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Definition (right-angled Artin group (RAAG))

Ar = (S | st = ts for (s, t) € E)
We say that (Ar, S) is a RAAG system.

Definition (right-angled Coxeter group (RACG))

Wr=(S|s*=1forseS,st=ts for (s, t) € E)
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Every RAAG is finite-index in some RACG

Theorem (Davis-Januszkiewicz)

Every RAAG embeds as a finite-index subgroup in some RACG.

Question

Which RACGs contain finite-index RAAGs and are therefore
commensurable to a RAAG?

Question
Which RACGs are quasi-isometric to RAAGs?

We now see that many RACGs are not quasi-isometric (and
therefore not commensurable) to any RAAG.
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Example: some hyperbolic reflection groups

I an n-cycle, n > 5. The RACG Wr is a Fuchsian group.

The Geometry and Topology
of Coxeter Groups

Michael W. Davis

which is:
One-ended
Hyperbolic

Every one-ended RAAG contains Z? subgroups and are not
hyperbolic. So W is not quasi-isometric to any RAAG.
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Divergence

Divergence is a quasi-isometry invariant measuring the max rate a pair of
geodesic rays diverge in the Cayley graph of a group.

A RAAG has either linear, quadratic or exponential divergence.
[Behrstock-Charney]

A RACG can have polynomial divergence of any degree. [Dani-Thomas]

Morse boundary

The Morse boundary is a quasi-isometry invariant which is a boundary
associated to Morse geodesics.

A RAAG has totally disconnected Morse boundary. [Charney-Sultan,
Cordes-Hume, Charney-Cordes-Sisto]

There are RACGs with quadratic divergence and Morse boundary with
non-trivial connected components. [Behrstock]
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Planar RACGs

Let Wt be a 2-dimensional (i.e. no 3-cycles in I'), one-ended
RACG with T planar.

Theorem (Nguyen-Tran)

There is a bi-colored visual decomposition tree T associated to I'.

Wr is quasi-isometric to a RAAG <> every vertex of T is black.

Theorem (Dani-L)

Wr is quasi-isometric to a RAAG <— W is commensurable to a
RAAG.

To prove the above theorem, we find a way to detect finite-index
RAAG subgroups of RACGs.
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Candidate RAAG subgroups: visual RAAGs

Let ' be a simplicial graph.

Let s,t € V/(I') be non-adjacent vertices.

The word st represents an infinite order element of the RACG W
(s, t) corresponds to an edge of [, the complement graph.

Given a subgraph A C ' we identify E(A) with the corresponding
infinite order elements of Wr, and we let Gy be the group
generated by these elements.

Definition (Visual RAAG)

Let A C T€. Let Gn < Wr be generated by E(A).

If (Ga, E(N)) is a RAAG system, then we say that G is a visual
RAAG.

Visual RAAGs were first studied in LaForge's thesis.
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Visual RAAG Example

Figure 1: RACG defining graph I

Figure 2: Choice of A C '€ in red and blue. A has two components in
this case.

We always draw I in black and A in colors. Each color of A
corresponds to a component of A.
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Obstructions

We can't pick A C I randomly and expect Gp to be a RAAG...

We will now discuss necessary conditions on A for Ga to be a visual
RAAG. The first three are due to LaForge.

These conditions naturally are characterized by the number of
components of A involved.
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Definition (R1)

N\ does not contain cycles.

Definition (R2)

Given a path in A with endpoints p and g, then p and g do not
span an edge of I'.
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R is necessary

Lemma (LaForge)
If \ does not satisfy R, then Gy is not a RAAG.

Proof.

Suppose si,. .., S, is a path in A with s; and s, adjacent in ' (and thus
commuting in the ambient RACG Wf).

N = 518, = $83,...,'h—1 = Sh—-15p
are edges of A and generators of Gp. Multiplying:
n...m-1= (5152)(5253) .. (s,,_ls,,) = 515, € Gp
Furthermore, s;s, has order 2 as s; and s, commute:
(515,,)2 = 515,515, = 51515n5p = 1

As RAAGs are torsion-free, Gy cannot be a RAAG. O
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Definition (R3)

Let Ac and Ay be components of A. Let ¢, d1, ¢, d> be a square
in I with ¢1, ¢ € A¢c and di,d> € Ay. Then I contains the join of
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If we see this: Then there must be this:
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Conditions R1—R3 are necessary:

Theorem (LaForge)

Let A C T€. If (G, E(N)) is a RAAG system, then A satisfies
conditions R1, Ro and R3.

Question

Are we done? What is a full set of sufficient and necessary
conditions?

Question

When is a visual RAAG subgroup a finite-index subgroup?
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Two component condition 2: R4

There are more necessary conditions...
Definition (Ra4)

Let Ac and Ay be components of A. Let v be a cycle in [ visiting
vertices c¢1,d1, ¢, do, ..., Cn,d, with c1,...,c, € A¢c and
di,...,dn € Ny. Then every edge of v is contained in a square
with vertices in Hullp{c1, ..., cp} UHulla{di,...,dn}.

If we see this: Then there must be this:
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Characterization when A has at most two components

Theorem (Dani-L)

Suppose N C € has at most two components.

(Gn, E(N)) is a RAAG system <= Ri — R4 are satisfied.
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Ideas in the proof of sufficiency

Let A C I'€ satisfy R1—R4. To prove one direction of our result, we
need to show that Gp is indeed a RAAG.

We can form the commuting graph A with vertex set E(A) and
edges corresponding to commutation.

If (Gp, E(A)) is indeed a RAAG system, then Gy is isomorphic to
the RAAG Aj.

Get a surjective map ¢ : Aax — Gp, sending generators to
generators.

Need to show ¢ is injective.
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Ideas in the proof of sufficiency

Let w=r1...r, be a word in Gy with r; = s;t; for some
non-adjacent s;, t; € V/(I).

For a contradiction, suppose w is trivial in Gy and w is a
non-trivial, minimal length word in the RAAG Aa.

Form the disk diagram in Wi with boundary w:

The disk diagram has the structure of hyperplane chains.
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Hyperplane chains

m Chains give paths in A.

m Colors indicate corresponding components of A.

m R guarantees hyperplanes of the same color do not intersect.
m Intersecting chains correspond to paths in [ alternating
between two components of A.

The proof then uses conditions R1 — R4 and the structure of
hyperplane chains to perform “moves”, corresponding to
relations in Aa, producing diagrams of “lower complexity.”
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More than two components?

Things get more complex when A contains more than two
components...

We know of other necessary three component conditions.

For instance, if Gp is a RAAG and A contains the following type of
configuration:

then I' must contain a triangle.
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Finite-index miracle

Recall, we are mainly interested in finite-index visual RAAGs.

If the ambient RACG is 2-dimensional, then we get a complete
classification of finite-index visual RAAGs:

Theorem (Dani-L.)
Let W be a 2-dimensional RACG. Let A C T€.

(G, E(N)) is a finite-index RAAG system
<~
conditions R1 — R4, F1 and F, are satisfied.

F1: N contains every vertex of I (e posssy s = 1 ).

F>: Given vertices s and t in difference components of A, then
there is a path in I from s and t containing only vertices in these
components.



Application

Recall our goal theorem:
Theorem (Dani-L)

Let Wr be a 2-dimensional, one-ended RACG with ' planar.
Wr is quasi-isometric to a RAAG <— W is commensurable to a
RAAG.



Application

Recall our goal theorem:
Theorem (Dani-L)

Let Wr be a 2-dimensional, one-ended RACG with ' planar.
Wr is quasi-isometric to a RAAG <— W is commensurable to a
RAAG.

By Nguyen-Tran's work, we have a graph-theoretic description of
RACGs in this class which are quasi-isometric to RAAGs.



Application

Recall our goal theorem:

Theorem (Dani-L)

Let Wr be a 2-dimensional, one-ended RACG with ' planar.
Wr is quasi-isometric to a RAAG <— W is commensurable to a
RAAG.

By Nguyen-Tran's work, we have a graph-theoretic description of
RACGs in this class which are quasi-isometric to RAAGs.

We pick A C I€ satisfying R1—R4, F1 and F> by inducting on the
visual decomposition tree.



Application

Recall our goal theorem:

Theorem (Dani-L)

Let Wr be a 2-dimensional, one-ended RACG with ' planar.
Wr is quasi-isometric to a RAAG <— W is commensurable to a
RAAG.

By Nguyen-Tran's work, we have a graph-theoretic description of
RACGs in this class which are quasi-isometric to RAAGs.

We pick A C I€ satisfying R1—R4, F1 and F> by inducting on the
visual decomposition tree.

By the previous theorem, Gp is a RAAG commensurable to Wr.



Thank you!



