
Action rigidity for free products of hyperbolic
manifold groups

Emily Stark

University of Utah

Joint work with Daniel Woodhouse.



Model geometry

Definition
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QI groups with no common model geometry

1. Virtually free groups:{
Gp = Z/pZ ∗ Z/pZ

∣∣ p ≥ 3 prime
}

There is one quasi-isometry and abstract commensurability class
within this class of groups.

Theorem (Mosher–Sageev–Whyte, 2003)
The groups Gp and Gq have a common model geometry iff p = q.

2. Simple surface amalgams:

There is one QI class, and
infinitely many abstract
commensurability classes
within this class of groups.

Theorem (S.–Woodhouse)
Simple surface amalgams G and G ′ have a common model geometry
if and only if G and G ′ are abstractly commensurable.
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Proof strategy

Goal: To prove groups do not have a common model geometry.
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If G ,G ′ y X , a proper

geodesic metric space,

then G ,G ′ y . . .
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The only tree Gp acts
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Bass-Serre tree, Tp.

Simple surface
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A CAT(0) square
complex, Y

A subgroup of Aut(Y)
contains both groups
as finite-index
subgroups
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Free products of closed hyperbolic manifold groups

Note: A closed hyperbolic n-manifold group is neither QI rigid
nor action rigid for n ≥ 3.

That is, there are incommensurable groups that act on Hn, n ≥ 3.

Goal: While a free products of these groups is not QI rigid,
we prove they are action rigid.

Class of groups considered: Let

C =
{
H1 ∗ H2 ∗ . . . ∗ Hk ∗ Fn

}
,

where

I k ≥ 2 and n ≥ 0;

I Hi
∼= π1(closed hyperbolic ni -manifold), for ni ≥ 2.

(Really, may take C to be the set of infinite-ended groups in which each
1-ended vertex group in the Stallings–Dunwoody decomposition is a
uniform lattice in the isometry group of a rank-1 symmetric space.)
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Quasi-isometry classification of free products

Theorem (Papasoglu–Whyte, 2002)

The groups G ,G ′ ∈ C are quasi-isometric
if and only if

the quasi-isometry types of their one-ended factors agree,
ignoring multiplicity.
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Action rigidity theorem

Theorem (S.-Woodhouse)

Each group G ∈ C is action rigid.

That is, if G ′ is a group and G and G ′ act geometrically
on the same proper geodesic metric space,
then G and G ′ are abstractly commensurable.

Corollary

There are quasi-isometric groups that do not virtually have a
common model geometry.
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Additional rigidity: two closed surfaces

Theorem (S.-Woodhouse)

Let G = π1(Sg1) ∗ π1(Sg2), and G ′ = π1(Sg ′
1
) ∗ π1(Sg ′

2
).

The groups G and G ′ have a common model geometry
if and only if G ∼= G ′.

Corollary

There are torsion-free abstractly commensurable groups that do
not have a common model geometry.

Example:
(Whyte) G and G ′ are abstractly commensurable
if and only if χ(G ) = χ(G ′).
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simplicial complex, are H and H ′ abstractly commensurable?
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Proof Strategy Step 1: Promote the common
model geometry

Let G ,G ′ ∈ C.
Suppose G ,G ′ y X , a proper geodesic metric space geometrically.

We show G and G ′ act geometrically on an ideal model geometry:



Common simplicial model geometry

Theorem (S–W)

Let G and G ′ be hyperbolic, infinite-ended, and not virtually free.

If G and G ′ act geometrically on a proper geodesic metric space,

then G and G ′ act geometrically on a simply connected simplicial

complex that has a tree of spaces decomposition with

Vertex spaces: Either 1-ended or a point
Edge spaces: Intervals.

Remarks:

I The free group case is due to Mosher–Sageev–Whyte.

I The result is false if G is one-ended.

I In progress with Shepherd–Woodhouse: removing
hyperbolicity assumption.

I Main tool: Structure of the visual boundary
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Ideal model geometry

If G ,G ′ ∈ C, we apply work of

Tukia; Hinkkanen; Markovic;
Chow; Pansu

to replace the 1-ended vertex
spaces with copies of Hn

F.



−→ Reformulate our goal topologically

Goal: Prove that G and G ′ are abstractly commensurable.

I The quotient spaces
Y /G and Y /G ′ are
compact graphs of spaces
built of closed manifolds,
points, and intervals
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Difficulty in acheiving our goal

Goal: Prove that G and G ′ are abstractly commensurable.

I If each manifold in Y /G and
Y /G ′ was replaced with a
point, then the existence of
common finite covers follows
from Leighton’s Theorem.

I However, if Y /G and Y /G ′

were single hyperbolic
n-manifolds with isometric
universal covers, then the
goal would be false in
general.
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Proof Strategy Part II: Symmetry-restricted
Leighton’s Theorem

Leighton’s Theorem: If finite
graphs Γ and Γ′ have isomorphic
universal covers, then Γ and Γ′

have isomorphic finite-sheeted
covers.

Equivalently,

If T is a bounded valence
simplicial tree with cocompact
automorphism group,
then any two free uniform
lattices F ,F ′ ≤ Aut(T )
are weakly commensurable in
Aut(T ),
i.e. ∃g ∈ Aut(T ) so gFg−1 ∩ F ′

is finite index in gFg−1 and F ′.
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are weakly commensurable in Aut(T ).

(That is, ∃g ∈ Aut(T ) so gFg−1 ∩ F ′ is finite index in gFg−1 and F ′.)

Symmetry-restricted Leighton’s Theorem.
(Gardam–Woodhouse; Shepherd)

Two free uniform lattices F ,F ′ ≤ Aut(T )
contained in a symmetry-restricted H ≤ Aut(T )
are weakly commensurable in H.

Def: A subgroup H ≤ Aut(T ) is R-symmetry-restricted if

H = { g ∈ Aut(T ) | ∀v ∈ VT ,∃h ∈ H s.t. gv = hv : BR(v)→ BR(gv) }.

Example: If T is a colored tree, then the color-preserving automorphism
group is symmetry-restricted.
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Thank you!


