Parabolic Subgroups of Infinite Type Artin Groups

Rose Morris-Wright

June 2, 2020

Brandeis University

Background on Artin Groups

Let Γ be a finite simple graph with vertices $S = \{s_1, s_2, \dots s_n\}$ and edges labeled with integers $m_{i,j} \ge 2$.

Definition

The Artin group, A_{Γ} , associated to Γ is the group with presentation

$$A_{\Gamma} = \langle s_1, \ldots, s_n \mid \underbrace{s_i s_j s_i \ldots}_{m_{ij} \text{ terms}} = \underbrace{s_j s_i s_j \ldots}_{m_{ij} \text{ terms}} \text{ for all } i \neq j \rangle.$$

Examples

$$A_{\Gamma} = \langle a, b, c \mid ab = ba, bcb = cbc \rangle$$

Examples

$$A_{\Gamma} = \langle a, b, c \mid ab = ba, bcb = cbc \rangle$$

Other examples include:

- Free groups
- Free abelian groups and other right-angled Artin groups
- Braid groups
- Free products and direct products of other Artin groups

Definition

The *Coxeter group*, W_{Γ} , associated to Γ is the group with presentation

$$W_{\Gamma} = \langle s_1, \ldots, s_n \mid s_i^2 = 1, \underbrace{s_i s_j s_i \ldots}_{m_{ij} \text{ terms}} = \underbrace{s_j s_i s_j \ldots}_{m_{ij} \text{ terms}} \text{ for all } i \neq j \rangle.$$

Examples of Coxeter groups

- Symmetric groups
- Dihedral groups
- Weyl groups

Each Coxeter group can be constructed as a group generated by reflections in a vector space.

Artin groups whose corresponding Coxeter group is finite are called Artin groups of *finite type*.

Types of Artin groups

Parabolic subgroups

Definition

A parabolic subgroup is a subgroup of the form gA_Tg^{-1} where $g \in A_{\Gamma}$ and A_T is the group generated by $T \subset S$

Definition

A parabolic subgroup is a subgroup of the form gA_Tg^{-1} where $g \in A_{\Gamma}$ and A_T is the group generated by $T \subset S$

Theorem (Van der Lek 1983)

$$gA_Tg^{-1}\cong A_{\Gamma_T}$$

Where Γ_T is the subgraph of Γ spanned by the vertices in T.

Avenues for investigation

- Describe the centrilizers or normalizers for given parabolic subgroup
- Given two parabolic subgroups P, Q when is $P \cap Q$ also parabolic.

A Challenge: Ribbon elements (Godelle 2003)

There exists an element $r \in A_{\Gamma}$ such that $rsr^{-1} = t$.

Theorem (MW 2019, Cumplido et al 2019)

Suppose that A_{Γ} is a FC type Artin group, and P, Q are finite type parabolic subgroups. Then $P \cap Q$ is also a finite type parabolic subgroup.

There is a bijection

Curves in punctured disc \longleftrightarrow Parabolic subgroups in braid group

 $A_{\{s_3,s_4\}}$

Subgroup generated by s_3 and s_4

$$s_2 A_{\{s_1\}} s_2^{-1}$$

Conjugate of subgroup generated by s_1

Definition (Morris-Wright 2019, Cumplido et al 2019) Given an Artin group of FC type we define the *complex of parabolic subgroups*

Vertices are proper finite type irreducible parabolic subgroups An edge appears between P and Q if $z_P z_Q = z_Q z_P$ where z_P is the element that generates the center of P. The complex of parabolic subgroups

- Agrees with curve complex in braid group case. (Cumplido et al, 2019)
- Agrees with the extension graph (Kim and Koberda, 2013) in the right-angled case. (MW 2019)

- Each *n*-simplex represents a \mathbb{Z}^n subgroup.
- (Almost always) connected and infinite diameter (Kim & Koberda 2013, Calvez & Weist 2019, MW 2019)

- Each *n*-simplex represents a \mathbb{Z}^n subgroup.
- (Almost always) connected and infinite diameter (Kim & Koberda 2013, Calvez & Weist 2019, MW 2019)

NEXT QUESTION: Is this complex δ -hyperbolic?

Geometric tools

A CAT(0) cube complex for FC type Artin groups. Vertices are cosets gA_T where A_T is finite type For any pair $gA_T \subset hA_{T'}$ spans a cube of dimension $|T' \setminus T|$. A CAT(0) cube complex for FC type Artin groups. Vertices are cosets gA_T where A_T is finite type For any pair $gA_T \subset hA_{T'}$ spans a cube of dimension $|T' \setminus T|$. Stabilizer of the vertex gA_T is the parabolic subgroup gA_Tg^{-1}

Example

S

t •

A subcomplex of the Deligne complex for the shown graph with fundamental domain in orange.

Example

A subcomplex of the Deligne complex for the shown graph with fundamental domain in orange.

Theorem (MW 2019, Cumplido et al 2019)

Suppose that A_{Γ} is a FC type Artin group, and P, Q are finite type parabolic subgroups. Then $P \cap Q$ is also a finite type parabolic subgroup.

Let P, Q be finite type parabolic subgroups. Choose v_P and v_Q vertices in the Deligne complex fixed by P and Q respectively.

There is a unique geodesic between v_P and v_Q .

This geodesic is fixed by $P \cap Q$

 $P \cap Q$ fixes a shortest edge path between v_P and v_Q .

Proof

Inclusion of subgroups determines directions on these edges. This determines a sequence of *turning points*

Proof

Inclusion of subgroups determines directions on these edges. This determines a sequence of *turning points*

In this example:

 $Stab(v_1) \subset Stab(v_2) \cap Stab(v_P)$

 $Stab(v_3) \subset Stab(v_2) \cap Stab(v_Q)$

Proceed by induction

Proceed by induction on the number of turning points.

Let $R = Stab(v_{n-1})$.

Assume $P \cap R$ is a finite type parabolic subgroup.

Proceed by induction on the number of turning points.

Let $R = Stab(v_{n-1})$.

Assume $P \cap R$ is a finite type parabolic subgroup.

Two cases

Case 1 $R \subset Q$ $P \cap Q$ fixes the entire edge path, so $P \cap Q \subset R$. Together this implies $P \cap Q = P \cap R$.

Case 2 $Q \subset R$

In this case, P, Q both subgroups of the finite type group $P \cap R$ and so we reduce to the finite type case shown by Cumplido et al,

Parabolic subgroups of Artin groups of FC type, *Journal of Pure* and Applied Algebra, to appear

arXiv: 1906.07058

http://www.rosemorriswright.com