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Fibring formally

Definition

Let X be a connected topological space. A continuous function f: X — S'
is a fibring if and only if for every p € S there exists a neighbourhood U of
p such that , Where the homeomorphism respects the
map f.
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How do 3-manifolds fibre?

Theorem (Thurston 1986)
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Is it practical?

Theorem (Tollefson—-Wang)

Under extremely mild conditions on M, there is an
. The input is a triangulation of M.

Theorem (Schleimer, Cooper-Tillmann)
Under the same conditions, there is an algorithm

There is even a Sage package! [Worden]
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Enter the group theory

What does a fibring 3-manifold look like algebraically?

Short exact sequences

Yy - M—S'

‘short exact sequence’
7T1(Z) — 7T1(M) — 7
an honest

SoG=m(M)=m(X)xZ,a group.



Free-by-cyclic groups

When M has boundary, so does ¥, and so m(X) = Fp.

The converse is not true:
Important fact
Not every free-by-cyclic group F, x Z is a 3-manifold group!

The two families are



Back to fibring

Theorem (Stallings)
Amap f: M — S' is homotopic to a if and only ifker f, is

Definition
An epimorphism ¢: G — Z is an algebraic fibring if and only if ker ¢ is
finitely generated.



How do free-by-cyclic groups fibre?

Theorem (K. 2018)

Let G = F, x Z. There exists a
polytope Pg controlling which
¢: G — Z algebraically fibres.
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Theorem (K. 2018)

Let G = F, x Z. There exists a
polytope Pg controlling which
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B Everydotisamap G — Z

B A dot is a fibring < it lies in the

B The orange field is the cone over
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Theorem

Let G = F, x Z. There exists a
polytope Pg controlling which
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Theorem (Gardam-K. 2020)

The polytope can be computed
algorithmically.

Theorem (Gardam—-K. 2020)
And so can the orange marking
(modulo a conjecture).
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Theorem

Let G = F, x Z. There exists a
polytope Pg controlling which
¢: G — Z algebraically fibres.

Theorem (Gardam-K. 2020)
The orange marking can be
effectively computed, modulo a
conjecture.




Thurston norm

Back to 3-manifolds: The Thurston poytope Py is the unit ball of the
Thurston norm

I~ llr: H'(M;R) — [0, 00)
Definition (Thurston norm)

To every coclass ¢ € H'(M; R) Poincaré duality associated a dual class in
H>(M; R). Such a class can be represented by an embedded surface ¥.
The Thurston norm is (roughly)

6]l = min (— x(¥))

When ¢ is fibred with kernel 7¢(X), then ||¢||r = —x(X) = —x(ker ¢).
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L? perspective

Theorem (Friedl-Liick)
When M is virtually fibred, then for every primitive ¢ € H'(M; Z)

o]l = —x®(ker )

Theorem (Friedl-Lick; Funke-K.)
When G = F, x Z, then the map

¢ — —x®(ker ¢)

for an epimorphism ¢: G — 7 extends to a semi-norm H'(G;R) — [0, o0),
and its unit ball is Pg.
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Theorem Theorem

For virtually fibred 3-manifolds, For free-by-cyclic groups,

ol = —x® (ker ¢) and the unit ¢ — —x®(ker ¢) is a semi-norm
ball of the norm is Py. with unit ball Pg.

Meta-theorem Conjecture (Gardam—K. 2020)
||¢|| 7 tells us about the smallest For en epimorphism ¢: G — 7Z, we
way of representing ¢. have —x 2 (ker ¢) equal to

min{—x(A)} where G can be
written an HNN extension inducing
¢ with base group A.



... IS sometimes a theorem

Conjecture (Gardam—K. 2020)

For en epimorphism ¢: G — 7, we have —x®(ker ¢) equal to
min{—x(A)} where G can be written an HNN extension inducing ¢ with
base group A.

Theorem (Henneke—K.)
The conjecture is true when the free-by-cyclic group G is a one-relator
group.



Thank you!
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