Computing fibring of 3-manifolds and free-by-cyclic groups

DAWID KIELAK

3-Manifolds

Definition

Let *X* be a connected topological space. A continuous function $f: X \to \mathbb{S}^1$ is a *fibring* if and only if for every $p \in \mathbb{S}^1$ there exists a neighbourhood *U* of *p* such that $f^{-1}(U) \cong f^{-1}(p) \times U$, where the homeomorphism respects the map *f*.

Definition

Let *X* be a connected topological space. A continuous function $f: X \to \mathbb{S}^1$ is a *fibring* if and only if for every $p \in \mathbb{S}^1$ there exists a neighbourhood *U* of *p* such that $f^{-1}(U) \cong f^{-1}(p) \times U$, where the homeomorphism respects the map *f*.

Non-example

Take a surface Σ of genus ≥ 2 . Given any map $\Sigma \to \mathbb{S}^1$, there will be various homeomorphism types of fibres.

Fibring formally

Non-example

Take a surface Σ of genus ≥ 2 . Given any map $\Sigma \to \mathbb{S}^1$, there will be various homeomorphism types of fibres.

There exists a polytope P_M controlling which $M \to \mathbb{S}^1$ fibres.

Every dot is a map $M \to \mathbb{S}^1$

There exists a polytope P_M controlling which $M \to \mathbb{S}^1$ fibres.

• Every dot is a map $M \to \mathbb{S}^1$

 $\blacksquare A dot is a fibring \Leftrightarrow it is orange$

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	
•	•														•	•			•			•	•	•	-		•	•	•	•	•	•	•	•	•	•	•	•	
•		•	•	•		ò							•		•	•			•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	
•	•	•	•	•		-							•		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•			•											•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		ė,	•	•	
•	•			•											•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	
							-																								-						•	•	
															-						-	-	-						-	-	-								
													è														•	•	•						•	•	•	•	
													-										-	-							-								
			-	-	-	-	-					-	-	-	-				-	-	-	-	-					-											
	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-					
1							Ξ	Ξ								1						1		1					2	Ξ.	1	1							
1							1	1								1						1		1					2	Ξ.	1	1							
																										÷			1	Ξ.	1								
			÷																							•			1	Ξ.	1								
:	:	:					:	:	:	:	:					:	:		:					:	:				:			:	:	:					
	:	:						:	:	:	:						:		:						:		:						:	:					
		:	÷																:										1	Ξ.									
:	:	:	•	:	:			:	:	:	•	:	•		•	:	:	•	:	:	:		•	:	:	•	•	•	:	•		:	:	:	•	•	•	•	
:	:	:	•	•	•			:	:	•	•	•	•		•	:	:	•	•	•			•	:	:	•	•	•	:			:	:	•	•	•		•	
•	•	•	•	•				•	•	•	•	•	-			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	-	•	•	•	•		•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Y	•	•	•	•	•	•	
•	:	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	Y	•	Y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•
٠	٠	٠	•	٠	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۲	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•

There exists a polytope P_M controlling which $M \to \mathbb{S}^1$ fibres.

Every dot is a map $M \to \mathbb{S}^1$

■ A dot is a fibring ⇔ it lies in the orange field

There exists a polytope P_M controlling which $M \to \mathbb{S}^1$ fibres.

- Every dot is a map $M \to \mathbb{S}^1$
- A dot is a fibring ⇔ it lies in the orange field
- The orange field is the cone over some faces of P_M

Theorem (Tollefson–Wang)

Under extremely mild conditions on M, there is an algorithm computing P_M . The input is a triangulation of M.

Theorem (Schleimer, Cooper–Tillmann)

Under the same conditions, there is an algorithm computing the fibred faces.

There is even a Sage package! [Worden]

Free-by-cyclic groups

Enter the group theory

What does a fibring 3-manifold look like algebraically?

Short exact sequences

$$\Sigma \to M \to \mathbb{S}^1$$

'short exact sequence'

Enter the group theory

What does a fibring 3-manifold look like algebraically?

Short exact sequences

 $\Sigma \to M \to \mathbb{S}^1$

'short exact sequence'

 $\pi_1(\Sigma) \to \pi_1(M) \to \mathbb{Z}$

an honest short exact sequence

Enter the group theory

What does a fibring 3-manifold look like algebraically?

Short exact sequences

 $\Sigma \to M \to \mathbb{S}^1$

'short exact sequence'

 $\pi_1(\Sigma) \to \pi_1(M) \to \mathbb{Z}$

an honest short exact sequence

So $G = \pi_1(M) = \pi_1(\Sigma) \rtimes \mathbb{Z}$, a surface-by-cyclic group.

When *M* has boundary, so does Σ , and so $\pi_1(\Sigma) = F_n$.

The converse is not true:

Important fact

Not every free-by-cyclic group $F_n \rtimes \mathbb{Z}$ is a 3-manifold group!

The two families are closely related.

Theorem (Stallings)

A map $f: M \to S^1$ is homotopic to a fibring if and only if ker f_* is finitely generated.

Definition

An epimorphism $\phi: G \to \mathbb{Z}$ is an *algebraic fibring* if and only if ker ϕ is finitely generated.

Theorem (K. 2018)

Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.

Theorem (K. 2018)

Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.

 $\blacksquare \text{ Every dot is a map } G \to \mathbb{Z}$

■ A dot is a fibring ⇔ it lies in the orange field

The orange field is the cone over some faces of P_G

Algorithms

Let *M* be a 3-manifold. There exists a polytope P_M controlling which $f: M \to S^1$ fibres.

Theorem

Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.

Let *M* be a 3-manifold. There exists a polytope P_M controlling which $f: M \to S^1$ fibres.

Theorem

Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.

Theorem

The polytope can be computed algorithmically.

Let *M* be a 3-manifold. There exists a polytope P_M controlling which $f: M \to S^1$ fibres.

Theorem

Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.

Theorem

The polytope can be computed algorithmically.

Theorem

And so can the orange marking.

Theorem	Theorem
Let <i>M</i> be a 3-manifold. There exists a polytope P_M controlling which $f: M \to S^1$ fibres.	Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.
Theorem	Theorem (Gardam–K. 2020)
The polytope can be computed algorithmically.	The polytope can be computed algorithmically.
Theorem	

And so can the orange marking.

Theorem	Theorem								
Let <i>M</i> be a 3-manifold. There exists a polytope P_M controlling which $f: M \to S^1$ fibres.	Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.								
Theorem	Theorem (Gardam–K. 2020)								
The polytope can be computed algorithmically.	The polytope can be computed algorithmically.								
Theorem	Theorem (Gardam–K. 2020)								
And so can the orange marking.	And so can the orange marking (modulo a conjecture).								

The fibred faces

Let $G = F_n \rtimes \mathbb{Z}$. There exists a polytope P_G controlling which $\phi: G \to \mathbb{Z}$ algebraically fibres.

Theorem (Gardam-K. 2020)

The orange marking can be effectively computed, modulo a conjecture.

Back to 3-manifolds: The Thurston poytope P_M is the unit ball of the *Thurston norm*

$$\| \cdot \|_{\mathcal{T}} \colon H^1(M;\mathbb{R}) \to [0,\infty)$$

Definition (Thurston norm)

To every coclass $\phi \in H^1(M; \mathbb{R})$ Poincaré duality associated a dual class in $H_2(M; \mathbb{R})$. Such a class can be represented by an embedded surface Σ . The Thurston norm is (roughly)

$$\|\phi\|_{\mathcal{T}} = \min_{\Sigma} \left(-\chi(\Sigma) \right)$$

When ϕ is fibred with kernel $\pi_1(\Sigma)$, then $\|\phi\|_T = -\chi(\Sigma) = -\chi(\ker \phi)$.

L² perspective

Theorem (Friedl–Lück)

When *M* is virtually fibred, then for every primitive $\phi \in H^1(M; \mathbb{Z})$

$$\|\phi\|_{\mathcal{T}} = -\chi^{(2)}(\ker\phi)$$

L² perspective

Theorem (Friedl–Lück)

When *M* is virtually fibred, then for every primitive $\phi \in H^1(M; \mathbb{Z})$

$$\|\phi\|_{\mathcal{T}} = -\chi^{(2)}(\ker\phi)$$

Theorem (Friedl–Lück; Funke–K.)

When $G = F_n \rtimes \mathbb{Z}$, then the map

 $\phi \mapsto -\chi^{(2)}(\ker \phi)$

for an epimorphism $\phi \colon G \to \mathbb{Z}$ extends to a semi-norm $H^1(G; \mathbb{R}) \to [0, \infty)$, and its unit ball is P_G .

For virtually fibred 3-manifolds, $\|\phi\|_{T} = -\chi^{(2)}(\ker \phi)$ and the unit ball of the norm is P_{M} .

Theorem

For free-by-cyclic groups, $\phi \mapsto -\chi^{(2)}(\ker \phi)$ is a semi-norm with unit ball P_G .

Meta-theorem

 $\|\phi\|_{\mathcal{T}}$ tells us about the smallest way of representing ϕ .

Theorem	
---------	--

For virtually fibred 3-manifolds, $\|\phi\|_{T} = -\chi^{(2)}(\ker \phi)$ and the unit ball of the norm is P_{M} .

Theorem

For free-by-cyclic groups, $\phi \mapsto -\chi^{(2)}(\ker \phi)$ is a semi-norm with unit ball P_G .

Meta-theorem

 $\|\phi\|_{\mathcal{T}}$ tells us about the smallest way of representing ϕ .

Conjecture (Gardam-K. 2020)

For en epimorphism $\phi: G \to \mathbb{Z}$, we have $-\chi^{(2)}(\ker \phi)$ equal to $\min\{-\chi(A)\}$ where G can be written an HNN extension inducing ϕ with base group A.

Conjecture (Gardam-K. 2020)

For en epimorphism $\phi: G \to \mathbb{Z}$, we have $-\chi^{(2)}(\ker \phi)$ equal to $\min\{-\chi(A)\}$ where G can be written an HNN extension inducing ϕ with base group A.

Theorem (Henneke–K.)

The conjecture is true when the free-by-cyclic group G is a one-relator group.

Thank you!