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Fibring formally

Definition

Let X be a connected topological space. A continuous function f : X → S1

is a fibring if and only if for every p ∈ S1 there exists a neighbourhood U of
p such that f−1(U) ∼= f−1(p)×U, where the homeomorphism respects the
map f .

Non-example

Take a surface Σ of genus > 2. Given any map Σ→ S1, there will be
various homeomorphism types of fibres.
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How do 3-manifolds fibre?

Theorem (Thurston 1986)
There exists a polytope PM

controlling which M → S1 fibres.

� Every dot is a map M → S1

� A dot is a fibring⇔ it

� The orange field is the cone over
some faces of PM
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Is it practical?

Theorem (Tollefson–Wang)
Under extremely mild conditions on M, there is an algorithm computing
PM . The input is a triangulation of M.

Theorem (Schleimer, Cooper–Tillmann)
Under the same conditions, there is an algorithm computing the fibred
faces.

There is even a Sage package! [Worden]
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Enter the group theory

What does a fibring 3-manifold look like algebraically?

Short exact sequences

Σ→ M → S1

‘short exact sequence’

π1(Σ)→ π1(M)→ Z

an honest short exact sequence

So G = π1(M) = π1(Σ) o Z, a surface-by-cyclic group.
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Free-by-cyclic groups

When M has boundary, so does Σ, and so π1(Σ) = Fn.

The converse is not true:
Important fact
Not every free-by-cyclic group Fn o Z is a 3-manifold group!

The two families are closely related.



Back to fibring

Theorem (Stallings)

A map f : M → S1 is homotopic to a fibring if and only if ker f∗ is finitely
generated.

Definition
An epimorphism φ : G→ Z is an algebraic fibring if and only if kerφ is
finitely generated.



How do free-by-cyclic groups fibre?

Theorem (K. 2018)
Let G = Fn o Z. There exists a
polytope PG controlling which
φ : G→ Z algebraically fibres.

� Every dot is a map G→ Z

� A dot is a fibring⇔ it lies in the
orange field

� The orange field is the cone over
some faces of PG
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Theorems

Theorem
Let M be a 3-manifold. There
exists a polytope PM controlling
which f : M → S1 fibres.

Theorem
The polytope can be computed
algorithmically.

Theorem
And so can the orange marking.

Theorem
Let G = Fn o Z. There exists a
polytope PG controlling which
φ : G→ Z algebraically fibres.

Theorem (Gardam–K. 2020)
The polytope can be computed
algorithmically.

Theorem (Gardam–K. 2020)
And so can the orange marking
(modulo a conjecture).
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The fibred faces



The aim

Theorem
Let G = Fn o Z. There exists a
polytope PG controlling which
φ : G→ Z algebraically fibres.

Theorem (Gardam–K. 2020)
The orange marking can be
effectively computed, modulo a
conjecture.



Thurston norm

Back to 3-manifolds: The Thurston poytope PM is the unit ball of the
Thurston norm

‖ · ‖T : H1(M;R)→ [0,∞)

Definition (Thurston norm)

To every coclass φ ∈ H1(M;R) Poincaré duality associated a dual class in
H2(M;R). Such a class can be represented by an embedded surface Σ.
The Thurston norm is (roughly)

‖φ‖T = min
Σ

(
− χ(Σ)

)

When φ is fibred with kernel π1(Σ), then ‖φ‖T = −χ(Σ) = −χ(kerφ).



L2 perspective

Theorem (Friedl–Lück)

When M is virtually fibred, then for every primitive φ ∈ H1(M;Z)

‖φ‖T = −χ(2)(kerφ)

Theorem (Friedl–Lück; Funke–K.)
When G = Fn o Z, then the map

φ 7→ −χ(2)(kerφ)

for an epimorphism φ : G→ Z extends to a semi-norm H1(G;R)→ [0,∞),
and its unit ball is PG.
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The conjecture

Theorem
For virtually fibred 3-manifolds,
‖φ‖T = −χ(2)(kerφ) and the unit
ball of the norm is PM .

Meta-theorem
‖φ‖T tells us about the smallest
way of representing φ.

Theorem
For free-by-cyclic groups,
φ 7→ −χ(2)(kerφ) is a semi-norm
with unit ball PG.

Conjecture (Gardam–K. 2020)
For en epimorphism φ : G→ Z, we
have −χ(2)(kerφ) equal to
min{−χ(A)} where G can be
written an HNN extension inducing
φ with base group A.
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... is sometimes a theorem

Conjecture (Gardam–K. 2020)

For en epimorphism φ : G→ Z, we have −χ(2)(kerφ) equal to
min{−χ(A)} where G can be written an HNN extension inducing φ with
base group A.

Theorem (Henneke–K.)
The conjecture is true when the free-by-cyclic group G is a one-relator
group.



Thank you!
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