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RAAGs and RACGs

Γ a finite simplicial graph with vertex set S and edge set E

Definition (right-angled Artin group (RAAG))

AΓ = 〈S | st = ts for (s, t) ∈ E 〉

We say that (AΓ,S) is a RAAG system.

Definition (right-angled Coxeter group (RACG))

WΓ = 〈S | s2 = 1 for s ∈ S , st = ts for (s, t) ∈ E 〉
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Every RAAG is finite-index in some RACG

Theorem (Davis-Januszkiewicz)

Every RAAG embeds as a finite-index subgroup in some RACG.

Question

Which RACGs contain finite-index RAAGs and are therefore
commensurable to a RAAG?

Question

Which RACGs are quasi-isometric to RAAGs?

We now see that many RACGs are not quasi-isometric (and
therefore not commensurable) to any RAAG.
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Example: some hyperbolic reflection groups

Γ an n-cycle, n ≥ 5. The RACG WΓ is a Fuchsian group.

which is:

1 One-ended

2 Hyperbolic

Every one-ended RAAG contains Z2 subgroups and are not
hyperbolic. So WΓ is not quasi-isometric to any RAAG.
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More RACGs not QI to RAAGs

Divergence

Divergence is a quasi-isometry invariant measuring the max rate a pair of
geodesic rays diverge in the Cayley graph of a group.

A RAAG has either linear, quadratic or exponential divergence.
[Behrstock-Charney]

A RACG can have polynomial divergence of any degree. [Dani-Thomas]

Morse boundary

The Morse boundary is a quasi-isometry invariant which is a boundary
associated to Morse geodesics.

A RAAG has totally disconnected Morse boundary. [Charney-Sultan,
Cordes-Hume, Charney-Cordes-Sisto]

There are RACGs with quadratic divergence and Morse boundary with
non-trivial connected components. [Behrstock]
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Planar RACGs

Let WΓ be a 2-dimensional (i.e. no 3-cycles in Γ), one-ended
RACG with Γ planar.

Theorem (Nguyen-Tran)

There is a bi-colored visual decomposition tree T associated to Γ.

WΓ is quasi-isometric to a RAAG ⇐⇒ every vertex of T is black.

Theorem (Dani-L)

WΓ is quasi-isometric to a RAAG ⇐⇒ WΓ is commensurable to a
RAAG.

To prove the above theorem, we find a way to detect finite-index
RAAG subgroups of RACGs.
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Candidate RAAG subgroups: visual RAAGs

Let Γ be a simplicial graph.

Let s, t ∈ V (Γ) be non-adjacent vertices.

The word st represents an infinite order element of the RACG WΓ.

(s, t) corresponds to an edge of Γc , the complement graph.

Given a subgraph Λ ⊂ Γc we identify E (Λ) with the corresponding
infinite order elements of WΓ, and we let GΛ be the group
generated by these elements.

Definition (Visual RAAG)

Let Λ ⊂ Γc . Let GΛ <WΓ be generated by E (Λ).

If (GΛ,E (Λ)) is a RAAG system, then we say that GΛ is a visual
RAAG.

Visual RAAGs were first studied in LaForge’s thesis.
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Visual RAAG Example

Figure 1: RACG defining graph Γ

Figure 2: Choice of Λ ⊂ Γc in red and blue. Λ has two components in
this case.

We always draw Γ in black and Λ in colors. Each color of Λ
corresponds to a component of Λ.
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Obstructions

We can’t pick Λ ⊂ Γc randomly and expect GΛ to be a RAAG...

We will now discuss necessary conditions on Λ for GΛ to be a visual
RAAG. The first three are due to LaForge.

These conditions naturally are characterized by the number of
components of Λ involved.
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Single component conditions: R1 and R2

Definition (R1)

Λ does not contain cycles.

Definition (R2)

Given a path in Λ with endpoints p and q, then p and q do not
span an edge of Γ.
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R2 is necessary

Lemma (LaForge)

If Λ does not satisfy R2, then GΛ is not a RAAG.

Proof.

Suppose s1, . . . , sn is a path in Λ with s1 and sn adjacent in Γ (and thus
commuting in the ambient RACG WΓ).

r1 = s1s2, r2 = s2s3, . . . , rn−1 = sn−1sn

are edges of Λ and generators of GΛ. Multiplying:

r1 . . . rn−1 = (s1s2)(s2s3) . . . (sn−1sn) = s1sn ∈ GΛ

Furthermore, s1sn has order 2 as s1 and sn commute:

(s1sn)2 = s1sns1sn = s1s1snsn = 1

As RAAGs are torsion-free, GΛ cannot be a RAAG.
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Two component condition 1: R3

Definition (R3)

Let Λc and Λd be components of Λ. Let c1, d1, c2, d2 be a square
in Γ with c1, c2 ∈ Λc and d1, d2 ∈ Λd . Then Γ contains the join of
HullΛ{c1, c2} and HullΛ{d1, d2}.

If we see this:

c1 c2

d1 d2

Then there must be this:

c1 c2

d1 d2
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Conditions R1–R3 are necessary:

Theorem (LaForge)

Let Λ ⊂ Γc . If (GΛ,E (Λ)) is a RAAG system, then Λ satisfies
conditions R1, R2 and R3.

Question

Are we done? What is a full set of sufficient and necessary
conditions?

Question

When is a visual RAAG subgroup a finite-index subgroup?
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Two component condition 2: R4

There are more necessary conditions...

Definition (R4)

Let Λc and Λd be components of Λ. Let γ be a cycle in Γ visiting
vertices c1, d1, c2, d2, . . . , cn, dn with c1, . . . , cn ∈ Λc and
d1, . . . , dn ∈ Λd . Then every edge of γ is contained in a square
with vertices in HullΛ{c1, . . . , cn} ∪ HullΛ{d1, . . . , dn}.

If we see this: Then there must be this:
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Characterization when Λ has at most two components

Theorem (Dani-L)

Suppose Λ ⊂ Γc has at most two components.

(GΛ,E (Λ)) is a RAAG system ⇐⇒ R1 – R4 are satisfied.



Ideas in the proof of sufficiency

Let Λ ⊂ Γc satisfy R1–R4. To prove one direction of our result, we
need to show that GΛ is indeed a RAAG.

We can form the commuting graph ∆ with vertex set E (Λ) and
edges corresponding to commutation.

If (GΛ,E (Λ)) is indeed a RAAG system, then GΛ is isomorphic to
the RAAG A∆.

Get a surjective map φ : A∆ → GΛ, sending generators to
generators.

Need to show φ is injective.



Ideas in the proof of sufficiency

Let Λ ⊂ Γc satisfy R1–R4. To prove one direction of our result, we
need to show that GΛ is indeed a RAAG.

We can form the commuting graph ∆ with vertex set E (Λ) and
edges corresponding to commutation.

If (GΛ,E (Λ)) is indeed a RAAG system, then GΛ is isomorphic to
the RAAG A∆.

Get a surjective map φ : A∆ → GΛ, sending generators to
generators.

Need to show φ is injective.



Ideas in the proof of sufficiency

Let Λ ⊂ Γc satisfy R1–R4. To prove one direction of our result, we
need to show that GΛ is indeed a RAAG.

We can form the commuting graph ∆ with vertex set E (Λ) and
edges corresponding to commutation.

If (GΛ,E (Λ)) is indeed a RAAG system, then GΛ is isomorphic to
the RAAG A∆.

Get a surjective map φ : A∆ → GΛ, sending generators to
generators.

Need to show φ is injective.



Ideas in the proof of sufficiency

Let Λ ⊂ Γc satisfy R1–R4. To prove one direction of our result, we
need to show that GΛ is indeed a RAAG.

We can form the commuting graph ∆ with vertex set E (Λ) and
edges corresponding to commutation.

If (GΛ,E (Λ)) is indeed a RAAG system, then GΛ is isomorphic to
the RAAG A∆.

Get a surjective map φ : A∆ → GΛ, sending generators to
generators.

Need to show φ is injective.



Ideas in the proof of sufficiency

Let Λ ⊂ Γc satisfy R1–R4. To prove one direction of our result, we
need to show that GΛ is indeed a RAAG.

We can form the commuting graph ∆ with vertex set E (Λ) and
edges corresponding to commutation.

If (GΛ,E (Λ)) is indeed a RAAG system, then GΛ is isomorphic to
the RAAG A∆.

Get a surjective map φ : A∆ → GΛ, sending generators to
generators.

Need to show φ is injective.



Ideas in the proof of sufficiency

Let w = r1 . . . rn be a word in GΛ with ri = si ti for some
non-adjacent si , ti ∈ V (Γ).

For a contradiction, suppose w is trivial in GΛ and w is a
non-trivial, minimal length word in the RAAG A∆.

Form the disk diagram in WΓ with boundary w :
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The disk diagram has the structure of hyperplane chains.



Hyperplane chains

Chains give paths in Λ.
Colors indicate corresponding components of Λ.
R2 guarantees hyperplanes of the same color do not intersect.
Intersecting chains correspond to paths in Γ alternating
between two components of Λ.
The proof then uses conditions R1 – R4 and the structure of
hyperplane chains to perform “moves”, corresponding to
relations in A∆, producing diagrams of “lower complexity.”
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More than two components?

Things get more complex when Λ contains more than two
components...

We know of other necessary three component conditions.
For instance, if GΛ is a RAAG and Λ contains the following type of
configuration:

then Γ must contain a triangle.
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Finite-index miracle

Recall, we are mainly interested in finite-index visual RAAGs.

If the ambient RACG is 2-dimensional, then we get a complete
classification of finite-index visual RAAGs:

Theorem (Dani-L.)

Let WΓ be a 2-dimensional RACG. Let Λ ⊂ Γc .

(GΛ,E (Λ)) is a finite-index RAAG system
⇐⇒

conditions R1 – R4, F1 and F2 are satisfied.

F1: Λ contains every vertex of Γ ( except possibly if star(v) = Γ ).
F2: Given vertices s and t in difference components of Λ, then
there is a path in Γ from s and t containing only vertices in these
components.
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Application

Recall our goal theorem:

Theorem (Dani-L)

Let WΓ be a 2-dimensional, one-ended RACG with Γ planar.
WΓ is quasi-isometric to a RAAG ⇐⇒ WΓ is commensurable to a
RAAG.

By Nguyen-Tran’s work, we have a graph-theoretic description of
RACGs in this class which are quasi-isometric to RAAGs.

We pick Λ ⊂ Γc satisfying R1–R4, F1 and F2 by inducting on the
visual decomposition tree.

By the previous theorem, GΛ is a RAAG commensurable to WΓ.
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Thank you!


