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Motivation

Continuous time quantum walks (CTQW)

• give physically realizable implementations of quantum algorithms
E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).

A. M. Childs and J. Goldstone, Phys. Rev. A 70, 042312 (2004).

R. Portugal, Quantum walks and search algorithms, Springer-Verlag (2013).

D. A. Meyer and T. G. Wong, Phys. Rev. Lett. 114, 110503 (2015).

• model successfully coherent transport phenomena
FMO complex - M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys. 129, 11B603 (2008).

F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 131, 09B612 (2009).

Both in case of closed and open systems there are plenty of examples where
the efficiency and advantage of CTQW over CTRW has been demonstrated.
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What kind of quantum quantum walks do we want to study?

• Pure CTQW:
H = A .

• One-particle tight-binding models with
potentials:

H = A+ V .

• Time-reversal-symmetry breaking (chiral)
quantum walks:

Hch =
∑

{n,m}∈E

eiθnm |n〉〈m|

+e−iθnm |m〉〈n|.

• Time-dependent CTQWs.

• Open/stochastic quantum walks:

ρ̇(t) = Lωρ(t) .
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The question to be studied

If t is small, what can we say about the transition matrix entry

〈y|e−iHt|x〉?

Possible applications:

• Understanding the dynamics of CTQW in open and closed quantum
systems

• It can be interpreted as a distance oracle
C. Mathieu and H. Zhou Lec. Not. Comp. Sci. 7965, 733 (2013).

Previous results concerned classical random walks:

p(y, t|x) = c(x, y)td(x,y) +O(td(x,y)+1)

M. Keller, D. Lenz, F. Mnch, M. Schmidt, and A. Telcs, Bull. Lon. Mat. Soc. 48, 935 (2016).
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Prerequisites for the mathematical result

• We consider a Hilbert space whose orthonormal basis {|v〉}v∈V are
labeled by the vertices of the graph G.

• The graph G = (V, E) is simple but can be directed.

• We consider a time-dependent operator M(t) satisfying the property
〈m|M(t)|n〉 6≡ 0 if and only if the directed edge (n,m) ∈ E .

• We would like to solve the d
dt
X(t) = M(t)X(t) matrix differential

equation.

• We denote the path amplitude (in the Dyson series/Magnus
expansion/Picard iteration) corresponding to a path p ∈ P(n,m) by

Φp[M(t)] =

∫ t

0

dsd · · ·
∫ s2

0

ds1 〈pd|M(sd)|pd−1〉 · · · 〈p1|M(s1)|p0〉.
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Main mathematical results I.

The solution of the matrix differential equation

d

dt
X(t) = M(t)X(t), X(0) = 1,

satisfies the inequality∣∣∣〈m|X(t)|n〉 −
∑

p∈P(n,m)

Φp[M(t)]
∣∣∣ ≤ et/τT

(t/τT )d(n,m)+1

(d(n,m)+1)!
.

for all vertices n and m of distance d(n,m).

• The sum goes over the shortest paths P(n,m) running from n to m.

• The Φp[M(t)] is the path amplitude of p.

• M(t) is not necessarily hermitian, it can be anything

• τT is a constant depending on M(t):

τ−1
T = max

0≤t≤T
‖M(t)‖.
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Main mathematical result II.

What does that mean?

• τT defines the timescale.

• If t . τT , then

〈m|X(t)|n〉 =
∑

p∈P(n,m)

Φp[M(t)] +O
(
(t/τT )d(n,m)+1) .

Examples:

• Comparison of CTRW and CTQW

• Tight-binding models with potentials

• Chiral quantum walks

• Open CTQW systems
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Comparison of CTRW and CTQW

We have a simple, undirected graph G = (V, E) containing no self-loops.
The CTRW dynamics is generated by the Laplacian of the graph: L = D−A,

pR(u, t|v) = 〈u| exp(−Lt)|v〉 .

The unitary walk on the same graph is generated by −iL (or −iH = −iA)
with transition probabilities

pQ(u, t|v) = |〈u| exp(−iLt)|v〉|2.

It turns out that the timescales are equal:∑
p

ΦCTRWp (t) =
`(u, v)

d(u, v)!
,

∑
p

ΦCTQWp (t) = (−i)d(u,v)
∑
p

ΦCTRWp (t).
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Comparison of CTRW and CTQW
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Tight-binding models with potentials

Consider a one-particle tight-binding model with onsite potentials
H = A+ V . The hitting probabilities are

pTB(u, t|v) = |〈u| exp(−i(A+ V )t)|v〉|2.

We choose the on-site potentials from an ensemble of independent, identically
distributed Gaussian random variables with mean zero and unit variance:∑

p

ΦTBp (t) = `(u, v)(−it)d(u,v)/d(u, v)! .
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Tight-binding models with potentials
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Tight-binding models with potentials

Consider a one-particle tight-binding model with onsite potentials
H = A+ V . The hitting probabilities are

pTB(u, t|v) = |〈u| exp(−i(A+ V )t)|v〉|2.

Ĥ(t) = exp(−V t)Ĥ exp(V t).

τ−1 = dmax(G) max
n 6=m

|〈n|Ĥ|m〉|.
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Chiral quantum walks

The Hamiltonian of a chiral quantum walk is

Hch =
∑
n∼Gm

eiθnm |n〉〈m|+ e−iθnm |m〉〈n|.

Z. Zimborás et al, Scientific Reports 3, 2361 (2013); DaWei Lu et al, Phys. Rev. A 93, 042302 (2016).

Complex phases assigned to the edges can give rise to destructive interference:

∑
p∈P(u,v)

Φp(t) =
∑

p∈P(u,v)

e
i
∑

k θpk,pk+1
td(u,v)

d(u, v)!
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Chiral quantum walks
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Time-dependent Hamiltonian

Let us consider the following Hamiltonian:

H(t) = Λ+(t)AΛ(t)

where the Λ(t) is a diagonal unitary and A is the adjacency matrix.
Note that the timescales in this special case

• the time-dependent chiral quantum walk encoded by H(t) is never trivial
even in the case when A corresponds to a tree;

• unitary transformation keeps the timescales.

The transition matrix:

〈v|U(t)|0〉 =
1

Ωd

(
−
v−1∑
u=0

(−iΩ)u
tu

u!
+ e−iΩt

)
+O(td+1).
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Time-dependent Hamiltonian
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Open CTQW

Let us consider an open system dynamics in the Markovian regime. The time
evolution described by the usual Lindblad equation. We restrict our attention
to the so called STQW: ρ̇(t) = Lωρ(t),

Lωρ = −i
∑
v∈V

Vv[v̂, ρ]− i
∑
e∈E

[ê, ρ]

+ω
∑
e∈E

(
ê+ρê− 1

2
{êê+, ρ}

)
,

where v̂ = |v〉〈v| and if e ≡ n→ m is and edge of the graph, then ê = |m〉〈n|.
The relative strength of the CTRW part is measured by the ω ≥ 0 parameter.

There is a natural way to view this process taking place on a graph L obtained
from the complete, directed graph Kd2 of d2 nodes, whose vertices are labeled
by the matrix units Enm and whose edges Ekl → Enm are deleted when the
corresponding matrix entry Tr[E∗nmLEkl)] vanishes.
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Open CTQW
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Publication:

• Phys. Rev. A 100, 062320 (2019).

Thank you for the Attention!
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