How to compute using

quantum walks

Viv Kendon

PhD students: James Morley (UCL → CountingLabs) Adam Callison (Imperial) Jemma Bennett (Durham) Stephanie Foulds (Durham)

+ many UG project students also at Durham: Nick Chancellor (Durham) (UKRI Innovation Fellow) Jie Chen (Durham) Laur Nita (Durham) Collaborators: Dom Horsman (Grenoble) Susan Stepney (York)

JQC & QLM Physics Dept Durham University viv.kendon@durham.ac.uk

Quantum Simulation and Quantum Walks

CIRM 20th January 2020

Overview

- modeling vs simulation?
- abstraction/representation framework
- solving classical problems with quantum walks
- searching and spin glasses
- universal quantum walk computing
- summary and outlook

numerical simulation...

★ we simulate mathematical models, not physical systems:

computational physics tests our models when can't calculate analytically...

representation relation in physics:

spaces of abstract and physical objects (here, an electron and a wave-function) with a representation relation (modelling) $\mathcal{R}_{\mathcal{T}}$ mediating between the spaces

 ${\mathcal R}$ is theory dependent, so write ${\mathcal R}_{{\mathcal T}}$ for theory ${\mathcal T}$

 \star could represent electron as point charge if doing electrostatics . . .

science

- physical system p evolves under H(p) to p'
- theory $m_{\rm p}$ calculated $C_T(m_{\rm p})$ to obtain $m_{\rm p}'$
- "good" theory agrees with observation to within $arepsilon: |m_{
 m p}'-m_{
 m p'}|<arepsilon$

technology

technology is making things we designed, here making a p^\prime

p, \mathcal{T} and H such that we can engineer a physical system to our specifications m'_p – effectively inverting $\mathcal{R}_{\mathcal{T}} \longrightarrow \widetilde{\mathcal{R}}_{\mathcal{T}}$ – an <u>instantiation</u> representation relation

Durham

computing

among many things, we engineer computers

computing: use a physical computer p to calculate abstract problem c encode c into model m_p , instantiate $\tilde{\mathcal{R}}_T$ into p, run, decode output

requirements for computing

computing is a high level process...

- computations have outputs (else can replace computer with brick...)
- representational entity ("owns" the computation)

[Stepney/VK "The role of the representational entity..." 219–231 UCNC 2019 & Nat. Comp. 2020]

abstract is instantiated in the representational entity

(does not need to be human – Horsman/VK/Stepney/Young Abstraction and representation in living organisms: when does a biological system compute? in: Representation and reality: Humans, Animals and Machines. Gordana Dodig-Crnkovic and Raffaela Giovagnoli, Editors. Springer 2016)

.

.

GOAL: increase computing power . . .

★ current computers already very powerful
 – two barriers to more computing power:

- 1. silicon chip technology reaching limits
- energy consumption far from optimal:
 resource limits; global warming

[lots of room to improve on energy consumption– see, e.g., SpiNNaker project for other ways to use Si]

note these are related: can't cool Si chips any faster

beyond silicon . . .

quantum: IBM 5 qubit

rat neuron on silicon

BZ reaction chemical

reservoir computer

encoding for DNA computer

★ future computing is diversifying ★ ⇒ need to co-design algorithms with hardware ←

hybrid computers . . .

practice: co-processors:

unconventional: control + substrate:

conventional:

- graphics cards
- ASIC application-specific integrated circuit
- FPGA field-programmable gate array

 \star hybrid computational systems are the norm \star

theory: single paradigm:

- classical Turing Machine
- analog Shannon's GPAC
- quantum gate model, QTM, CV, MBQC, QW, AQC, . . .
- linear optics (Bosons) [Aaronson/Arkhipov STOC 2011 ECCC TRI-10 170]

NMR

• quantum

- reservoir
- slime mould

quantum computing

$$\underbrace{\mathsf{input}}_{\longrightarrow} \mathsf{encode} \longrightarrow |\psi_{in}\rangle \longrightarrow \hat{U} \longrightarrow |\psi_{out}\rangle \longrightarrow \mathsf{decode} \longrightarrow \mathsf{result}$$

 \hat{U} is unitary evolution (or more generally, open system/environment) – can be gate sequence, or engineer Hamiltonian $\hat{H}(t)$ such that

$$|\psi_{out}\rangle = \mathcal{T} \exp\{-i/\hbar \int dt \ \hat{H}(t)\} \, |\psi_{in}\rangle$$

 \star covers most of quantum information processing . . .

. . . including communications, where aim is *result=input*

encode – arbitrary choices:

using spin-down $|\downarrow\rangle \equiv 0$ instead of spin-up $|\uparrow\rangle \equiv 0$ makes no difference \rightarrow provided encode and decode done consistently

quantum information processing

quantum information is built on the idea that:

quantum logic allows greater EFFICIENCY than classical logic

classical	quantum
bits, 0 or 1	qubits, $\alpha 0\rangle + \beta 1\rangle$
yes or no, binary decisions	yes and no, superpositions
HEADS or TAILS, random numbers	random measurement outcomes

 \Rightarrow quantum gives different computation from classical: how different?

- **computability** what can be computed?
- **complexity** how efficiently can it be computed?

⇒ quantum computability is the same as classical complexity differs: some problems can be computed more EFFICIENTLY

quantum advantage?

how to translate quantum logic into better computing devices? depends on definition of **EFFICIENCY**

- *in theory: polynomial scaling with system size*
- *in practice: produces answers on human timescales*

roughly speaking:

quadratic speed up exploits quantum coherence, interference effects

exponential speed up exploits parallelism in quantum superposition

 \star comparison of real physical devices, not of mathematical theories \Rightarrow complexity theory alone won't tell you whether useful in practice

encoding matters . . .

... it determines the physical resources required:

Number	Unary	Binary	
0		0	Read out:
1	•	1	Unary: measurements with N
2	••	10	outcomes
3	• • •	11	Binary: $\log_2 N$ measurements
4	• • ••	100	with 2 outcomes each
			\longrightarrow exponentially better for precision
2x4	• • ••	1000	[Ekert & Jozsa PTRSA 356 1769-82 (1998)]
=8			\longrightarrow exponential reduction in memory
U			[does not have to be binary: Blume-Kohout, Caves,
•••	• • •	•••	I. Deutsch, Found. Phys. 32 1641-1670 (2002)]
N	$N \times \bullet$	$\log_2 N$ bits	

★ floating point: 0.1234567×10^{89} even more efficient, trade precision/memory ★

encoding problems into qubit Hamiltonians

+ computational basis state $|j\rangle = |q_0q_1 \dots q_k \dots q_{n-1}\rangle$ with $q_k \in \{0,1\}$ + superposition of all basis states:

$$|\psi_0\rangle = 2^{-n/2} \sum_{j=0}^{2^n - 1} |j\rangle = (|0\rangle + |1\rangle)^{\otimes n}$$

encode problem into *n*-qubit Hamiltonian \hat{H}_p

such that <u>solution</u> is lowest energy state (ground state)

example: find state $|m\rangle$ then $\hat{H}_p = \mathbf{1} - |m\rangle \langle m|$

example: three qubits, exactly one must be $|1\rangle$

$$\hat{H}_p = (\mathbf{1} - \hat{Z}_1 - \hat{Z}_2 - \hat{Z}_3)^2$$

Pauli-Z operator: $\hat{Z} |0\rangle = |0\rangle$ and $\hat{Z} |1\rangle = -|1\rangle$

continuous-time quantum computing

family of computational models:

- discrete qubits for efficient encoding
- **continuous time** evolution with engineered Hamiltonian
- coupling to low temp bath open system effects
 cooling

exploits natural properties of quantum systems

given \hat{H}_p

adiabatic quantum computing

[Farhi et al, quant-ph/0001106]

initialise in ground state $\ket{\psi_{\mathsf{init}}}$ of simpler Hamiltonian \hat{H}_0 – easy to prepare –

transform adiabatically:

$$\hat{H}(t) = [1 - s(t)]\hat{H}_0 + s(t)\hat{H}_p$$

with annealing parameter s(t = 0) = 0 and $s(t = t_f) = 1$

s(t) monotonically increasing, function of size of problem space $N = 2^n$ and the *accuracy parameter* ϵ determined by adiabatic condition,

$$\frac{\left|\left\langle \frac{d\hat{H}}{dt} \right\rangle_{1,0}\right|}{(E_1 - E_0)^2} \equiv \epsilon \ll 1,$$
(1)

0 and 1 refer to the ground and excited states, and $\left|\left\langle \frac{d\hat{H}}{dt}\right\rangle_{1,0}\right| \equiv \langle E_1 | \frac{d\hat{H}}{dt} | E_0 \rangle$

closer ϵ is to zero – the more completely the system will stay in the ground state and the longer the computation will take

continuous time quantum walk

[Farhi & Gutmann, PRA 58, 915-928 (1998); exponential speed up: Childs et al STOC 2003; universal for QC: Childs PRL 102, 180501 2009]

A – adjacency matrix of graph ($A_{jk} = 1$ iff \exists an edge between sites j and k)

Laplacian: L = A - D, where D is diagonal matrix $D_{jj} = deg(j)$, the degree of site j of graph [irrelevant global phase for regular graphs]

Hamiltonian of the quantum walk: $\hat{H}_{w} = -\gamma L$

 γ = transition rate (prob of moving to connected site per unit time)

quantum walk is $\psi(t) = \exp\{-i\hat{H}_w t\}\psi(0)$ then measure at time $t = t_f$

encoded hypercubes for quantum walks

n qubits encode 2^n vertices:

for a hypercube graph,
$$\hat{H}_h = \gamma \left(n \mathbb{1} - \sum_j \hat{X}_j \right)$$

where *j* is the qubit label: $j = 0 \dots n - 1$

Pauli-X operator \hat{X}_j bit-flips qubit $j \qquad 0 \leftrightarrow 1$

 \rightarrow this moves the position of the quantum walker along an edge of the hypercube

continuous-time quantum search

find the marked state: the problem Hamiltonian

$$\hat{H}_p = \hat{H}_m = \mathbf{1} - |m\rangle \langle m|$$

- makes $|m\rangle$ lower energy – \bigstar use the hypercube Hamiltonian \hat{H}_h for the easy Hamiltonian/initial state - ground state is superposition over all states $|\psi(t=0)\rangle = \{(|0\rangle + |1\rangle)/\sqrt{2}\}^{\otimes n}$ in Pauli operators:

$$\hat{H}_m = \mathbf{1} - \frac{1}{2^n} \prod_{j=1}^n (\mathbf{1} + q_j \hat{Z}_j),$$

where $q_j \in \{-1, 1\}$ defines bitstring corresponding to m for $-1 \equiv 0$ to convert to bits; for gadgets to implement this: Dodds/VK/Adams/Chancellor ar χ iv:1812.07885

$$\hat{H}(t) = \mathbf{A}(t)\hat{H}_h + \mathbf{B}(t)\hat{H}_m$$

apply time-evolution

$$\left|\psi(t_f)\right\rangle = \mathcal{T} \exp\{-i \int dt \ \hat{H}(t)\} \left|\psi(t=0)\right\rangle$$

measure after suitable time $t_f \propto \sqrt{N}$ to obtain quantum speed up

hybrid continuous-time quantum search algorithms

interpolate between $QW (\alpha = 0)$ and $AQC (\alpha = 1)$ $\hat{H}(\alpha, t) = A(\alpha, t)\hat{H}_h + B(\alpha, t)\hat{H}_m$ $\hat{H}_{QW} = \gamma\hat{H}_h + \hat{H}_m$ $\hat{H}_{AQC} = [1 - s(t)]\hat{H}_h + s(t)\hat{H}_m$ \rightarrow need γ and $s(t) \dots$

[James Morley's work (UCL CDT) PRA 99, 022339 (2019) ar_{χ} iv:1709.00371]

single avoided crossing model

continuous-time quantum seach algorithms all solved analytically – for large *N* limit reduces to a 2-dim subspace (single qubit) – for AQC

$$\hat{H}^{(AC)}(s) = (1-s)\hat{H}_0^{(AC)} + s\hat{H}_p^{(AC)}$$
$$= (1-s)\left\{\frac{1}{2}(\mathbf{1} + \hat{Z}) - g_{\min}\hat{X}\right\} + s\frac{1}{2}(\mathbf{1} - \hat{Z})$$

with $g_{\min} = N^{-1/2}$ solving the eigensystem gives

$$E_1 - E_0 = g^{(\mathsf{AC})}(s) = \{(1 - 2s)^2 + 4g_{\min}^2(1 - s)^2\}^{\frac{1}{2}}$$

apply method of Roland+Cerf (2002) to obtain optimal s(t) as solution of

$$\frac{ds}{dt} = \frac{\epsilon [g^{(\mathsf{AC})}(s)]^2}{\left| \left\langle \frac{d\hat{H}_{\mathsf{AC}}}{ds} \right\rangle_{0,1} \right|} = (1 - 2s)^2 + 4g_{\mathsf{min}}^2 (1 - s)^2$$

in limit $g_{\min} \ll 1$

$$s(t) \simeq \frac{1}{2} \left\{ 1 - g_{\min} \cot \left[g_{\min} (2\epsilon t + 1) \right] \right\}$$

single avoided crossing model

for quantum walk, $\gamma \equiv s = 1/2$ and model reduces to Rabi flops

$$\hat{H}(\gamma) = \frac{1}{2}(\mathbf{1} - g_{\min}\hat{X})$$

interpolate between QW ($\alpha = 0$) and AQC ($\alpha = 1$) where $\beta = 1/(1 + \gamma)$

 $\hat{H}(\alpha, t) = A(\alpha, t)\hat{H}_h + B(\alpha, t)\hat{H}_m$ $\hat{H}_{QW} = \gamma\hat{H}_h + \hat{H}_m$ $\hat{H}_{AQC} = [1 - s(t)]\hat{H}_h + s(t)\hat{H}_m$ $1 - s(\tau)$

$$A(\alpha, t) = \frac{1 - s(\tau)}{\alpha + (1 - \alpha)\frac{(1 - s(t))}{(1 - \beta)}}$$
$$B(\alpha, t) = \frac{s(t)}{\alpha + (1 - \alpha)\frac{s(t)}{\beta}}$$

Joint Quantum 24/34

[James Morley's work (UCL CDT)]

Durham University

more realistic problems

Sherrington Kirkpatrick spin glasses: frustrated spin systems
 ★ NP-hard for finding ground state *i.e., expect polynomial speed up* ★ more like realistic hard optimisation problems

$$\hat{H}_p = -\sum_{j=0}^{n=1} \sum_{k=j+1}^{n-1} \frac{J_{jk} + J_{kj}}{2} \hat{Z}_j \hat{Z}_k - \sum_{j=0}^{n=1} h_j \hat{Z}_j$$

 J_{ik}, h_i drawn from Gaussian distributions with mean = 0 (hardest)

• AQC can find ground states faster than guessing

[e.g., Martin-Mayor/Hen Sci Rep 5, 15324 (2015); arXiv:1502.02494]

$$\hat{H}(t) = (1-s(t))\hat{H}_w + s(t)\hat{H}_p$$

• what about continuous-time quantum walks?

$$\hat{H}(t) = \gamma \hat{H}_w + \hat{H}_p$$

• compare with a random energy model (REM)

SK spin glass optimal gamma

need to choose γ i.e., the relative weight of Hamiltonian components:

 $\hat{H}(t) = \gamma \hat{H}_{w} + \hat{H}_{p}$

SK has broad peak compared with narrow peak for random energy model (REM)

11 qubit examples [Adam Callison's work (Imperial CDT) ar χ iv:1903.05003]

 P_{∞} = long time success probability of finding the ground state (easy to calculate)

.

.

SK spin glass QW dynamics

8 qubit example:

top: time evolution of ground state prob

bottom: time-averaged ground state prob

measure at <u>random time</u> to sample time-averaged probability

$$\bar{P}(t,\Delta t) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} dt P(t)$$

(time scaling better than $O(\log N)$, numerically $n^{0.75}$)

[Adam Callison (Imperial CDT) $ar_{\chi}iv:1903.05003$]

SK spin glass results

success probability scaling for heuristic γ based on energy scales

don't need to solve problem to set parameters, heuristic does well

 $P \sim N^{-0.41}$ for short run times [Callison/Chancellor/Mintert/VK ar_{χ}iv:1903.05003 & NJP]

cf P ~ $N^{-0.5}$ for search, i.e., \bigstar better than search \bigstar

SK spin glass structure

 $\leftarrow \text{ need to know } \gamma$ precisely = not practical?

+ add pairwise corrs to REM – remove corrs from SK – remove corrs from \hat{H}_w

⇒ pairwise correlations
 matched with hypercube
 QW Hamiltonian work best

$$\hat{H}_{SK} = -\sum_{j=0}^{n-1} \sum_{k=j+1}^{n-1} \frac{J_{jk} + J_{kj}}{2} \hat{Z}_j \hat{Z}_k - \sum_{j=0}^{n-1} h_j \hat{Z}_j$$

$$\hat{H}_{h} = \mathbf{1} - \frac{1}{n} \sum_{j=0}^{n=1} \hat{X}_{j}$$

real problems have correlations

 \star match problem encoding to algorithm \star

[Callison/Chancellor/Mintert/VK ar_Xiv:1903.05003 & NJP]

Quantum walks are universal for quantum computing

[Childs PRL 102 18051 ar_Xiv:0806.1972]

[Lovett/Cooper/Everitt/Trevers/VK PRA 81 042330 $ar_{\chi}iv:0910.1024$]

...about proving can implement QW efficiently on a quantum computer ...has nothing to do with physical implementation of quantum walks

key phrase from Childs' paper: "any sufficiently sparse graph"

i.e., graph has a description that is logarithmic in the number of sites

Childs' results characterise which Hamiltonians are efficient to simulate on a quantum computer [Berry et al. Comm. Math. Phys. 270 359 (2007)]

Quantum walk gates

...becomes this quantum walk graph (thanks to Neil Lovett for figure)

Multiple quantum walkers

- ★ quantum walkers that **interact** at the same or neighbouring sites
- like a spin lattice with many excitations delocalised over the lattice
- special case of quantum cellular automata

QCA are universal for quantum computing

- Quantum Cellular Automata overview: [Wiesner ar_Xiv:0808.0679]

- continuous-time quantum walk construction of universal quantum computation [Childs+Gosset+Webb Science 339, 791 2013] m walkers on L locations \longrightarrow full Hilbert space is L^m

* experiments: atoms in optical lattice [Karski et al Science 325 174 (2009)]

- ★ multiple **non-interacting** walkers = particle statistics:
 - bosons, intermediate between classical and quantum computing Aaronsons+ Arkhipov $ar_{\chi}iv:1011.3245$
 - fermions, only two at once if start on same site simulate with entanglement Sansoni et al $ar_{\chi}iv:1106.5713$

CTQW computation summary

- 1. quantum walks can find spin glass ground states
 - quantum speed up (polynomial, better than Grover's search)
 - Callison/Chancellor/Mintert/VK ar $\chi {\rm iv}$:1903.05003 / NJP 21 123022 2019
- 2. **continuous-time quantum computing** for simulation and computation
 - Morley/Chancellor/Bose/VK ar χ iv:1709.00371 / PRA 99 022339 2019 search
- 3. abstraction/representation theory framework
 - Horsman/Stepney/Wagner/VK Proc. Roy. Soc. A 470(2169):20140182
 - Horsman/Stepney/VK Communications of the ACM 60:8 31-34 2017
 - Stepney/VK "The role of the representational entity..." 219-231 UCNC 2019

what next?

- QW on more problems e.g. MAX2SAT
 - (Adam Callison with Lewis Light & Puya Mirkarimi)
- adapt Ashley Montanaro's branch and bound speed up to continous-time
 - optimal algorithm for spin glass ground state problem
 - (Adam Callison with Zoë Bertrand & Max Fentenstein)
- cooling/open system effects single avoided crossing model/search problem
 (Jim Cresser & Steve Barnett (Glasgow); Parth Patel)

