
Geometric approach to Hitchin components via
punctual Hilbert schemes

Alexander Thomas
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Motivation

Goal

Describe Hitchin components in a geometric way, i.e. as the moduli space
of some geometric structure.
In particular, we want to get rid of the fixed complex structure in Hitchin’s
parametrization.

Teichmüller space T 2 is moduli space of various geometric structures
(hyperbolic, complex, conformal, ...)

Hitchin components have representation-theoretic description

Hitchin parametrization via Higgs bundle theory uses fixed complex
structure on surface

We construct a new geometric structure, generalizing the complex
structure, called higher complex structure.
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Motivation

Non-abelian Hodge correspondence

Let (V ,Φ) be a stable Higgs bundle. Then there is a unique (up to unitary
gauge) flat connection D of the form

D = hd + Φ + hA + h2Φ∗

where A is a unitary connection.
In coordinates: Φ = Φ1dz ,A = A1dz + A2dz̄ ,Φ

∗ = Φ∗1dz̄ .

Idea

To get rid of the fixed complex structure, we have to allow for
Φ = Φ1dz + Φ2dz̄ .
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Motivation

Idea

To get rid of the fixed complex structure, we have to allow for
Φ = Φ1dz + Φ2dz̄ .

Flatness of D = hd + Φ + hA + h2Φ∗ gives

[Φ1,Φ2] = 0

The space of pairs of commuting matrices modulo conjugation is the
punctual Hilbert scheme of the plane.

Too many parameters, so we impose Φ1 to be regular and nilpotent.
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Plan

1 Punctual Hilbert scheme

2 Higher complex structures

3 Further developments
GL2(R)-action
“Higher” mapping class group?
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Punctual Hilbert scheme - Introduction

Hilbert schemes exist in great generality: they describe all subschemes
of a given scheme with some property.

Example to have in mind: Grassmannian Gr(k , n) is the set of all
k-planes in Rn.

Here, we consider the plane C2 = Spec C[x , y ] and all zero-dimensional
subschemes.
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Punctual Hilbert scheme - Introduction

Consider n points in the plane C2 without order. This is the
configuration space (C2)n/Sn (where Sn denotes the symmetric group),
which is singular.

Consider the n points as an algebraic variety. The defining ideal I is of
codimension n. The ideal retains more information when several points
collapse.
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Punctual Hilbert scheme - Definition

Definition

The punctual Hilbert scheme of the plane, denoted by Hilbn(C2), is
the space of all ideals in C[x , y ] of codimension n:

Hilbn(C2) = {I ideal in C[x , y ] | dimC[x , y ]/I = n}.

The zero-fiber Hilbn
0(C2) consists of those ideals which are supported at

the origin.

Theorem (Fogarty-Grothendieck, Haiman)

The punctual Hilbert scheme Hilbn(C2) is a smooth algebraic variety of
dimension 2n. It is a desingularization of the configuration space.
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Punctual Hilbert scheme - Examples

Consider n generic points in C2.

x1 x2 · · · xn

There is a Lagrange interpolation polynomial y = Q(x). Further we have
P(x) =

∏
i (x − xi ) = 0 on our points. Thus:

I = 〈−xn + t1x
n−1 + t2x

n−2 + ...+ tn,−y + µ1 + µ2x + ...+ µnx
n−1〉.
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Punctual Hilbert scheme - Examples

For the zero-fiber we have P(x) = xn and µ1 = 0:

I = 〈xn,−y + µ2x + ...+ µnx
n−1〉.

Roughly speaking: the zero-fiber describes jets of curves at the origin.

In particular:
Hilb2

0(C2) = CP1
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Punctual Hilbert scheme - Matrix viewpoint

Given a pair of commuting matrices (A,B), you can simultaneously
trigonalize them.

A ∼

x1 ∗ ∗

0
. . . ∗

0 0 xn

 and B ∼

y1 ∗ ∗

0
. . . ∗

0 0 yn


So we can associate the n points (xi , yi ). The simultaneous trigonalization
is unique up to action by permutation matrices, so we get n points up to
permutation.
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Punctual Hilbert scheme - Matrix viewpoint

I ∈ Hilbn(C2) 7→ (Mx ,My ) multiplication operators in C[x , y ]/I

Mx and My ∈ Mn(C)

[Mx ,My ] = 0

C[x , y ]/I is generated as C[x , y ]-module by 1 ∈ C[x , y ]/I

Proposition

Hilbn(C2) ∼= {(A,B) ∈ gl2n | [A,B] = 0, (A,B) admits cyclic vector}/GLn

Converse direction:

(A,B) 7→ I = {P ∈ C[x , y ] | P(A,B) = 0}

Remark

The zero-fiber Hilbn
0(C2) consists of pairs of nilpotent matrices.
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1 Punctual Hilbert scheme

2 Higher complex structures

3 Further developments
GL2(R)-action
“Higher” mapping class group?
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Higher complex structures - Introduction

Σ: smooth closed surface of genus g ≥ 2

Complex structure = decomposition TCΣ = T (1,0)Σ⊕ T (0,1)Σ

∂

∂̄ real part TΣ

T 1,0Σ

T 0,1Σ

0

1

Since T (1,0)Σ = T (0,1)Σ, we get

Complex structure = section of P(TCΣ) = section of Hilb2
0(TCΣ)

(+ reality constraint)

We use T ∗Σ instead of TΣ.
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Higher complex structures - Definition

Definition

A higher complex structure of order n on a surface Σ, in short
n-complex structure, is a section I of Hilbn

0(T ∗CΣ) such that at each
point z ∈ Σ the sum I (z) + I (z) is the maximal ideal supported at the
origin of T ∗Cz Σ.

Notation:

reference complex structure (z , z̄) on Σ

linear coordinates (p, p̄) on T ∗CΣ

Locally we can write:

I (z , z̄) = 〈pn,−p̄ + µ2(z , z̄)p + µ3(z , z̄)p2 + ...+ µn(z , z̄)pn−1〉

where µ2, µ3, ..., µn are called higher Beltrami differentials.
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Higher complex structures - Pictures

Various viewpoints on the higher complex structure:

• as a polynomial curve in the cotangent fiber attached to each point of
the surface (“hairy” surface)

• as the collapse of a n-fold cover to the zero-section, or as the
(n − 1)-jet of a complex surface along the zero-section inside T ∗CΣ

• as a matrix-valued 1-form locally written as Φ1(z , z̄)dz + Φ2(z , z̄)dz̄
with (Φ1,Φ2) commuting nilpotent matrices

Σ

C[x,y]/I

Alexander Thomas (MPI Bonn) Higher complex structures 17 / 32



Higher complex structures - Pictures

Various viewpoints on the higher complex structure:

• as a polynomial curve in the cotangent fiber attached to each point of
the surface (“hairy” surface)

• as the collapse of a n-fold cover to the zero-section, or as the
(n − 1)-jet of a complex surface along the zero-section inside T ∗CΣ

• as a matrix-valued 1-form locally written as Φ1(z , z̄)dz + Φ2(z , z̄)dz̄
with (Φ1,Φ2) commuting nilpotent matrices

Σ

C[x,y]/I

Alexander Thomas (MPI Bonn) Higher complex structures 17 / 32



Higher complex structures - Pictures

Various viewpoints on the higher complex structure:

• as a polynomial curve in the cotangent fiber attached to each point of
the surface (“hairy” surface)

• as the collapse of a n-fold cover to the zero-section, or as the
(n − 1)-jet of a complex surface along the zero-section inside T ∗CΣ

• as a matrix-valued 1-form locally written as Φ1(z , z̄)dz + Φ2(z , z̄)dz̄
with (Φ1,Φ2) commuting nilpotent matrices

Σ

C[x,y]/I

Alexander Thomas (MPI Bonn) Higher complex structures 17 / 32



Higher complex structures - Pictures

Various viewpoints on the higher complex structure:

• as a polynomial curve in the cotangent fiber attached to each point of
the surface (“hairy” surface)

• as the collapse of a n-fold cover to the zero-section, or as the
(n − 1)-jet of a complex surface along the zero-section inside T ∗CΣ

• as a matrix-valued 1-form locally written as Φ1(z , z̄)dz + Φ2(z , z̄)dz̄
with (Φ1,Φ2) commuting nilpotent matrices

Σ

C[x,y]/I

Alexander Thomas (MPI Bonn) Higher complex structures 17 / 32



Higher complex structures - Higher diffeomorphisms

To get a finite-dimensional moduli space, we need more than
diffeomorphisms of Σ:

Definition

A higher diffeomorphism of a surface Σ is a hamiltonian diffeomorphism
of T ∗Σ preserving the zero-section Σ ⊂ T ∗Σ setwise. The group of higher
diffeomorphisms is denoted by HamΣ(T ∗Σ).

z

p

z

p

1
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Higher complex structures - Local theory

HamΣ(T ∗Σ) acts on sections of T ∗CΣ, so on Hilbn
0(T ∗CΣ)

action on generators: I = 〈P,Q〉
Hamiltonian H (function on T ∗Σ) acts by

δP = {H,P} mod I

δQ = {H,Q} mod I

Theorem (Fock, T., 2016)

Any two higher complex structures are locally equivalent under higher
diffeomorphisms.

Alexander Thomas (MPI Bonn) Higher complex structures 19 / 32
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Higher complex structures - Moduli space

Definition

The moduli space of higher complex structures, denoted by T̂ n, is the
space of all n-complex structures modulo higher diffeomorphisms.

Theorem (Fock, T., 2016)

The moduli space T̂ n has the following properties:

Contractible manifold of complex dimension (n2 − 1)(g − 1),

Forgetful map: T̂ n → T̂ n−1,

Copy of Teichmüller space: T 2 ↪→ T̂ n,

Cotangent space for µ ∈ T 2: T ∗µ T̂ n =
⊕n

m=2 H
0(Km),

Mapping class group invariant complex structure.
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Contractible manifold of complex dimension (n2 − 1)(g − 1),

Forgetful map: T̂ n → T̂ n−1,

Copy of Teichmüller space: T 2 ↪→ T̂ n,

Cotangent space for µ ∈ T 2: T ∗µ T̂ n =
⊕n

m=2 H
0(Km),

Mapping class group invariant complex structure.
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Higher complex structures - Moduli space

Conjecture

Our moduli space T̂ n is canonically diffeomorphic to Hitchin’s component.

Hitchin component T̂ n

contractible contractible
dimension (n2 − 1)(2g − 2) dimension (n2 − 1)(2g − 2)

MCG (Σ)-action MCG (Σ)-action
complex structure? complex structure
symplectic structure symplectic structure?

Kähler structure? Kähler structure?

cotangent bundle? explicit description of T ∗T̂ n

forgetful map? only for n = 3 T̂ n → T̂ n−1 fiber H0(Kn)?
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How to compute T ∗T̂ n?

punctual Hilbert scheme Hilbn(C2) is symplectic

zero-fiber Hilbn
0(C2) is Lagrangian in the reduced Hilbert scheme

Hilbn
red(C2)

generically, n points with barycenter 0
pairs of commuting matrices in sln
typical ideal is of the form

〈−pn + t2p
n−2 + ...+ tn,−p̄ + µ1 + µ2p + ...+ µnp

n−1〉.

Thus, T ∗Hilbn
0(C2) = T normal Hilbn

0(C2) ≈ Hilbn
red(C2).
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How to compute T ∗T̂ n?

Theorem (Fock, T., 2017)

T ∗T̂ n =
{

[(µ2, ..., µn, t2, ..., tn)] | µk ∈ Γ(K 1−k ⊗ K̄ ), tk ∈ Γ(K k) and ∀k

(−∂̄+µ2∂+k∂µ2)tk +
n−k∑
l=1

((l+k)∂µl+2 + (l+1)µl+2∂)tk+l = 0
}

Higher holomorphicity condition: for µk = 0 ∀k then ∂̄tk = 0.
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Proof structure for main conjecture

T̂ n T n ⊂ Rep(π1(Σ),PSLn(R)) Hitchin section
∩ ∩ ∩

T ∗T̂ n Rep(π1(Σ),PSLn(C)) MHiggs(SLn(C))

Deform coordinates (µi , ti ) of T ∗T̂ n into (µ̂i (h), t̂i (h)) with

µ̂i (h) = µi +O(h) and t̂i (h) = hti +O(h2)

such that we get a flat connection of the form
t̂n

1
...

. . . t̂2

1 0

 dz +


µ̂1(h) ∗ ∗ ∗
µ̂2(h) ∗ ∗ ∗

... ∗ ∗ ∗
µ̂n(h) ∗ ∗ ∗

 dz̄ .

Alexander Thomas (MPI Bonn) Higher complex structures 24 / 32



Proof structure for main conjecture

T̂ n T n ⊂ Rep(π1(Σ),PSLn(R)) Hitchin section
∩ ∩ ∩

T ∗T̂ n Rep(π1(Σ),PSLn(C)) MHiggs(SLn(C))

Deform coordinates (µi , ti ) of T ∗T̂ n into (µ̂i (h), t̂i (h)) with

µ̂i (h) = µi +O(h) and t̂i (h) = hti +O(h2)

such that we get a flat connection of the form
t̂n

1
...

. . . t̂2

1 0

 dz +


µ̂1(h) ∗ ∗ ∗
µ̂2(h) ∗ ∗ ∗

... ∗ ∗ ∗
µ̂n(h) ∗ ∗ ∗

 dz̄ .

Alexander Thomas (MPI Bonn) Higher complex structures 24 / 32



Proof structure for main conjecture

T̂ n T n ⊂ Rep(π1(Σ),PSLn(R)) Hitchin section
∩ ∩ ∩

T ∗T̂ n Rep(π1(Σ),PSLn(C)) MHiggs(SLn(C))

Deform coordinates (µi , ti ) of T ∗T̂ n into (µ̂i (h), t̂i (h)) with

µ̂i (h) = µi +O(h) and t̂i (h) = hti +O(h2)

such that we get a flat connection of the form
t̂n

1
...

. . . t̂2

1 0

 dz +


µ̂1(h) ∗ ∗ ∗
µ̂2(h) ∗ ∗ ∗

... ∗ ∗ ∗
µ̂n(h) ∗ ∗ ∗

 dz̄ .

Alexander Thomas (MPI Bonn) Higher complex structures 24 / 32



Proof structure for main conjecture

Flat connection
t̂n(h)

1
...

. . . t̂2(h)
1 0

 dz +


µ̂1(h) ∗ ∗ ∗
µ̂2(h) ∗ ∗ ∗

... ∗ ∗ ∗
µ̂n(h) ∗ ∗ ∗

 dz̄ .

This connection is gauge-equivalent to a connection of the form
Φ + hA + h2Φ∗.

For ti = 0 for all i = 2, ..., n, we get real monodromy.

Conjecture

The deformation (µ̂i (h), t̂i (h)) is canonically determined by (µi , ti ).
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1 Punctual Hilbert scheme

2 Higher complex structures

3 Further developments
GL2(R)-action
“Higher” mapping class group?

Alexander Thomas (MPI Bonn) Higher complex structures 26 / 32



GL2(R)−action

T ∗T 2 is the space of half-translation surfaces. Indeed, t ∈ H0(K 2)
gives a chart by

z 7→
∫ z

z0

√
t.

<<

<<

>

>
xx

oo

Natural GL2(R)−action on space of polygons, so on T ∗T 2.
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GL2(R)−action

Proposition

There is a GL2(R)−action on T ∗T̂ n.

Recall that the coordinates on T ∗T̂ n are given by

xn = t2x
n−2 + ...+ tn−1x + tn

y = µ1 + µ2x + ...+ µnx
n−1.

GL2(R) ∼=
{(

a b̄
b ā

)
| aā− bb̄ 6= 0

}
A matrix

(
a b̄
b ā

)
induces the action:

x 7→ x ′ = ax + b̄ȳ

y 7→ y ′ = b̄x̄ + ay .
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“Higher” mapping class group?

Higher diffeomorphisms act on n-complex structures. But even a bigger
group acts: the group of symplectomorphisms of T ∗Σ preserving the
zero-section.
Notation:

HamΣ(T ∗Σ) = higher diffeomorphisms

SympΣ(T ∗Σ) = symplectomorphisms preserving the zero-section

Based on work of Ono and Banyaga, we get:

Proposition

The group HamΣ(T ∗Σ) is the connected component of the identity of
SympΣ(T ∗Σ).
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“Higher” mapping class group?

Proposition

The group HamΣ(T ∗Σ) is the connected component of the identity of
SympΣ(T ∗Σ).

Therefore the quotient

SympΣ(T ∗Σ)/HamΣ(T ∗Σ)

is a discrete group, and it contains the mapping class group MCG(Σ).

Open question

Is this quotient group strictly bigger than MCG(Σ)?
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Perspectives

Generalization to Lie algebras g other than sln:

g-Hilbert scheme, leading to g−complex structure

Higher complex structure

Opers

Spectral networks

W -algebras
Cluster varieties

Mirror symmetry
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Thank you for your attention!

The way to understanding is long and wiggly...

Image sources: maths calendar “Complex beauties”. Just click on the images!
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http://www.mathe.tu-freiberg.de/fakultaet/information/math-calendar-2020
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