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Definition

A model geometry for a group G is a proper geodesic metric space
on which G acts geometrically, i.e. properly discontinuously and
cocompactly by isometries.

EXAMPLES
» G~ Cay(G,S), a Cayley graph with |S| < 0o

» Free group F, ~ Tree

» 71 (closed hyperbolic n-manifold) ~ H"
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» If G is QI rigid, then G is action rigid.

» Groups that are action rigid but not QI rigid yield examples of
quasi-isometric groups with no common model geometry.
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QI GROUPS WITH NO COMMON MODEL GEOMETRY

1. VIRTUALLY FREE GROUPS:
{Gp = Z/pZ*Z/pZ|p > 3 prime }

There is one quasi-isometry and abstract commensurability class
within this class of groups.

Theorem (Mosher-Sageev—Whyte, 2003)

The groups G, and Gq have a common model geometry iff p = q.

2. SIMPLE SURFACE AMALGAMS:

There is one QI class, and
infinitely many abstract
commensurability classes
within this class of groups.

Theorem (S.-~Woodhouse)

Simple surface amalgams G and G’ have a common model geometry
if and only if G and G’ are abstractly commensurable.
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GoAL: To prove groups do not have a common model geometry.

GROUPS:

Gp=7Z/pZ*7]pZ
p > 3 prime

Simple surface
amalgams

STEP 1: PROMOTE
THE COMMON MODEL
GEOMETRY:

If G,G’ ~ X, a proper
geodesic metric space,
then G,G' ~ ...

A tree

A CAT(0) square
complex, Y

STEP 2: USE THE
NEW MODEL
GEOMETRY.

The only tree G, acts
on geometrically is its
Bass-Serre tree, Tp.

A subgroup of Aut())
contains both groups
as finite-index
subgroups
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NoOTE: A closed hyperbolic n-manifold group is neither QI rigid
nor action rigid for n > 3.
That is, there are incommensurable groups that act on H", n > 3.

GOAL: While a free products of these groups is not QI rigid,
we prove they are action rigid.

CLASS OF GROUPS CONSIDERED: Let
C:{Hl*Hz*...*Hk*Fn},

where
» k>2and n> 0;
» H; = m1(closed hyperbolic nj-manifold), for n; > 2.

(Really, may take C to be the set of infinite-ended groups in which each
1-ended vertex group in the Stallings—Dunwoody decomposition is a
uniform lattice in the isometry group of a rank-1 symmetric space.)
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Theorem (Papasoglu—Whyte, 2002)
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ignoring multiplicity.
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A FREE PRODUCT G € C 18 NOT QI RIGID

Theorem (Papasoglu—Whyte, 2002)

The groups G, G' € C are quasi-isometric
if and only if
the quasi-isometry types of their one-ended factors agree,
ignoring multiplicity.

» Within each quasi-isometry class in C, there are infinitely
many abstract commensurability classes.

» Thus, each group G € C is not quasi-isometrically rigid.
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Theorem (S.-Woodhouse)
Each group G € C is action rigid.
That is, if G’ is a group and G and G’ act geometrically

on the same proper geodesic metric space,
then G and G’ are abstractly commensurable.

Corollary

There are quasi-isometric groups that do not virtually have a
common model geometry.
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ADDITIONAL RIGIDITY: TWO CLOSED SURFACES

Theorem (S.-Woodhouse)

Let G = T1(Sg,) * m1(Sg,), and G' = m1(Sg) * m1(Sgy)-
The groups G and G' have a common model geometry
if and only if G = G'.

Corollary

There are torsion-free abstractly commensurable groups that do
not have a common model geometry.

EXAMPLE:

(Whyte) G and G’ are abstractly commensurable
if and only if x(G) = x(G').
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OPEN QUESTIONS

Let H and H’ be one-ended hyperbolic groups.

1. Is H x H' action rigid?

2. If H and H' act geometrically on the same contractible
simplicial complex, are H and H’ abstractly commensurable?
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STEP 1: PROMOTE
THE COMMON MODEL
GEOMETRY:

A tree

A CAT(0) square
complex, Y

A tree of copies of H"

STEP 2: USE THE
NEW MODEL
GEOMETRY.

The only tree G, acts
on geometrically is its
Bass-Serre tree, Tp.

A subgroup of Aut())
contains both groups
as finite-index
subgroups

Apply
Symmetry—Restricted
Leighton’s Theorem



PROOF STRATEGY STEP 1: PROMOTE THE COMMON
MODEL GEOMETRY
Let G,G’ e C.

Suppose G, G’ ~ X, a proper geodesic metric space geometrically.

We show G and G’ act geometrically on an ideal model geometry:
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COMMON SIMPLICIAL MODEL GEOMETRY

Theorem (S-W)
Let G and G’ be hyperbolic, infinite-ended, and not virtually free.

If G and G' act geometrically on a proper geodesic metric space,
then G and G’ act geometrically on a simply connected simplicial
complex that has a tree of spaces decomposition with

VERTEX SPACES: Either 1-ended or a point
EDCGE SPACES: Intervals.

REMARKS:
» The free group case is due to Mosher-Sageev—Whyte.
» The result is false if G is one-ended.

» In progress with Shepherd—Woodhouse: removing
hyperbolicity assumption.

» Main tool: Structure of the visual boundary



IDEAL MODEL GEOMETRY

If G, G’ € C, we apply work of

Tukia; Hinkkanen; Markovic;
Chow; Pansu

to replace the 1-ended vertex
spaces with copies of Hf.
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— REFORMULATE OUR GOAL TOPOLOGICALLY

(GoAL: Prove that G and G’ are abstractly commensurable.

» The quotient spaces
Y/G and Y/G' are
compact graphs of spaces
built of closed manifolds,
points, and intervals

» We want to exhibit
homeomorphic finite-sheeted
covering spaces
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DIFFICULTY IN ACHEIVING OUR GOAL

(GoAL: Prove that G and G’ are abstractly commensurable.

» If each manifold in Y/G and
Y /G’ was replaced with a
point, then the existence of
common finite covers follows
from Leighton’s Theorem.

» However, if Y/G and Y/G’
were single hyperbolic
n-manifolds with isometric
universal covers, then the
goal would be false in
general.
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PROOF STRATEGY PART II: SYMMETRY-RESTRICTED
LEIGHTON’S THEOREM

Leighton’s Theorem: If finite
graphs I and I’ have isomorphic
universal covers, then I and I

have isomorphic finite-sheeted
covers.
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LEIGHTON’S THEOREM

Leighton’s Theorem: If finite
graphs I and I’ have isomorphic
universal covers, then I and I
have isomorphic finite-sheeted
covers.

Equivalently,

If T is a bounded valence
simplicial tree with cocompact
automorphism group,

then any two free uniform
lattices F, F/ < Aut(T)

are weakly commensurable in
Aut(T),

i.e. g € Aut(T) so gFg 1N F'
is finite index ig gFg' and F'.
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PROOF STRATEGY PART II: SYMMETRY-RESTRICTED
LEIGHTON’S THEOREM

Let T be a bounded-valence tree with cocompact automorphism group.

Leighton’s Theorem. Two free uniform lattices F, F" < Aut(T)
are weakly commensurable in Aut(T).

(That is, 3g € Aut(T) so gFg~! N F’ is finite index in gFg~! and F’.)

Symmetry-restricted Leighton’s Theorem.
(Gardam—Woodhouse; Shepherd)

Two free uniform lattices F, F’ < Aut(T)
contained in a symmetry-restricted H < Aut(T)
are weakly commensurable in H.

Def: A subgroup H < Aut(T) is R-symmetry-restricted if

H={geAut(T)|VveVT,3he Hst. g, = h,:Br(v) = Br(gv) }

Example: If T is a colored tree, then the color-preserving automorphism
group is symmetry-restricted.
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