C}[x, y]$ of codimension *n*:

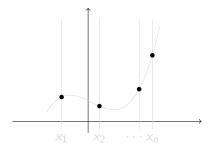
 $\operatorname{Hilb}^{n}(\mathbb{C}^{2}) = \{I \text{ ideal in } \mathbb{C}[x, y] \mid \dim \mathbb{C}[x, y]/I = n\}.$

The **zero-fiber** $\text{Hilb}_0^n(\mathbb{C}^2)$ consists of those ideals which are supported at the origin.

Theorem (Fogarty-Grothendieck, Haiman)

The punctual Hilbert scheme $Hilb^n(\mathbb{C}^2)$ is a smooth algebraic variety of dimension 2n. It is a desingularization of the configuration space.

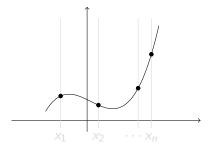
Consider *n* generic points in \mathbb{C}^2 .



There is a Lagrange interpolation polynomial y = Q(x). Further we have $P(x) = \prod_{i} (x - x_i) = 0$ on our points. Thus:

$$I = \langle -x^{n} + t_{1}x^{n-1} + t_{2}x^{n-2} + \dots + t_{n}, -y + \mu_{1} + \mu_{2}x + \dots + \mu_{n}x^{n-1} \rangle.$$

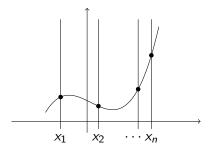
Consider *n* generic points in \mathbb{C}^2 .



There is a Lagrange interpolation polynomial y = Q(x). Further we have $P(x) = \prod_{i} (x - x_i) = 0$ on our points. Thus:

 $I = \langle -x^{n} + t_{1}x^{n-1} + t_{2}x^{n-2} + \dots + t_{n}, -y + \mu_{1} + \mu_{2}x + \dots + \mu_{n}x^{n-1} \rangle.$

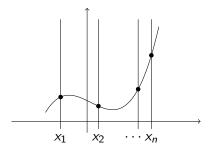
Consider *n* generic points in \mathbb{C}^2 .



There is a Lagrange interpolation polynomial y = Q(x). Further we have $P(x) = \prod_i (x - x_i) = 0$ on our points. Thus:

 $I = \langle -x^{n} + t_{1}x^{n-1} + t_{2}x^{n-2} + \dots + t_{n}, -y + \mu_{1} + \mu_{2}x + \dots + \mu_{n}x^{n-1} \rangle.$

Consider *n* generic points in \mathbb{C}^2 .

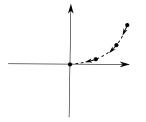


There is a Lagrange interpolation polynomial y = Q(x). Further we have $P(x) = \prod_i (x - x_i) = 0$ on our points. Thus:

$$I = \langle -x^{n} + t_{1}x^{n-1} + t_{2}x^{n-2} + \dots + t_{n}, -y + \mu_{1} + \mu_{2}x + \dots + \mu_{n}x^{n-1} \rangle.$$

For the zero-fiber we have $P(x) = x^n$ and $\mu_1 = 0$:

$$I = \langle x^n, -y + \mu_2 x + \dots + \mu_n x^{n-1} \rangle.$$



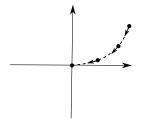
Roughly speaking: the zero-fiber describes jets of curves at the origin.

In particular:

$$\mathsf{Hilb}_0^2(\mathbb{C}^2) = \mathbb{C}P^1$$

For the zero-fiber we have $P(x) = x^n$ and $\mu_1 = 0$:

$$I = \langle x^n, -y + \mu_2 x + \dots + \mu_n x^{n-1} \rangle.$$



Roughly speaking: the zero-fiber describes jets of curves at the origin.

In particular:

$$\mathsf{Hilb}_0^2(\mathbb{C}^2) = \mathbb{C}P^1$$

Given a pair of commuting matrices (A, B), you can *simultaneously trigonalize* them.

$$A \sim \begin{pmatrix} x_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & x_n \end{pmatrix} \text{ and } B \sim \begin{pmatrix} y_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & y_n \end{pmatrix}$$

So we can associate the *n* points (x_i, y_i) . The simultaneous trigonalization is unique up to action by permutation matrices, so we get *n* points up to permutation.

Given a pair of commuting matrices (A, B), you can *simultaneously trigonalize* them.

$$A \sim \begin{pmatrix} x_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & x_n \end{pmatrix} \text{ and } B \sim \begin{pmatrix} y_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & y_n \end{pmatrix}$$

So we can associate the *n* points (x_i, y_i) . The simultaneous trigonalization is unique up to action by permutation matrices, so we get *n* points up to permutation.

 $I \in \mathsf{Hilb}^n(\mathbb{C}^2) \mapsto (M_x, M_y)$ multiplication operators in $\mathbb{C}[x, y]/I$

- M_x and $M_y \in M_n(\mathbb{C})$
- $[M_x, M_y] = 0$
- $\mathbb{C}[x,y]/I$ is generated as $\mathbb{C}[x,y]$ -module by $1\in\mathbb{C}[x,y]/I$

Proposition

$$\mathsf{Hilb}^n(\mathbb{C}^2) \cong \{(A,B) \in \mathfrak{gl}_n^2 \mid [A,B] = 0, (A,B) \text{ admits cyclic vector}\} / \mathsf{GL}_n$$

Converse direction:

$$(A,B)\mapsto I=\{P\in\mathbb{C}[x,y]\mid P(A,B)=0\}$$

Remark

The zero-fiber $\mathsf{Hilb}_0^n(\mathbb{C}^2)$ consists of pairs of nilpotent matrices.

Alexander Thomas (MPI Bonn)

 $I \in \mathsf{Hilb}^n(\mathbb{C}^2) \mapsto (M_x, M_y)$ multiplication operators in $\mathbb{C}[x, y]/I$

- M_x and $M_y \in M_n(\mathbb{C})$
- $[M_x, M_y] = 0$
- $\mathbb{C}[x,y]/I$ is generated as $\mathbb{C}[x,y]$ -module by $1\in\mathbb{C}[x,y]/I$

Proposition

 $\mathsf{Hilb}^n(\mathbb{C}^2) \cong \{(A,B) \in \mathfrak{gl}_n^2 \mid [A,B] = 0, (A,B) \text{ admits cyclic vector}\} / \mathsf{GL}_n$

Converse direction:

$$(A,B)\mapsto I=\{P\in\mathbb{C}[x,y]\mid P(A,B)=0\}$$

Remark

The zero-fiber $\mathsf{Hilb}_0^n(\mathbb{C}^2)$ consists of pairs of nilpotent matrices.

Alexander Thomas (MPI Bonn)

 $I \in \mathsf{Hilb}^n(\mathbb{C}^2) \mapsto (M_x, M_y)$ multiplication operators in $\mathbb{C}[x, y]/I$

- M_x and $M_y \in M_n(\mathbb{C})$
- $[M_x, M_y] = 0$
- $\mathbb{C}[x,y]/I$ is generated as $\mathbb{C}[x,y]$ -module by $1\in\mathbb{C}[x,y]/I$

Proposition

$$\mathsf{Hilb}^n(\mathbb{C}^2) \cong \{(A,B) \in \mathfrak{gl}^2_n \mid [A,B] = 0, (A,B) \text{ admits cyclic vector}\} / \mathsf{GL}_n$$

Converse direction:

$$(A,B)\mapsto I=\{P\in\mathbb{C}[x,y]\mid P(A,B)=0\}$$

Remark

The zero-fiber $\mathsf{Hilb}_0^n(\mathbb{C}^2)$ consists of pairs of nilpotent matrices.

 $I \in \mathsf{Hilb}^n(\mathbb{C}^2) \mapsto (M_x, M_y)$ multiplication operators in $\mathbb{C}[x, y]/I$

- M_x and $M_y \in M_n(\mathbb{C})$
- $[M_x, M_y] = 0$
- $\mathbb{C}[x,y]/I$ is generated as $\mathbb{C}[x,y]$ -module by $1\in\mathbb{C}[x,y]/I$

Proposition

$$\mathsf{Hilb}^n(\mathbb{C}^2) \cong \{(A,B) \in \mathfrak{gl}_n^2 \mid [A,B] = 0, (A,B) \text{ admits cyclic vector}\} / \mathsf{GL}_n$$

Converse direction:

$$(A,B)\mapsto I=\{P\in\mathbb{C}[x,y]\mid P(A,B)=0\}$$

Remark

The zero-fiber $\text{Hilb}_0^n(\mathbb{C}^2)$ consists of pairs of nilpotent matrices.

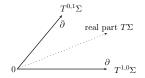
Alexander Thomas (MPI Bonn)

3 Further developments

- $GL_2(\mathbb{R})$ -action
- "Higher" mapping class group?

 Σ : smooth closed surface of genus $g \ge 2$

Complex structure = decomposition $T^{\mathbb{C}}\Sigma = T^{(1,0)}\Sigma \oplus T^{(0,1)}\Sigma$

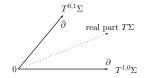


Since $T^{(1,0)}\Sigma = \overline{T^{(0,1)}\Sigma}$, we get

Complex structure = section of $\mathbb{P}(T^{\mathbb{C}}\Sigma)$ = section of Hilb₀²($T^{\mathbb{C}}\Sigma$) (+ reality constraint)

 Σ : smooth closed surface of genus $g \ge 2$

Complex structure = decomposition $T^{\mathbb{C}}\Sigma = T^{(1,0)}\Sigma \oplus T^{(0,1)}\Sigma$

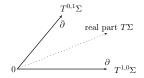


Since $T^{(1,0)}\Sigma = \overline{T^{(0,1)}\Sigma}$, we get

Complex structure = section of $\mathbb{P}(\mathcal{T}^{\mathbb{C}}\Sigma)$ = section of $\operatorname{Hilb}_{0}^{2}(\mathcal{T}^{\mathbb{C}}\Sigma)$ (+ reality constraint)

 Σ : smooth closed surface of genus $g \ge 2$

Complex structure = decomposition $T^{\mathbb{C}}\Sigma = T^{(1,0)}\Sigma \oplus T^{(0,1)}\Sigma$

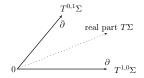


Since $T^{(1,0)}\Sigma = \overline{T^{(0,1)}\Sigma}$, we get

Complex structure = section of $\mathbb{P}(T^{\mathbb{C}}\Sigma)$ = section of Hilb₀²($T^{\mathbb{C}}\Sigma$) (+ reality constraint)

 Σ : smooth closed surface of genus $g \ge 2$

Complex structure = decomposition $T^{\mathbb{C}}\Sigma = T^{(1,0)}\Sigma \oplus T^{(0,1)}\Sigma$



Since $T^{(1,0)}\Sigma = \overline{T^{(0,1)}\Sigma}$, we get

Complex structure = section of $\mathbb{P}(T^{\mathbb{C}}\Sigma)$ = section of $Hilb_0^2(T^{\mathbb{C}}\Sigma)$ (+ reality constraint)

Definition

A higher complex structure of order *n* on a surface Σ , in short **n-complex structure**, is a section *I* of $\operatorname{Hilb}_{0}^{n}(T^{*\mathbb{C}}\Sigma)$ such that at each point $z \in \Sigma$ the sum $I(z) + \overline{I}(z)$ is the maximal ideal supported at the origin of $T_{z}^{*\mathbb{C}}\Sigma$.

Notation:

- reference complex structure (z, \bar{z}) on Σ
- linear coordinates (p, \bar{p}) on $T^{*\mathbb{C}}\Sigma$

Locally we can write:

$$I(z,\bar{z}) = \langle p^{n}, -\bar{p} + \mu_{2}(z,\bar{z})p + \mu_{3}(z,\bar{z})p^{2} + \dots + \mu_{n}(z,\bar{z})p^{n-1} \rangle$$

where $\mu_2, \mu_3, ..., \mu_n$ are called **higher Beltrami differentials**.

A higher complex structure of order *n* on a surface Σ , in short **n-complex structure**, is a section *I* of $\operatorname{Hilb}_{0}^{n}(T^{*\mathbb{C}}\Sigma)$ such that at each point $z \in \Sigma$ the sum $I(z) + \overline{I}(z)$ is the maximal ideal supported at the origin of $T_{z}^{*\mathbb{C}}\Sigma$.

Notation:

- reference complex structure (z, \bar{z}) on Σ
- linear coordinates (p, \bar{p}) on $T^{*\mathbb{C}}\Sigma$

Locally we can write:

$$I(z,\bar{z}) = \langle p^{n}, -\bar{p} + \mu_{2}(z,\bar{z})p + \mu_{3}(z,\bar{z})p^{2} + \dots + \mu_{n}(z,\bar{z})p^{n-1} \rangle$$

where $\mu_2, \mu_3, ..., \mu_n$ are called higher Beltrami differentials.

A higher complex structure of order *n* on a surface Σ , in short **n-complex structure**, is a section *I* of $\operatorname{Hilb}_{0}^{n}(T^{*\mathbb{C}}\Sigma)$ such that at each point $z \in \Sigma$ the sum $I(z) + \overline{I}(z)$ is the maximal ideal supported at the origin of $T_{z}^{*\mathbb{C}}\Sigma$.

Notation:

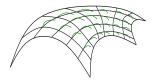
- reference complex structure (z, \bar{z}) on Σ
- linear coordinates (p, \bar{p}) on $T^{*\mathbb{C}}\Sigma$

Locally we can write:

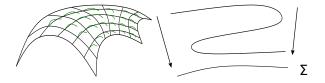
$$I(z,\bar{z}) = \langle p^{n}, -\bar{p} + \mu_{2}(z,\bar{z})p + \mu_{3}(z,\bar{z})p^{2} + ... + \mu_{n}(z,\bar{z})p^{n-1} \rangle$$

where $\mu_2, \mu_3, ..., \mu_n$ are called higher Beltrami differentials.

• as a polynomial curve in the cotangent fiber attached to each point of the surface ("hairy" surface)



- as a polynomial curve in the cotangent fiber attached to each point of the surface ("hairy" surface)
- as the collapse of a *n*-fold cover to the zero-section, or as the (*n*−1)-jet of a complex surface along the zero-section inside *T*^{*C}Σ



- as a polynomial curve in the cotangent fiber attached to each point of the surface ("hairy" surface)
- as the collapse of a *n*-fold cover to the zero-section, or as the (*n*−1)-jet of a complex surface along the zero-section inside *T*^{*C}Σ
- as a matrix-valued 1-form locally written as Φ₁(z, z̄)dz + Φ₂(z, z̄)dz̄ with (Φ₁, Φ₂) commuting nilpotent matrices

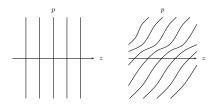
Higher complex structures - Higher diffeomorphisms

To get a finite-dimensional moduli space, we need more than diffeomorphisms of Σ :

To get a finite-dimensional moduli space, we need more than diffeomorphisms of $\boldsymbol{\Sigma}:$

Definition

A higher diffeomorphism of a surface Σ is a hamiltonian diffeomorphism of $T^*\Sigma$ preserving the zero-section $\Sigma \subset T^*\Sigma$ setwise. The group of higher diffeomorphisms is denoted by $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$.



Higher complex structures - Local theory

• $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$ acts on sections of $T^{*\mathbb{C}}\Sigma$, so on $\operatorname{Hilb}_0^n(T^{*\mathbb{C}}\Sigma)$

• action on generators: $I = \langle P, Q \rangle$ Hamiltonian H (function on $T^*\Sigma$) acts by

 $\delta P = \{H, P\} \mod I$ $\delta Q = \{H, Q\} \mod I$

Theorem (Fock, T., 2016)

Any two higher complex structures are locally equivalent under higher diffeomorphisms.

- $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$ acts on sections of $T^{*\mathbb{C}}\Sigma$, so on $\operatorname{Hilb}_0^n(T^{*\mathbb{C}}\Sigma)$
- action on generators: $I = \langle P, Q \rangle$ Hamiltonian H (function on $T^*\Sigma$) acts by

$$\delta P = \{H, P\} \mod I$$
$$\delta Q = \{H, Q\} \mod I$$

Theorem (Fock, T., 2016)

Any two higher complex structures are locally equivalent under higher diffeomorphisms.

- $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$ acts on sections of $T^{*\mathbb{C}}\Sigma$, so on $\operatorname{Hilb}_0^n(T^{*\mathbb{C}}\Sigma)$
- action on generators: $I = \langle P, Q \rangle$ Hamiltonian H (function on $T^*\Sigma$) acts by

$$\delta P = \{H, P\} \mod I$$
$$\delta Q = \{H, Q\} \mod I$$

Theorem (Fock, T., 2016)

Any two higher complex structures are locally equivalent under higher diffeomorphisms.

The **moduli space of higher complex structures**, denoted by $\hat{\mathcal{T}}^n$, is the space of all *n*-complex structures modulo higher diffeomorphisms.

Theorem (Fock, T., 2016)

The moduli space $\hat{\mathcal{T}}^n$ has the following properties:

- Contractible manifold of complex dimension $(n^2 1)(g 1)$,
- Forgetful map: $\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$,
- Copy of Teichmüller space: $\mathcal{T}^2 \hookrightarrow \hat{\mathcal{T}}^n$,
- Cotangent space for $\mu \in \mathcal{T}^2$: $T^*_{\mu}\hat{\mathcal{T}}^n = \bigoplus_{m=2}^n H^0(K^m)$,
- Mapping class group invariant complex structure.

The **moduli space of higher complex structures**, denoted by $\hat{\mathcal{T}}^n$, is the space of all *n*-complex structures modulo higher diffeomorphisms.

Theorem (Fock, T., 2016)

The moduli space $\hat{\mathcal{T}}^n$ has the following properties:

• Contractible manifold of complex dimension $(n^2 - 1)(g - 1)$,

• Forgetful map: $\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$,

- Copy of Teichmüller space: $\mathcal{T}^2 \hookrightarrow \hat{\mathcal{T}}^n$,
- Cotangent space for $\mu \in \mathcal{T}^2$: $T^*_{\mu} \hat{\mathcal{T}}^n = \bigoplus_{m=2}^n H^0(K^m)$,

The **moduli space of higher complex structures**, denoted by $\hat{\mathcal{T}}^n$, is the space of all *n*-complex structures modulo higher diffeomorphisms.

Theorem (Fock, T., 2016)

The moduli space $\hat{\mathcal{T}}^n$ has the following properties:

- Contractible manifold of complex dimension $(n^2 1)(g 1)$,
- Forgetful map: $\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$,
- Copy of Teichmüller space: $\mathcal{T}^2 \hookrightarrow \hat{\mathcal{T}}^n$,
- Cotangent space for $\mu \in \mathcal{T}^2$: $T^*_{\mu} \hat{\mathcal{T}}^n = \bigoplus_{m=2}^n H^0(K^m)$,

The **moduli space of higher complex structures**, denoted by $\hat{\mathcal{T}}^n$, is the space of all *n*-complex structures modulo higher diffeomorphisms.

Theorem (Fock, T., 2016)

The moduli space $\hat{\mathcal{T}}^n$ has the following properties:

- Contractible manifold of complex dimension $(n^2 1)(g 1)$,
- Forgetful map: $\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$,
- Copy of Teichmüller space: $\mathcal{T}^2 \hookrightarrow \hat{\mathcal{T}}^n$,
- Cotangent space for $\mu \in \mathcal{T}^2$: $T^*_{\mu} \hat{\mathcal{T}}^n = \bigoplus_{m=2}^n H^0(K^m)$,

The **moduli space of higher complex structures**, denoted by $\hat{\mathcal{T}}^n$, is the space of all *n*-complex structures modulo higher diffeomorphisms.

Theorem (Fock, T., 2016)

The moduli space $\hat{\mathcal{T}}^n$ has the following properties:

- Contractible manifold of complex dimension $(n^2 1)(g 1)$,
- Forgetful map: $\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$,
- Copy of Teichmüller space: $\mathcal{T}^2 \hookrightarrow \hat{\mathcal{T}}^n$,
- Cotangent space for $\mu \in \mathcal{T}^2$: $T^*_{\mu}\hat{\mathcal{T}}^n = \bigoplus_{m=2}^n H^0(K^m)$,

The **moduli space of higher complex structures**, denoted by $\hat{\mathcal{T}}^n$, is the space of all *n*-complex structures modulo higher diffeomorphisms.

Theorem (Fock, T., 2016)

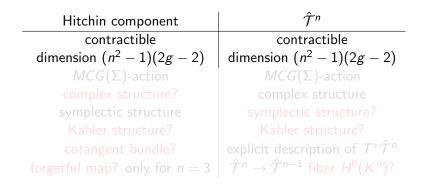
The moduli space $\hat{\mathcal{T}}^n$ has the following properties:

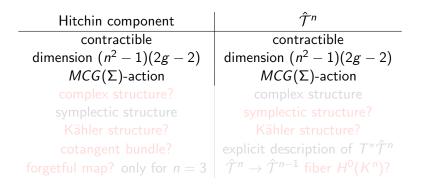
- Contractible manifold of complex dimension $(n^2 1)(g 1)$,
- Forgetful map: $\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$,
- Copy of Teichmüller space: $\mathcal{T}^2 \hookrightarrow \hat{\mathcal{T}}^n$,
- Cotangent space for $\mu \in \mathcal{T}^2$: $T^*_{\mu}\hat{\mathcal{T}}^n = \bigoplus_{m=2}^n H^0(K^m)$,
- Mapping class group invariant complex structure.

Our moduli space $\hat{\mathcal{T}}^n$ is canonically diffeomorphic to Hitchin's component.

Hitchin component $\hat{\mathcal{T}}^n$ contractiblecontractibledimension $(n^2 - 1)(2g - 2)$ dimension $(n^2 - 1)(2g - 2)$ $MCG(\Sigma)$ -action $MCG(\Sigma)$ -actioncomplex structure?complex structuresymplectic structuresymplectic structure?Kähler structure?Kähler structure?cotangent bundle?explicit description of $T^*\hat{\mathcal{T}}^n$ forgetful map? only for n = 3 $\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$ fiber $H^0(K^n)$?

Hitchin component	$\hat{\mathcal{T}}^n$
contractible	contractible
dimension $(n^2 - 1)(2g - 2)$	dimension $(n^2 - 1)(2g - 2)$
$MCG(\Sigma)$ -action	$MCG(\Sigma)$ -action
	complex structure
symplectic structure	
	explicit description of $T^* \hat{\mathcal{T}}^n$
forgetful map? only for $n = 3$	$\hat{\mathcal{T}}^n ightarrow \hat{\mathcal{T}}^{n-1}$ fiber $H^0(K^n)$?





Hitchin component	$\hat{\mathcal{T}}^n$
contractible	contractible
dimension $(n^2-1)(2g-2)$	dimension $(n^2 - 1)(2g - 2)$
$MCG(\Sigma)$ -action	$MCG(\Sigma)$ -action
complex structure?	complex structure
symplectic structure	symplectic structure?
	explicit description of $\mathcal{T}^*\hat{\mathcal{T}}^n$
forgetful map? only for $n = 3$	$\hat{\mathcal{T}}^n ightarrow \hat{\mathcal{T}}^{n-1}$ fiber $H^0(K^n)$?

Hitchin component	$\hat{\mathcal{T}}^n$
contractible	contractible
dimension $(n^2-1)(2g-2)$	dimension $(n^2 - 1)(2g - 2)$
$MCG(\Sigma)$ -action	$MCG(\Sigma)$ -action
complex structure?	complex structure
symplectic structure	symplectic structure?
	Kähler structure?
	explicit description of $\mathcal{T}^*\hat{\mathcal{T}}^n$
forgetful map? only for $n = 3$	$\hat{\mathcal{T}}^n \to \hat{\mathcal{T}}^{n-1}$ fiber $H^0(K^n)$?

Hitchin component	$\hat{\mathcal{T}}^n$
contractible	contractible
dimension $(n^2-1)(2g-2)$	dimension $(n^2 - 1)(2g - 2)$
$MCG(\Sigma)$ -action	$MCG(\Sigma)$ -action
complex structure?	complex structure
symplectic structure	symplectic structure?
Kähler structure?	Kähler structure?
	explicit description of $\mathcal{T}^*\hat{\mathcal{T}}^n$
forgetful map? only for $n = 3$	$\hat{\mathcal{T}}^n ightarrow \hat{\mathcal{T}}^{n-1}$ fiber $H^0(K^n)$?

Hitchin component	$\hat{\mathcal{T}}^n$
contractible	contractible
dimension $(n^2 - 1)(2g - 2)$	dimension $(n^2 - 1)(2g - 2)$
$MCG(\Sigma)$ -action	$MCG(\Sigma)$ -action
complex structure?	complex structure
symplectic structure	symplectic structure?
Kähler structure?	Kähler structure?
cotangent bundle?	explicit description of $\mathcal{T}^*\hat{\mathcal{T}}^n$
forgetful map? only for $n = 3$	$\hat{\mathcal{T}}^n ightarrow \hat{\mathcal{T}}^{n-1}$ fiber $H^0(K^n)$?

Hitchin component	$\hat{\mathcal{T}}^n$
contractible	contractible
dimension $(n^2 - 1)(2g - 2)$	dimension $(n^2 - 1)(2g - 2)$
$MCG(\Sigma)$ -action	$MCG(\Sigma)$ -action
complex structure?	complex structure
symplectic structure	symplectic structure?
Kähler structure?	Kähler structure?
cotangent bundle?	explicit description of $T^* \hat{\mathcal{T}}^n$
forgetful map? only for $n = 3$	$\hat{\mathcal{T}}^n ightarrow \hat{\mathcal{T}}^{n-1}$ fiber $H^0(K^n)$?

- punctual Hilbert scheme $\operatorname{Hilb}^n(\mathbb{C}^2)$ is symplectic
- zero-fiber ${\rm Hilb}_0^n(\mathbb{C}^2)$ is Lagrangian in the reduced Hilbert scheme ${\rm Hilb}_{red}^n(\mathbb{C}^2)$
 - generically, *n* points with barycenter 0
 - pairs of commuting matrices in \mathfrak{sl}_n
 - typical ideal is of the form

$$\langle -p^n + t_2 p^{n-2} + \dots + t_n, -\bar{p} + \mu_1 + \mu_2 p + \dots + \mu_n p^{n-1} \rangle.$$

Thus, $T^* \operatorname{Hilb}_0^n(\mathbb{C}^2) = T^{normal} \operatorname{Hilb}_0^n(\mathbb{C}^2) \approx \operatorname{Hilb}_{red}^n(\mathbb{C}^2)$.

- punctual Hilbert scheme $\operatorname{Hilb}^n(\mathbb{C}^2)$ is symplectic
- zero-fiber Hilbⁿ₀(\mathbb{C}^2) is Lagrangian in the reduced Hilbert scheme Hilbⁿ_{red}(\mathbb{C}^2)
 - generically, *n* points with barycenter 0
 - pairs of commuting matrices in \mathfrak{sl}_n
 - typical ideal is of the form

$$\langle -p^{n} + t_{2}p^{n-2} + ... + t_{n}, -\bar{p} + \mu_{1} + \mu_{2}p + ... + \mu_{n}p^{n-1} \rangle.$$

Thus, $T^* \operatorname{Hilb}_0^n(\mathbb{C}^2) = T^{normal} \operatorname{Hilb}_0^n(\mathbb{C}^2) \approx \operatorname{Hilb}_{red}^n(\mathbb{C}^2)$.

- punctual Hilbert scheme $\operatorname{Hilb}^n(\mathbb{C}^2)$ is symplectic
- zero-fiber Hilbⁿ₀(\mathbb{C}^2) is Lagrangian in the reduced Hilbert scheme Hilbⁿ_{red}(\mathbb{C}^2)
 - generically, *n* points with barycenter 0
 - pairs of commuting matrices in \mathfrak{sl}_n
 - typical ideal is of the form

$$\langle -p^n + t_2 p^{n-2} + ... + t_n, -\bar{p} + \mu_1 + \mu_2 p + ... + \mu_n p^{n-1} \rangle.$$

Thus, $T^* \operatorname{Hilb}_0^n(\mathbb{C}^2) = T^{normal} \operatorname{Hilb}_0^n(\mathbb{C}^2) \approx \operatorname{Hilb}_{red}^n(\mathbb{C}^2).$

Theorem (Fock, T., 2017)

$$T^*\hat{\mathcal{T}}^n = \left\{ \left[(\mu_2, ..., \mu_n, t_2, ..., t_n) \right] \mid \mu_k \in \Gamma(\mathcal{K}^{1-k} \otimes \bar{\mathcal{K}}), t_k \in \Gamma(\mathcal{K}^k) \text{ and } \forall k \\ (-\bar{\partial} + \mu_2 \partial + k \partial \mu_2) t_k + \sum_{l=1}^{n-k} ((l+k) \partial \mu_{l+2} + (l+1) \mu_{l+2} \partial) t_{k+l} = 0 \right\}$$

Higher holomorphicity condition: for $\mu_k = 0 \ \forall k$ then $\bar{\partial} t_k = 0$.

Theorem (Fock, T., 2017)

$$T^*\hat{\mathcal{T}}^n = \left\{ \left[(\mu_2, ..., \mu_n, t_2, ..., t_n) \right] \mid \mu_k \in \Gamma(\mathcal{K}^{1-k} \otimes \bar{\mathcal{K}}), t_k \in \Gamma(\mathcal{K}^k) \text{ and } \forall k \\ (-\bar{\partial} + \mu_2 \partial + k \partial \mu_2) t_k + \sum_{l=1}^{n-k} ((l+k) \partial \mu_{l+2} + (l+1) \mu_{l+2} \partial) t_{k+l} = 0 \right\}$$

Higher holomorphicity condition: for $\mu_k = 0 \ \forall k$ then $\bar{\partial} t_k = 0$.

$$\begin{array}{c|c} \hat{\mathcal{T}}^n & \mathcal{T}^n \subset \operatorname{Rep}(\pi_1(\Sigma), \operatorname{PSL}_n(\mathbb{R})) & \operatorname{Hitchin \ section} \\ \cap & \cap \\ \mathcal{T}^* \hat{\mathcal{T}}^n & \operatorname{Rep}(\pi_1(\Sigma), \operatorname{PSL}_n(\mathbb{C})) & \mathcal{M}_{Higgs}(\operatorname{SL}_n(\mathbb{C})) \end{array}$$

Deform coordinates (μ_i, t_i) of $\mathcal{T}^* \hat{\mathcal{T}}^n$ into $(\hat{\mu}_i(h), \hat{t}_i(h))$ with

$$\hat{\mu}_i(h) = \mu_i + \mathcal{O}(h)$$
 and $\hat{t}_i(h) = ht_i + \mathcal{O}(h^2)$

such that we get a *flat* connection of the form

$$\begin{pmatrix} & & \hat{t}_n \\ 1 & & \vdots \\ & \ddots & & \hat{t}_2 \\ & & 1 & 0 \end{pmatrix} dz + \begin{pmatrix} \hat{\mu}_1(h) & * & * & * \\ \hat{\mu}_2(h) & * & * & * \\ \vdots & * & * & * \\ \hat{\mu}_n(h) & * & * & * \end{pmatrix} d\bar{z}.$$

$$\begin{array}{c|c} \hat{\mathcal{T}}^n & \mathcal{T}^n \subset \operatorname{Rep}(\pi_1(\Sigma), \operatorname{PSL}_n(\mathbb{R})) & \operatorname{Hitchin \ section} \\ \cap & \cap & \cap \\ \mathcal{T}^* \hat{\mathcal{T}}^n & \operatorname{Rep}(\pi_1(\Sigma), \operatorname{PSL}_n(\mathbb{C})) & \mathcal{M}_{Higgs}(\operatorname{SL}_n(\mathbb{C})) \end{array}$$

Deform coordinates (μ_i, t_i) of $\mathcal{T}^* \hat{\mathcal{T}}^n$ into $(\hat{\mu}_i(h), \hat{t}_i(h))$ with

$$\hat{\mu}_i(h) = \mu_i + \mathcal{O}(h)$$
 and $\hat{t}_i(h) = ht_i + \mathcal{O}(h^2)$

such that we get a *flat* connection of the form

$$\begin{pmatrix} & & \hat{t}_n \\ 1 & & \vdots \\ & \ddots & & \hat{t}_2 \\ & & 1 & 0 \end{pmatrix} dz + \begin{pmatrix} \hat{\mu}_1(h) & * & * & * \\ \hat{\mu}_2(h) & * & * & * \\ \vdots & * & * & * \\ \hat{\mu}_n(h) & * & * & * \end{pmatrix} d\bar{z}.$$

$$\begin{array}{c|c} \hat{\mathcal{T}}^n & \mathcal{T}^n \subset \operatorname{Rep}(\pi_1(\Sigma), \operatorname{PSL}_n(\mathbb{R})) & \operatorname{Hitchin \ section} \\ \cap & \cap & \cap \\ \mathcal{T}^* \hat{\mathcal{T}}^n & \operatorname{Rep}(\pi_1(\Sigma), \operatorname{PSL}_n(\mathbb{C})) & \mathcal{M}_{Higgs}(\operatorname{SL}_n(\mathbb{C})) \end{array}$$

Deform coordinates (μ_i, t_i) of $T^* \hat{T}^n$ into $(\hat{\mu}_i(h), \hat{t}_i(h))$ with

$$\hat{\mu}_i(h) = \mu_i + \mathcal{O}(h)$$
 and $\hat{t}_i(h) = ht_i + \mathcal{O}(h^2)$

such that we get a *flat* connection of the form

$$egin{pmatrix} & & & \hat{t}_n \ 1 & & & \vdots \ & \ddots & & \hat{t}_2 \ & & & 1 & 0 \ \end{pmatrix} dz + egin{pmatrix} \hat{\mu}_1(h) & * & * & * \ \hat{\mu}_2(h) & * & * & * \ \hat{\mu}_2(h) & * & * & * \ \vdots & * & * & * \ \hat{\mu}_n(h) & * & * & * \end{pmatrix} dar{z}.$$

Flat connection

$$\begin{pmatrix} & & \hat{t}_n(h) \\ 1 & & \vdots \\ & \ddots & \hat{t}_2(h) \\ & & 1 & 0 \end{pmatrix} dz + \begin{pmatrix} \hat{\mu}_1(h) & * & * & * \\ \hat{\mu}_2(h) & * & * & * \\ \vdots & * & * & * \\ \hat{\mu}_n(h) & * & * & * \end{pmatrix} d\bar{z}.$$

- This connection is gauge-equivalent to a connection of the form $\Phi + hA + h^2 \Phi^*$.
- For $t_i = 0$ for all i = 2, ..., n, we get real monodromy.

Conjecture

The deformation $(\hat{\mu}_i(h), \hat{t}_i(h))$ is canonically determined by $(\mu_i, t_i).$

Flat connection

$$\begin{pmatrix} & & \hat{t}_n(h) \\ 1 & & \vdots \\ & \ddots & \hat{t}_2(h) \\ & & 1 & 0 \end{pmatrix} dz + \begin{pmatrix} \hat{\mu}_1(h) & * & * & * \\ \hat{\mu}_2(h) & * & * & * \\ \vdots & * & * & * \\ \hat{\mu}_n(h) & * & * & * \end{pmatrix} d\bar{z}.$$

- This connection is gauge-equivalent to a connection of the form $\Phi + hA + h^2 \Phi^*$.
- For $t_i = 0$ for all i = 2, ..., n, we get real monodromy.

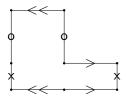
Conjecture

The deformation $(\hat{\mu}_i(h), \hat{t}_i(h))$ is canonically determined by (μ_i, t_i) .

③ Further developments

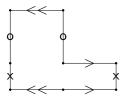
- $GL_2(\mathbb{R})$ -action
- "Higher" mapping class group?

 T^*T^2 is the space of **half-translation surfaces**. Indeed, $t \in H^0(K^2)$ gives a chart by



Natural $GL_2(\mathbb{R})$ -action on space of polygons, so on $T^*\mathcal{T}^2$.

 T^*T^2 is the space of **half-translation surfaces**. Indeed, $t \in H^0(K^2)$ gives a chart by



Natural $GL_2(\mathbb{R})$ -action on space of polygons, so on $T^*\mathcal{T}^2$.

$\mathsf{GL}_2(\mathbb{R})$ -action

Proposition

There is a $GL_2(\mathbb{R})$ -action on $T^*\hat{\mathcal{T}}^n$.

Recall that the coordinates on $\mathcal{T}^* \hat{\mathcal{T}}^n$ are given by

$$x^{n} = t_{2}x^{n-2} + \dots + t_{n-1}x + t_{n}$$

$$y = \mu_{1} + \mu_{2}x + \dots + \mu_{n}x^{n-1}.$$

$$\mathsf{GL}_2(\mathbb{R}) \cong \left\{ \begin{pmatrix} a & \bar{b} \\ b & \bar{a} \end{pmatrix} \mid a\bar{a} - b\bar{b} \neq 0 \right\}$$

A matrix $\begin{pmatrix} a & \bar{b} \\ b & \bar{a} \end{pmatrix}$ induces the action:

$$\begin{aligned} x \mapsto x' &= ax + \bar{b}\bar{y} \\ y \mapsto y' &= \bar{b}\bar{x} + ay. \end{aligned}$$

$\mathsf{GL}_2(\mathbb{R})$ -action

Proposition

There is a $GL_2(\mathbb{R})$ -action on $T^*\hat{\mathcal{T}}^n$.

Recall that the coordinates on $\mathcal{T}^* \hat{\mathcal{T}}^n$ are given by

$$x^{n} = t_{2}x^{n-2} + \dots + t_{n-1}x + t_{n}$$

$$y = \mu_{1} + \mu_{2}x + \dots + \mu_{n}x^{n-1}.$$

$$\operatorname{GL}_2(\mathbb{R}) \cong \left\{ \begin{pmatrix} a & \bar{b} \\ b & \bar{a} \end{pmatrix} \mid a\bar{a} - b\bar{b} \neq 0 \right\}$$

A matrix $\begin{pmatrix} a & \bar{b} \\ b & \bar{a} \end{pmatrix}$ induces the action:

$$\begin{aligned} x \mapsto x' &= ax + \bar{b}\bar{y} \\ y \mapsto y' &= \bar{b}\bar{x} + ay. \end{aligned}$$

$\mathsf{GL}_2(\mathbb{R})$ -action

Proposition

There is a $GL_2(\mathbb{R})$ -action on $T^*\hat{\mathcal{T}}^n$.

Recall that the coordinates on $\mathcal{T}^* \hat{\mathcal{T}}^n$ are given by

$$x^{n} = t_{2}x^{n-2} + \dots + t_{n-1}x + t_{n}$$

$$y = \mu_{1} + \mu_{2}x + \dots + \mu_{n}x^{n-1}.$$

$$\mathsf{GL}_2(\mathbb{R})\cong\left\{egin{pmatrix} a&ar{b}\ b&ar{a}\end{pmatrix}\mid aar{a}-bar{b}
eq 0
ight\}$$

A matrix $\begin{pmatrix} a & \bar{b} \\ b & \bar{a} \end{pmatrix}$ induces the action:

$$x \mapsto x' = ax + \bar{b}\bar{y}$$

 $y \mapsto y' = \bar{b}\bar{x} + ay.$

Higher diffeomorphisms act on *n*-complex structures. But even a bigger group acts: the group of symplectomorphisms of $T^*\Sigma$ preserving the zero-section.

Notation:

- $Ham_{\Sigma}(T^*\Sigma) = higher diffeomorphisms$
- Symp_ $\Sigma(\mathcal{T}^*\Sigma)$ = symplectomorphisms preserving the zero-section

Based on work of Ono and Banyaga, we get:

Proposition

The group $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$ is the connected component of the identity of $\operatorname{Symp}_{\Sigma}(T^*\Sigma)$.

Higher diffeomorphisms act on *n*-complex structures. But even a bigger group acts: the group of symplectomorphisms of $T^*\Sigma$ preserving the zero-section.

Notation:

- $Ham_{\Sigma}(T^*\Sigma) = higher diffeomorphisms$
- Symp_ $\Sigma(T^*\Sigma)$ = symplectomorphisms preserving the zero-section

Based on work of Ono and Banyaga, we get:

Proposition

The group $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$ is the connected component of the identity of $\operatorname{Symp}_{\Sigma}(T^*\Sigma)$.

Proposition

The group $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$ is the connected component of the identity of $\operatorname{Symp}_{\Sigma}(T^*\Sigma)$.

Therefore the quotient

$$\operatorname{Symp}_{\Sigma}(T^*\Sigma)/\operatorname{Ham}_{\Sigma}(T^*\Sigma)$$

is a discrete group, and it contains the mapping class group $MCG(\Sigma)$.

Open question

Is this quotient group strictly bigger than $\mathsf{MCG}(\Sigma)$?

Proposition

The group $\operatorname{Ham}_{\Sigma}(T^*\Sigma)$ is the connected component of the identity of $\operatorname{Symp}_{\Sigma}(T^*\Sigma)$.

Therefore the quotient

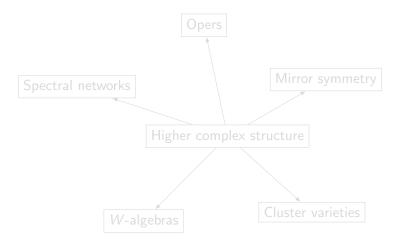
$$\operatorname{Symp}_{\Sigma}(T^*\Sigma)/\operatorname{Ham}_{\Sigma}(T^*\Sigma)$$

is a discrete group, and it contains the mapping class group $MCG(\Sigma)$.

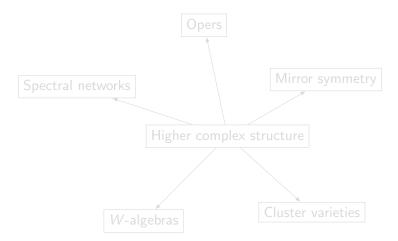
Open question

Is this quotient group strictly bigger than $MCG(\Sigma)$?

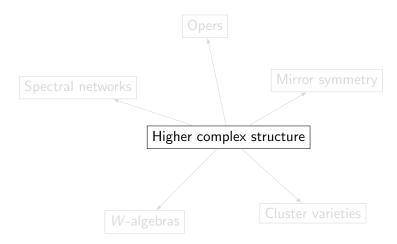
- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- g-Hilbert scheme, leading to g-complex structure



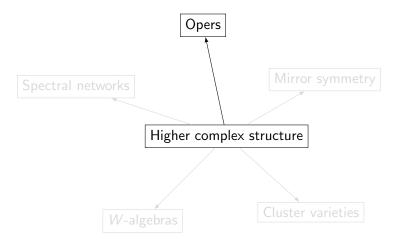
- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- $\bullet~\mathfrak{g}\text{-Hilbert}$ scheme, leading to $\mathfrak{g}\text{-complex}$ structure



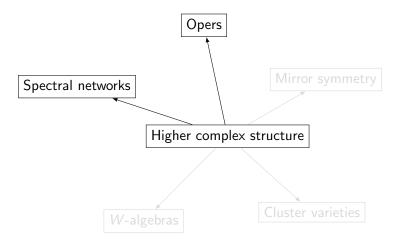
- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- $\bullet~\mathfrak{g}\text{-Hilbert}$ scheme, leading to $\mathfrak{g}\text{-complex}$ structure



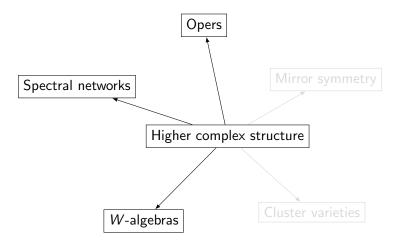
- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- \mathfrak{g} -Hilbert scheme, leading to \mathfrak{g} -complex structure



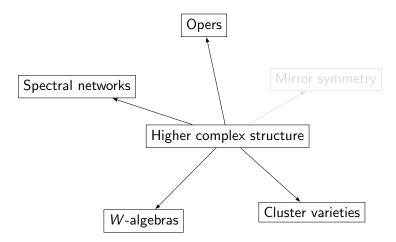
- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- \mathfrak{g} -Hilbert scheme, leading to \mathfrak{g} -complex structure



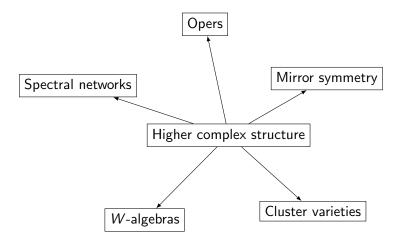
- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- \mathfrak{g} -Hilbert scheme, leading to \mathfrak{g} -complex structure



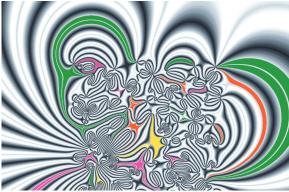
- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- \mathfrak{g} -Hilbert scheme, leading to \mathfrak{g} -complex structure



- Generalization to Lie algebras \mathfrak{g} other than \mathfrak{sl}_n :
- \mathfrak{g} -Hilbert scheme, leading to \mathfrak{g} -complex structure



Thank you for your attention!



The way to understanding is long and wiggly...

Image sources: maths calendar "Complex beauties". Just click on the images!