Action of the Cremona group on a CAT(0) cube complex

Virtual Geometric Group Theory conference

June 1st, 2020 at CIRM

Anne LONJOU University of Basel

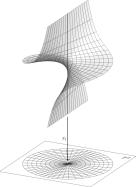
joint work with Christian Urech

Introduction

Birational geometry

• A <u>birational transformation</u> between two surfaces is an isomorphism between two dense open subsets.

- Example: Blow-up of a point $\pi_1: S \to S'$.
 - * π_1 induces an isomorphism between $S \setminus E_p$ and $S' \setminus p$.
 - * $E_p \simeq \mathbb{P}^1$ is called <u>exceptional divisor</u>.



• Given S, the set of birational transformations from S to S with the composition form a group, Bir(S).

Introduction

Cremona group of rank 2

The <u>Cremona group</u> of rank 2, denoted by $Bir(\mathbb{P}_k^2)$, is the group of birational transformations of \mathbb{P}_k^2 .

- L. Cremona introduced this group in 1863-1865.
- Various aspects of this group:
 - * algebraical,
 - * dynamical,
 - * topological,
 - * geometrical...

Introduction

Aim of this talk

Construct an action of the Cremona group on a CAT(0) cube complex.

- \rightsquigarrow Gives a new geometric space for the Cremona group of rank 2.
- → It has been a step towards the construction of a geometric space for Cremona groups of higher ranks.

• A Cremona transformation f has the following form:

$$f: \qquad \mathbb{P}^2 \qquad \dashrightarrow \qquad \mathbb{P}^2 \\ [x:y:z] \qquad \longmapsto \qquad [f_0(x,y,z):f_1(x,y,z):f_2(x,y,z)]$$

where $f_0, f_1, f_2 \in k[x, y, z]$ are homogeneous polynomials of the same degree without common factor.

- deg $f := \deg f_i$
- \cap { $f_i = 0$ } set of points not well-defined.

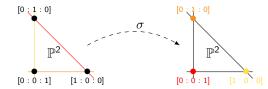
Cremona group of rank 2

- $f : [x : y : z] \vdash \to [f_0(x, y, z) : f_1(x, y, z) : f_2(x, y, z)]$
- $\deg f := \deg f_i$
- \cap { $f_i = 0$ } set of points not well-defined.

*
$$\operatorname{Aut}(\mathbb{P}^2) = \{f \in \operatorname{Bir}(\mathbb{P}^2) \mid \deg f = 1\} \simeq \operatorname{PGL}(3, k).$$

$$\{[x:y:z] \vdash \rightarrow [ax + by + cz: dx + ey + fz: gx + hy + iz]\}$$

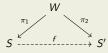
*
$$\sigma : [x : y : z] \vdash \rightarrow [yz : xz : xy].$$



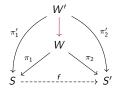
Zariski theorem

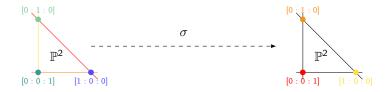
Theorem

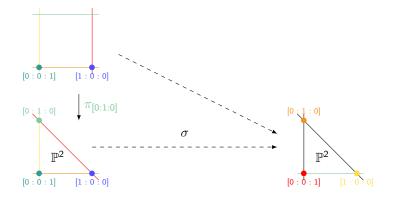
Let $f : S \dashrightarrow S'$ be a birational transformation between surfaces. Then there exists a surface W and compositions of blow-ups $\pi_1 : W \to S$, $\pi_2 : W \to S'$ such that:



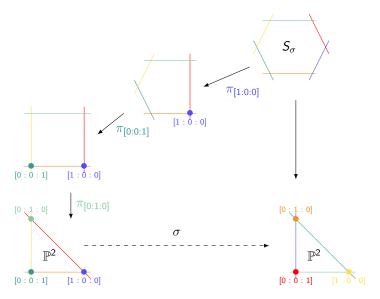
• <u>Remark</u>: *W* can be chosen minimal and we call it <u>minimal</u> resolution of *f*.







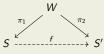




Definition

Theorem

Let $f : S \dashrightarrow S'$ be a birational transformation between surfaces. Then there exists a surface W and compositions of blow-ups $\pi_1 : W \to S$, $\pi_2 : W \to S'$ such that:



- The points blown-up by π₁ in the minimal resolution of f are called <u>base-points</u> of f, denoted by B(f).
- <u>Remark</u>: They do not all lie in *S*. For instance $[x : y : z] \vdash \rightarrow [xz : x^2 yz : z^2].$

Construction

- Vertices: $[(S, \varphi)]$
 - * S birational surface,
 - $* \ \varphi : S \dashrightarrow \mathbb{P}^2$ birational map,
 - * $(S, \varphi) \sim (S', \varphi')$ iff $\varphi'^{-1} \varphi : S \stackrel{\sim}{\to} S'$ is an isomorphism.
- Edges: $[(S, \varphi)] \bullet \longrightarrow \bullet [(T, \psi)]$ if $\psi^{-1}\varphi$ is a blow-up or the inverse of a blow-up.

Example $(p, q \in \mathbb{P}^2, q' \in E_q)$.

$$[(\mathbb{F}_1, \pi_p)]$$

$$[(\mathbb{P}^2, \mathsf{id})] \qquad [(\mathbb{F}_1, \pi_q)] \qquad [(\mathcal{T}', \pi_q \pi_{q'})]$$

Construction

- Vertices: $[(S, \varphi)]$
 - * S birational surface,
 - $* \ \varphi: \mathcal{S} \dashrightarrow \mathbb{P}^2$ birational map,
 - * $(S, \varphi) \sim (S', \varphi')$ iff $\varphi'^{-1} \varphi : S \stackrel{\sim}{\to} S'$ is an isomorphism.
- Edges: $[(S, \varphi)] \bullet \longrightarrow \bullet [(T, \psi)]$ if $\psi^{-1}\varphi$ is a blow-up or the inverse of a blow-up.

Example $(p,q\in\mathbb{P}^2,\,q'\in E_q).$

$$[(\mathbb{F}_1, \pi_p)] \qquad [(\mathcal{T}, \pi_q \pi_p)]$$
$$[(\mathbb{P}^2, \mathrm{id})] \qquad [(\mathbb{F}_1, \pi_q)] \qquad [(\mathcal{T}', \pi_q \pi_{q'})]$$

Construction

- Vertices: $[(S, \varphi)]$
 - * S birational surface,
 - $* \ \varphi : S \dashrightarrow \mathbb{P}^2$ birational map,
 - * $(S, \varphi) \sim (S', \varphi')$ iff $\varphi'^{-1} \varphi : S \stackrel{\sim}{\to} S'$ is an isomorphism.
- Edges: $[(S, \varphi)] \bullet \longrightarrow \bullet [(T, \psi)]$ if $\psi^{-1}\varphi$ is a blow-up or the inverse of a blow-up.

Example $(p,q\in\mathbb{P}^2,\,q'\in E_q).$

$$[(\mathbb{F}_1, \pi_p)] \qquad [(\mathcal{T}, \pi_q \pi_p)]$$
$$[(\mathbb{P}^2, \mathrm{id})] \qquad [(\mathbb{F}_1, \pi_q)] \qquad [(\mathcal{T}', \pi_q \pi_{q'})]$$

Construction

- Vertices: $[(S, \varphi)]$
 - \ast S birational surface,
 - $* \ \varphi : S \dashrightarrow \mathbb{P}^2$ birational map,
 - * $(S, \varphi) \sim (S', \varphi')$ iff $\varphi'^{-1} \varphi : S \xrightarrow{\sim} S'$ is an isomorphism.
- Edges: $[(S, \varphi)] \bullet \frown \bullet [(T, \psi)]$ if $\psi^{-1}\varphi$ is a blow-up or the inverse of a blow-up.

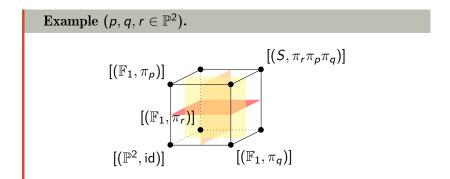
Example $(p, q \in \mathbb{P}^2, q' \in E_q).$

$$[(\mathbb{F}_{1}, \pi_{p})] \quad [(T, \pi_{q}\pi_{p})] \quad [(Z, \pi_{q}\pi_{q'}\pi_{p})]$$
$$[(\mathbb{P}^{2}, \mathrm{id})] \quad [(\mathbb{F}_{1}, \pi_{q})] \quad [(T', \pi_{q}\pi_{q'})]$$

Construction

• <u>*n*-cubes:</u> $[(S_1, \varphi_1)], \ldots, [(S_{2^n}, \varphi_{2^n})]$, if there exists $1 \leq r \leq 2^n$ such that for any $1 \leq j \leq 2^n$:

*
$$p_1, \ldots, p_n \in S_r$$
 distinct,
* $\varphi_r^{-1}\varphi_j : S_j \to S_r$ is the blow-up of $E \subset \{p_1, \ldots, p_n\}$.



Remarks

The blow-up complex is:

- not locally compact,
- infinite dimensional,
- oriented: from [(S, φ)] to [(S', φ')] if φ'⁻¹φ is the blowup of a point of S'.

Theorem (2020; A. L. and Christian Urech)

The blow-up complex is a CAT(0) cube complex.

Theorem (2020; A. L. and Christian Urech)

The blow-up complex is a CAT(0) cube complex.

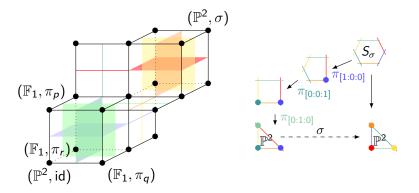
"Proof".

- connected: Zariski theorem.
- simply connected: Let v_1, \ldots, v_n vertices of a loop.
 - * Choose one of minimal height ρ : v_{i_0} . Then $\rho(v_{i_0-1}) = \rho(v_{i_0+1}) = \rho(v_{i_0}) + 1$.
 - * v_{i_0-1} , v_{i_0} , v_{i_0+1} and v'_{i_0} form a square, so replace v_{i_0} by v'_{i_0} .
 - * Zariski theorem: existence of a minimal surface dominating fixed representatives of the vertices v_1, \ldots, v_n . It dominates also a representative of v'_{i_0} .
- links are flag.

Action of the Cremona group on the blow-up complex

Let $f \in \mathsf{Bir}(\mathbb{P}^2)$ and $[(S, \varphi)]$ be a vertex,

 $f \bullet [(S, \varphi)] = [(S, f\varphi)].$



Some Results

- Nice correspondence: for $f \in Bir(\mathbb{P}^2)$,
 - * dist $([(\mathbb{P}^2, \operatorname{id})], [(\mathbb{P}^2, f)]) = 2|\mathcal{B}(f)|,$
 - * $\ell(f) = 2 \lim_{n \to \infty} \frac{|f^n|}{n}$,
 - * elliptic elements are elements conjugated to an automorphism of a surface (called regularizable)

Theorem ('01; J. Diller - C. Favre / '20; L. - C. Urech)

Every birational transformation is conjugate to an algebraically stable model.

• <u>Remark:</u> We prove it over any field.

Some Results

```
Proposition (2020; L. - C. Urech)
```

Let $G \subset \operatorname{Bir}(\mathbb{P}^2)$ such that

- G has property FW, or
- there exists $K \ge 0$ such that for any $g \in G$

```
\deg(g) \leqslant K,
```

then G is regularizable.

- <u>Remarks:</u>
 - * The first result has been done by Cantat-Cornulier over algebraically closed fields.
 - * The second one is a consequence of Weil theorem.
 - * Our proofs are straightforwards.

Question

Consider a subgroup G of the Cremona group such that each of its elements is regularizable. Does it imply that G is regularizable ?

Thank you!